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Computer Architecture is an in-depth exploration of 
the principles and designs that have shaped computer 
hardware through the ages, from counting devices like 
the abacus, to Babbage’s Difference Engine, to modern 
GPUs and the frontiers of quantum computing.

This engaging blend of history, theory, hands-on 
exercises, and real-world examples is sure to make for 
an insightful romp through a fast-changing world. You 
won’t just read about computer architecture, you’ll also 
gain the understanding to touch, build, and program it. 
You’ll explore the basic structures of a CPU by learning 
to program a Victorian Analytical Engine. You’ll extend 
electronic machines to 8-bit and 16-bit retro gaming 
computers, learning to program a Commodore 64 
and an Amiga. You’ll delve into x86 and RISC-V 
architectures, cloud and supercomputers, and ideas 
for future technologies. 

You’ll also learn:

• How to represent data with different coding schemes 
and build digital logic gates

• The basics of machine and assembly language 
programming

• How pipelining, out-of-order execution, and 
parallelism work, in context

• The power and promise of neural networks, DNA, 
photonics, and quantum computing 

Whether you’re a student, a professional, or simply a 
tech enthusiast, after reading this book, you’ll grasp 
the milestones of computer architecture and be able to 
engage directly with the technology that defi nes today’s 
world. Prepare to be inspired, challenged, and above 
all, see and experience the digital world, hands-on.
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INTRODUCT ION

This book explores the field of computer
architecture, examining the underlying

principles and design of computer hard-
ware. The field spans a wide range of hardware

components and technologies at many levels, from
basic silicon and transistors, through logic gates, sim-
ple calculating machines, and assembly languages, up
to complex processors and memory.

The book also traces the history of computing, from ancient Greek
mechanisms to World War II code-breaking machines, retro 8-bit game con-
soles, highly optimized contemporary CPUs and deep-learning GPUs, em-
bedded Internet of Things devices and cloud servers, and even future archi-
tectures, such as quantum computers. Computer architecture identifies the
trends connecting these various machines and components. As you’ll see,
some computing principles are much older than you think.



Who Is This Book For?
Computer architecture is one of a few subjects that separate full-blown com-
puter scientists from mere programmers. If you’re an undergraduate com-
puter science student, it’s probably a requirement for your degree. If you’re
a self-taught programmer or hacker, it may be a subject you wish to learn
more about, both to make your programs run more harmoniously with your
hardware and as a badge of professionalism that many employers look for.
This book assumes you know some basic high school programming, math,
and physics, but otherwise is self-contained. It can serve as a textbook for
the hardware requirements of an undergraduate computer architecture de-
gree or as a first resource for independent learners.

Why Computer Architecture?
When I was a young programmer in the 1980s, programming and using a
computer was deeply intertwined with an understanding of the computer’s
design. For example, the art of writing games on 8-bit micros in the 1980s
was very much about becoming one with the particular CPU and chipset in
your home microcomputer; we were fiercely loyal to our chosen architec-
tures. Computers had very limited resources, so games were written to ex-
ploit specific features of the architecture and to squeeze out as much power
as possible. Many game concepts from this time emerged as results of spe-
cific architectural structures and tricks.

Programming today is quite different. In most application-level pro-
gramming, there are many levels of software hierarchy insulating the pro-
grammer from the hardware. You might program in a language whose types
bear little relation to those of the processor and memory. Those types spare
you from thinking in terms of memory addresses—or at least they sit on an
operating system that replaces physical with virtual memory addresses and
prohibits access to programs stored in hardware other than via some ab-
stracted interface of system calls. As a result, when programmers from the
8-bit era see today’s reconstructed Android and JavaScript versions of their
games, they can find them inauthentic. The games have lost the intimate
connection to the hardware that inspired and constrained them.

Some people, systems programmers, design and maintain the stack of tools
mediating between hardware and software, but everyone else sits on top of
that stack. Nevertheless, those tools still connect you to the underlying hard-
ware, albeit indirectly, and if you understand the hardware’s structure, you
can often make more effective use of the tools at all levels. You can also take
better measurements of how the tools are performing and use that infor-
mation to make smarter choices in your programs. You might use a more
efficient algorithm or change how some process is implemented.

Programmers who really care about high performance, such as writers
of game engines and science and financial simulations, can benefit from
cutting through some of the layers of the stack and talking directly to the
“bare metal” hardware. This kind of programming, known as assembly pro-
gramming, is rare today, since optimizing compilers can generally beat most
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handwritten assembly attempts; still, some programmers like to move closer
to the metal. They might do this by switching from a memory-managed lan-
guage to a pointer-based one, or from a language using symbolic types to
languages using the machine’s own types. For many decades, the lower-level
language of choice has been C, though new contenders, such as Rust, are
always emerging.

Computer architecture is also directly relevant to computer security.
Attacks often involve working at some lower level than the one assumed
to be secure. While a computer may be proved safe at some level, such as
the userland of an operating system, lower-level details like the precise tim-
ings of CPU components and the speed of access to different memory loca-
tions open new possibilities for exploitation. For example, the Spectre and
Meltdown vulnerabilities exist at the CPU level but can be measured and
exploited by userland code when the programmer understands what to
look for.

Lastly, by studying the history of computer architecture and seeing how
the field has evolved not just over decades but also over centuries, we can
learn from past mistakes and discover new uses for old ideas. It’s quite com-
mon for concepts from historical architectures to come back into use after
long periods. For example, to look at a number, Charles Babbage’s mechan-
ical computers had to physically move it out of RAM and into the proces-
sor; this meant the number could exist only in one place at a time, rather
than being copied. We now see exactly this structure in today’s research into
quantum computing, where some of Babbage’s ideas to work around the
problem may find new life. The history of architecture acts as a reservoir of
ideas that we can draw upon as needed.

Changes in the Field
Until recently, computer architecture was a boring, mature subject. It was
developed in the 1950s and 1960s, and its basic principles held for a long
time. Books were updated periodically to feature the latest product exam-
ples, such as CPUs that were faster and used smaller transistors, but the
architectural principles remained the same. Since 2010, however, this has
all changed: the subject has entered a new “golden age,” in part due to the
shifting requirements of other branches of computing. There’s been a re-
cent trend away from traditional desktops, in two opposite directions.

First, computers are becoming less powerful, both in the sense of com-
putational ability and energy usage. We now want to have larger numbers of
smaller, cheaper, lower-energy computers supporting all aspects of our lives.
These sorts of devices enable smart cities, smart agriculture, smart transport,
and the Internet of Things. At the same time, these devices collect vast quan-
tities of data—what we now call big data—and processing that data requires
a second, new type of computer: extremely large supercomputers or com-
pute clusters located in purpose-built sites the size of factories. Inside these
buildings there are no people, only rows of blinking server lights.
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You may have heard of deep learning, a rebranding of the 60-year-old neu-
ral network algorithm. It could be argued that deep learning isn’t a branch
of machine learning or AI theory at all, but rather a branch of computer
architecture. After all, it’s new architectures, based on massive hardware par-
allelization through clusters of GPUs and custom silicon, that have brought
the old algorithm up to speed, enabling it to run at scales many orders of
magnitude larger than before. Thanks to these advances in computer archi-
tecture, we can finally use neural networks to solve real-world problems such
as recognizing objects in videos and conversing with humans in natural lan-
guage chatbots.

Another architectural change has shaken a long-held belief. For many
decades, programmers swore by Moore’s law, which said, depending on who
you believe, that either the number of transistors or the speed of proces-
sors would double every 18 months. This made programmers complacent,
thinking they would get ever-increasing speed on conventional architectures.
Recently, however, considerations of energy usage have brought the speed
form of Moore’s law to an end. We’re still able to build more and more tran-
sistors, but for the first time since the Victorian era, we now need to recon-
ceptualize computing as inherently parallel in order to make use of them.

It remains an open question whether parallel architectures will be visible
to programmers in the future and thus require inherently parallel thinking
for everyday programming, or whether people will write new compilers that
translate between conventional serial programs and novel parallel architec-
tures. Either way, there will be exciting new careers figuring it out. We’re
looking for new ideas that might come from very old sources, such as clock-
work and water computers, or from very new ones, such as neural, optical,
and quantum computing.

Finally, the recent widespread availability of online collaboration tools
has enabled a new wave of open source architectural systems and tools.
RISC-V, BOOM, and Chisel, as well as emulators of past, present, and fu-
ture machines, have all made the study of computer architecture easier,
quicker, and more accessible. You’ll be introduced to many of these tools
in this book. For the first time in a long time, it’s very exciting to study and
teach architecture!

How to Use This Book
Architecture is often a compulsory course or professional requirement,
and many people who don’t enjoy the subject still have to learn it—I should
know, I used to be one of them! For such students, I’ve added some spoon-
fuls of sugar to help the medicine go down: I’ll link the subject to other top-
ics you might be more passionate about. If you hate hardware but like music,
robotics, AI, history, or even advanced LEGO building, then this might be
the book for you. You might even begin to love architecture through one of
these connections; or, if you do just need to pass an exam, maybe this book
will help you get through it less painfully than some of the others.
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Though the future of computer architecture is novel and exciting, it’s
important to know the past, so this book takes a broadly historical approach.
Computers have generally grown more complex over time; by tracing their
history, we can progressively build up this complexity. For example, you’ll
learn the basic structures of a CPU—as still in use today—by learning to pro-
gram on a steampunk, Victorian Analytical Engine. I’ll show you how to con-
vert its moving mechanical parts into logic gate–based equivalents and how
to build up and program a version of the Manchester Baby, one of the first
electronic computers. You’ll then extend electronic machines to 8-bit and
16-bit retro gaming computers, learning to program a Commodore 64 and
an Amiga. Next, I’ll introduce modern desktop and smart computers, in-
cluding x86 and RISC-V architectures, before moving on to cloud and super-
computers. Finally, we’ll look at ideas for future technologies.

We’ll study many example systems in this book, but they’re intended
primarily to illustrate the general concepts rather than be a guide to the
specifics of modern products. When you’ve finished reading the book, you
should have enough understanding, for example, to be able to build an 8-bit
micro on a breadboard, write retro 8-bit games in assembly, write basic em-
bedded and parallel programs, understand the arc of history, and predict
some of the future of architecture. You should also then be ready to read
the canonical reference books for future study and work.

You’ll get the most out of this book if you try to geek out over each
chapter—don’t just take them at face value. For example, large-scale CPUs
can be designed in LogiSim, burned onto cheap field programmable gate
arrays (FPGAs), and run for real. As another example, you can use all of the
architectures and assemblers presented in this book to write your own video
games. The LogiSim files and assembly code snippets discussed in the book
are all available for download; see the book’s web page, https://nostarch.com/
computerarchitecture, for a link. I also encourage you to learn more about the
book’s topics by using the library, Wikipedia, and the wider web, and find-
ing the further readings listed at the end of each chapter; then find the in-
teresting resources that they reference, too. Likewise, try to use the tools pre-
sented in the book’s end-of-chapter exercises in new ways, and look out for
other interesting project ideas online. For instance, many YouTubers have
built simple 8-bit computers by ordering a 6502, RAM chips, and wires from
eBay. Architecture is a particularly visual, bloggable, and YouTube-friendly
subject, so if you create something interesting, be sure to share the results.

A good way to begin your study of architecture is to buy a set of small
screwdrivers and void your products’ warranties by opening up your PC,
laptop, and smartphone, as well as some less obvious devices such as your
router, TV, and washing machine. In the following section, we’ll see some
examples of what you might find inside these devices and how to navigate
around them.
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Inside Common Devices
Computer architecture ranges from the atomic scale of transistors to the
planetary scale of internetworked grid computing. To get an early feel for
the subject, we’ll begin here at the most human level: what we see when we
take the cover off a domestic computer and look inside. Typically, the main
components visible to the naked eye are silicon chips arranged on a printed
circuit board. Later in the book, we’ll dig down through chips, logic gates,
and transistors and build upward to clusters and grids.

Desktop PC
For the last couple of decades, most desktop PCs have used components and
casings of standardized sizes, so you can assemble a PC from components
made by many competitors without worrying about whether they’ll fit to-
gether. IBM started this trend in the 1980s. Thanks to this standardization,
if you remove the screws and cover and open up a desktop PC, you’ll usually
see something like the structure shown in Figure 1.

Figure 1: The inside of a desktop PC

The key feature is a large printed circuit board called a mainboard (aka
a motherboard or systemboard), with other smaller boards plugged into it at
right angles. The mainboard, as shown in Figure 2, contains the essential
parts of the computer, including the central processing unit (CPU), sometimes
just called the processor, and main memory; the other boards are optional
extensions.

You can usually locate the CPU by eye: it’s the center of the system,
looking like the capital city of a country on a map, with all the roads lead-
ing to it. It’s typically under a very large fan to disperse the heat created
by all the CPU’s transistors. The memory is the next most important com-
ponent. Main memory is usually clearly visible as some physically large but
homogeneous region; this is because main memory is computationally large
and homogeneous. In a desktop, main memory appears in several boards of
several identical RAM chips, clearly lined up.
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Figure 2: A mainboard from a desktop PC

Printed circuit boards (PCBs), such as mainboards, are made using a simi-
lar process to silk-screening posters or T-shirts, as shown in Figure 3. In silk-
screen printing, you choose a number of colors for your design and buy a
can of paint in each. You then use a CAD program to make your design
from block regions of these colors. You print out binary images for each
color onto separate transparencies, to show where that color paint will go,
and then you make a silk screen mask for each color. A mask begins as a
piece of silk fabric, which you cover in a light-sensitive gel. You place the
transparency that you printed out over it, then shine a bright light onto it.

Figure 3: To print this poster, a silk screen mask is placed
on a piece of paper, and paint is pushed through it using
a squeegee.

The gel reacts where the printout is transparent and doesn’t react where the
printout is black. You then put the mask in water, which washes away the
reacted parts of gel and leaves in place the non-reacted parts. The remaining
gel doesn’t allow paint to pass through it, but the exposed areas of the silk
fabric do allow paint to pass through. You can now lay your mask on top of a
blank piece of paper or T-shirt, pour paint all over it, and the paint will pass
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through only in the desired areas of your design. Once you allow this color
layer to dry, you repeat the whole process for each remaining color to build
up the design.

PCBs can be made similarly. You start with an acid-proof fiberglass in-
sulator board, completely covered with a layer of copper. You design the
circuit layout in a CAD program, print it onto a transparency, and shine a
light through the transparency to selectively mask a light-sensitive chemi-
cal on the board. You then dip the board in acid to remove the unmasked
parts of the copper layer. The remaining copper forms the wiring for the
PCB. Next, you solder electronic components onto the appropriate locations
on the board. The soldering used to be done by hand, but now it’s done by
robots, which are much more accurate and can handle smaller components.

Beyond the mainboard, the rest of a PC case contains power transform-
ers that convert domestic electricity into the various voltages used in the
computer, as well as bulk storage devices such as hard disks and optical me-
dia disc drives—that is, CD, DVD, or Blu-ray.

In previous decades, PCs had lots of extension cards for interfacing with
the monitor, sound equipment, and networks, but more recently these stan-
dard interfaces have moved to chips on the mainboard. The standard-sized
PC case (called the ATX form factor) often contains mostly empty space
in modern desktops as the parts have been miniaturized and integrated
onto the mainboard. The noticeable exception to this trend is the graph-
ics card (graphics processing unit, or GPU), which in high-end machines may
have grown as large as or larger than the mainboard to enable fast 3D video
games and scientific computing. Gamers like to show off these cards by illu-
minating them with LED lights and using transparent PC cases.

Laptop
Laptop PCs have the same logical structure as desktops, but they use smaller,
less power-consuming components, albeit with less computing power and
higher manufacturing costs. Figure 4 shows an example laptop mainboard.

The laptop mainboard isn’t perfectly rectangular; rather, it’s shaped
to fit the available space. Since there’s no room for large connectors, many
components are soldered directly together. Rather than having swappable
extension cards sticking out at right angles to the mainboard, the form fac-
tors here are chosen to make everything fit neatly under the keyboard.
There’s also less standardization of form factors and components than
for desktops, with each manufacturer choosing their own. Together, these
features tend to make laptops more expensive and harder to upgrade or
interchange.
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Figure 4: A laptop mainboard

In recent years, the secure boot systems in laptops have opened up a
security application of computer architecture. It used to be quite easy to
take your employer’s laptop, which was encumbered by some proprietary
operating system, remove the operating system, and replace it with an open
source one such as Linux. The makers of the proprietary operating systems
tried to remove your freedom to do this, in some cases claiming it was what
your employer wanted, by paying hardware makers to implement secure
boot systems. These systems lock the user out of access to the hard disk’s
boot sector even before the operating system or a bootloader has a chance
to load. You now need to circumvent the secure boot at the hardware level,
such as by hot-wiring two pins on a dedicated chip together, thus factory-
resetting the computer. The pins are quite small nowadays, so it sometimes
requires a microscope and precision soldering to do the hot-wiring. (This
is purely hypothetical, as it may be illegal to tamper with your employer’s
device or with the hardware maker’s agreements with the operating system
vendor.)

Smartphone
In a computing context, the word smart nowadays means “is a computer.”
Historically, consumer devices like phones and televisions were designed
for single purposes, but a recent trend has been to include full computation
power in them. For a while, this was a novelty, but now a large portion of the
world’s population carry a full computer in their pocket. We therefore need
to take smartphones and other smart devices seriously as computers, just as
much as traditional desktops and laptops. Figure 5 shows a mainboard for a
smartphone.
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Figure 5: The inside of a Wileyfox Swift smartphone, showing the top and bottom sides
of the mainboard

The design is based around an ARM Cortex CPU. Some of the other
chips are specialized for phone-specific roles, including Wi-Fi and cell net-
work (GSM) radio communications, battery management, and position and
environment sensing (such as the inertial measurement unit and temper-
ature and pressure sensors). The memory is different from desktops and
laptops—here we see the use of low-power RAM (LPDDR). This reduces bat-
tery usage by clearing and turning off parts of the memory when they aren’t
needed.
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Computers are now so miniaturized that their connectors may be the
bottlenecks taking up the most space, rather than the actual computer.
For example, replacing a phone’s 3.5 mm headphone jack connector with
a smaller port is an ongoing debate. No longer having a standard head-
phone connector can be a nuisance, but having one is a limiting factor for
the phone’s size.

Washing Machine
If our phones and TVs are computers, might we even consider our washing
machine to be a computer nowadays? Figure 6 shows the mainboard of a
typical modern washing machine.

There’s a small processor on the board, which probably contains firmware,
a single program “burned” into the chip that performs only one task. This is
an example of the embedded systems we’ll discuss in Chapter 12.

Figure 6: The mainboard of a washing machine

Consumer devices such as washing machines and refrigerators are
currently of interest because, like phones, they might be next to become
“smart”—that is, capable of running arbitrary programs. When “smart
homes” are complete, users will expect to be able to dial into their washing
machine to check its status and give it commands from far away. A smart
washing machine might even come with an app store that enables you to
download and run extra functions, such as machine learning tools. These
could detect and appropriately wash different individual items of clothing,
saving money and Earth’s energy and water resources.

That concludes our tour of a few devices. As we dive into computer
architecture in the coming chapters, our understanding of how these de-
vices work and are organized will grow. Before we get started, here’s a quick
overview of the book and a few exercises for you to try.
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Book Overview
Part I introduces the fundamental concepts underlying all architectures.

Chapter 1: Historical Architectures Describes the historical evolution
of computing, not just to teach the history itself but because many con-
cepts recur and increase in complexity over time; this will enable you to
learn about complex modern systems by understanding their simpler
ancestors first.

Chapter 2: Data Representation Discusses how to represent data
using binary coding schemes, which will later be implemented using
digital logic.

Chapter 3: Basic CPU-Based Architecture Explores what a CPU is, its
basic subcomponents, and its machine code user interface.

Once you understand the concepts from Part I, the core structures of
computer architecture are fundamentally hierarchical; Part II works its way
up this hierarchy.

Chapter 4: Switches Introduces switches, the basic building blocks of
modern computers.

Chapter 5: Digital Logic Constructs logic gates from these switches.

Chapter 6: Simple Machines Combines these logic gates into simple
machines.

Chapter 7: Digital CPU Design Uses these simple machines to make
components of a CPU and, finally, a complete but small-scale CPU.

Chapter 8: Advanced CPU Design Introduces more advanced, mod-
ern CPU features such as pipelining and out-of-order execution.

Chapter 9: Input/Output Adds input/output (I/O), making one
more step from a CPU to a complete computer.

Chapter 10: Memory Introduces memory, the last requirement for a
full computer.

Part III consists of progressively complex examples and applications,
coinciding roughly with their historical order; these examples are intended
to reinforce your knowledge of the structures studied in Part II.

Chapter 11: Retro Architectures Begins with relatively simple, com-
plete retro computers from the 8-bit and 16-bit era, including showing
you how to write retro video games in their assembly languages.

Chapter 12: Embedded Architectures Shows how modern, low-power
Internet of Things devices have similar structures, capabilities, and pro-
gramming styles to retro devices.

Chapter 13: Desktop Architectures Studies the complex instruction
set and history of the x86 architecture, which is probably the basis for
your main desktop computer. This will enable you to program your
computer in assembly, on “bare metal” (that is, without an operating
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system getting in the way). You’ll also explore the common PC I/O
standards and peripherals that your desktop likely contains.

Chapter 14: Smart Architectures Turns to the multitude of smaller
smart devices replacing desktop computers. These are characterized by
RISC architectures such as RISC-V, along with assembly programming
and digital logic design tooling.

Chapter 15: Parallel Architectures Discusses parallel architectures,
which have become more common as CPUs have struggled to run faster.

Chapter 16: Future Architectures Concludes by speculating about
possible future architectures, including neural, DNA, and quantum
computing.

ARCHITECTURE, ORGANIZATION, OR DESIGN?

Computer architecture is traditionally distinguished from computer organization,
with the former referring to the design of hardware-software interfaces visible
to the programmer and the latter referring to the hardware implementations of
these interfaces not visible to the programmer. In this context, the programmer
was considered to be working at the level of assembly language, which per-
formed the role of the programmer interface. In the modern world, however,
it’s rare for programmers to see the assembly language level, as they almost
always work in compiled languages. The compiler and now the operating
system—and even higher-level structures like libraries and game engines—
abstract the user many further levels above the old assembly interface. As such,
the old architecture-versus-organization distinction has become less meaningful.

In this book, we’ll instead use architecture to refer to the study of all the above,
and we’ll use the term instruction set architecture (ISA) to denote the more spe-
cific study of the hardware-programmer interface. Our definition of architecture
also includes the study of the parts of computer hardware outside the CPU, such
as memory and I/O systems, which is sometimes called computer design. Mod-
ern computers are increasingly interconnected as clusters and clouds, so it can
now be hard or meaningless to distinguish a group of tightly connected com-
puters from a single large computer. Our conception of architecture thus also
extends to these kinds of systems.

The words architecture and hierarchy both contain the morpheme arch. The
connection isn’t trivial: architecture is all about hierarchies. Hierarchies are
the ways that complete structures are organized into components and sub-
components. No human could comprehend the structure of a billion transistors
on a chip, but as in software design, we survive by mentally chunking them into
many layers of abstraction. We chunk transistors into groups of about four or
five, called logic gates; then we chunk logic gates into simple machines like
adders; then we chunk those machine into components of CPUs and then the
CPUs themselves. This way, each level can be designed from tens or hundreds
of comprehensible components, with the designer having to think only at the
single level at which they’re working. As mentioned earlier, the structure of
Part II of this book follows this hierarchy, beginning with transistors and build-
ing upward, introducing progressively larger and higher structures.
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Exercises
Each chapter ends with some exercises to help you apply what you’ve learned
to real-world systems. Some of the tasks, indicated by a “Challenging” head-
ing, present an extra challenge and therefore are more difficult. Tasks under
a “More Challenging” heading are extremely hard or time-consuming and
are intended more as suggestions for large personal projects.

Inside Your Own Devices
1. If you’re happy to void the warranty of your devices, buy a set of

small screwdrivers and open up a desktop PC to see what’s inside.
Take care to only open the box and not disturb any of the circuit
boards themselves. Try to identify the main components, includ-
ing the power supply, mainboard, CPU, RAM, GPU, and commu-
nications devices, as in the examples we discussed earlier. If you’re
unsure about your screwdriver skills, you might wish to practice on
an older, sacrificial device before or instead of your main one, or to
search for internet videos of other people opening a similar device.

2. Most of the components you find inside will have a brand name and
model number stamped on them. Search the internet for these to
obtain the components’ formal product datasheets. Use the data-
sheets to identify some of the parts’ key properties, such as the num-
ber and speed of the CPU cores, the size of the RAM and its caches,
the size of the GPU memory, what input and output devices are
present, and what their capabilities and speeds are. (If your CPU
is hard to access due to a heatsink, you can usually find its make and
model on the mainboard datasheet.)

Software Device Inspection
1. You can also dig for similar information without voiding your war-

ranty on many machines by using software tools that inspect the
hardware for you. For example, if you’re running Linux, try these
commands:

lscpu

cat /proc/cpuinfo

lshw

free

hwinfo

lspci

lsusb

nvidia-smi

clinfo

OnWindows, run the Settings program from the Start menu and
look around System Settings for similar information.

2. Do some internet research to interpret the results.
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3. If you physically opened your device, check that the brands and
model numbers inside match those reported by the software—it’s
quite common and interesting for them to not match, so research
why this happens if you see an example!

Challenging
If you’re used to opening up desktop computers and looking inside, buy
some smaller screwdrivers and do the same for an old laptop.

More Challenging
If you’re used to opening up laptops, buy some even smaller screw-
drivers and try to do the same for your phone or game console. Some
phones can be opened using Torx screwdrivers, although others may
require a phone repair kit that you can buy online for a few dollars.
Some Japanese consoles use Japanese rather than Western-standard
screws. You can order a repair kit for these as well, again for a few dol-
lars. (Some devices are not intended to be accessible or repairable and
so are glued together, making it hard to do this.)

Further Reading
This book is intended primarily for readers who want to learn about archi-
tecture in order to be users of it. It should also be useful, however, for those
who want to work in architecture, for example, as chip designers. If you’re
such a reader, you might want to take at least a quick glance at the larger,
harder standard text for working architects, to get more of a flavor of what
they do:

John Hennessy and David Patterson, Computer Architecture: A Quantita-
tive Approach, 6th ed. (Cambridge, MA: Morgan Kaufmann, 2017).

This is the classic and authoritative reference book by the Turing Award–
winning inventors of RISC and RISC-V. Just a glance at it is suggested for
now. You will likely come back to it after finishing the present book as
preparation.
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PART I
FUNDAMENTAL CONCEPTS





1
HISTORICAL ARCHITECTURES

Computer science is a much older subject
than many people think. This chapter will

begin 40,000 years ago and progress to the
present day. A modern microchip may seem

impenetrable and alien at first sight, but if you know
the history, you can understand its smaller compo-
nents in terms of structures that have developed grad-
ually over thousands of years.

There are a number of other reasons to study the history of the field.
Seeing the deep history of computer science gives us more credibility and
authority as a field distinct from, say, mathematics or engineering. Seeing
how ideas have evolved gradually by building on one another can also pro-
tect us from myths of the “lone genius” and reveal how such people were
perhaps just like ourselves. Finally, following the general trends through
“the arc of history” not only explains how we got to where we are but can
also suggest where we’re headed next, to help us predict, or create, the
future.



What Is a Computer?
When we imagine “a computer” today, we probably think of a device such
as a desktop PC, game console, or smartphone. But those aren’t the only
machines humans have used for calculating and computing. To trace the
history of computers, we first need to decide what counts as a computer and
how computers are different from mere calculators or calculating machines.
This is a surprisingly difficult question, one that is still argued over. My own
rule of thumb for deciding if something is a computer is, Can you program
Space Invaders on it? A simple calculator can’t do this, so it isn’t a computer;
a programmable calculator usually can, so it is a computer.

Let’s look at some further concepts that are often suggested for defining
computers. Some sources—including the Oxford English Dictionary—require
computers to be electronic. But similar machines can be made out of other
substrates, such as water. Consider MONIAC, which stands for Monetary
National Income Analogue Computer, a pun on the earlier ENIAC com-
puter that we’ll examine later in the chapter. Built in 1949, and shown in
Figure 1-1, MONIAC was an analog water computer used to simulate the
flow of money through the economy and to illustrate the effects of eco-
nomic interventions on an economic model.

Figure 1-1: The MONIAC water computer and
its creator, Bill Phillips

MONIAC allowed you to increase the interest rate and observe the
effects on unemployment. Tanks of water showed the positions of money
in sectors of the economy such as the central bank, savings, and investment,
according to the theory of economics built into the machine.
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Some people argue computers must be digital, as opposed to analog. A
digital machine is one that represents data using digits, discrete sets of sym-
bols such as the binary digits 0 and 1. In contrast, an analog machine has an
infinite, continuous set of possible states, such as the amounts of water in
MONIAC’s tanks, making MONIAC an analog machine.

Where does MONIAC stand regarding my original Space Invaders test?
It only computes results for a single economic model, although it might be
able to run other economic models if we were able to reconfigure some of
the tubes and reservoirs to have different sizes and connections. By exten-
sion, perhaps MONIAC could implement any computation, such as running
Space Invaders, through more severe reconfigurations of this nature. But
would we then have the same computer in a new configuration, or would we
have a new, different machine that still only computes one other, different,
thing? In other words, is MONIAC reprogrammable?

I’ve been using Space Invaders as a test program, but it’s tempting to say
that for something to be a computer, you must be able to reprogram it to do
anything. However, computation theory shows that this can’t be used as a
definition. Given any candidate computer, it’s always possible to find prob-
lems it can’t solve. These are usually problems about predicting the candi-
date computer’s own future behavior, which can lead it into an infinite loop.

Diving a little deeper into computation theory, we get Church’s thesis, a
more rigorous definition of a computer that most modern computer scien-
tists agree with. It can be paraphrased as:

A computer is a machine that can simulate any other machine,
given as much memory as it asks for.

We’ll call machines that satisfy Church’s thesis Church computers. In particu-
lar, machines clearly exist that can do the following, so a Church computer
must also be able to perform these tasks:

• Read, write, and process data

• Read, write, and execute programs

• Add (and hence do arithmetic)

• Jump (goto statements)

• Branch (if statements)

We can now see that the Space Invaders definition is a reasonable approxi-
mation of Church’s thesis in many cases: while Space Invaders is a simplistic
video game, it happens to require all of the above tasks, which are also the
basic ingredients of many other computational tasks and machines. Hence,
a machine that can be reprogrammed (rather than hardwired) to play Space
Invaders is usually powerful enough to simulate any other machine, too (as
long as we provide as much extra memory as it asks for).

The rest of this chapter traces the history of computers and computer-
like devices in chronological order, starting in the Stone Age. As you read,
ask yourself who invented the first computer, and note the point where you
think the computer was invented. People often argue for drawing this line
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in different places, based on their own definitions of what counts as a com-
puter. Where will you draw the line, and why?

Before the Industrial Revolution
In this section, we’ll take a look at the various preindustrial machines we
may or may not consider to be computers. In doing so, we’ll see that hu-
mans have been using mechanisms resembling computers for longer than
we might have thought.

The Stone Age
Our anatomical species, Homo sapiens, is around 200,000 years old, but it’s
widely believed that we lacked modern intelligence until the cognitive rev-
olution of around 40,000 BCE. We don’t know exactly how this happened.
One current theory is that a single genetic mutation in the FOXP2 gene
occurred and was selected by the extreme evolutionary pressures of the
Ice Age. This suddenly enabled the brain to form arbitrary new hierarchi-
cal concepts, in turn giving rise to language and technology. According to
this theory, from then on humans were as intelligent as we are now. They
would have been capable of learning, say, quantum computing, had they
been given access to modern facilities and information.

One marker of this shift may be the Lebombo bone, shown in Figure 1-2—
a bone with carved notches that may have been used as a tally stick around
40,000 BCE. In a tally, one mark represents one physical thing. Perhaps
these notches signified animals, items of food, favors owed by one person
to another, or days to time some hunting or social project.

Figure 1-2: The Lebombo bone

The Ishango bone, shown in Figure 1-3, is another bone containing human-
made tally-like marks, dating to later in the Ice Age, around 20,000 BCE. Un-
like the Lebombo bone, the Ishango bone marks appear to be grouped into
tally-like clusters of mostly prime numbers between 3 and 19, and these clus-
ters are grouped into three lines that sum to 60 or 48.

As with the Lebombo bone, it’s possible that the marks in the Ishango
bone are at purely random locations and were made for some physical pur-
pose, such as to improve hand grip. But several authors have studied the
Ishango bone’s patterns and argued that they functioned as a tally, an aid
for calculation, a lunar agricultural calendar or menstrual cycle calendar,
or most speculatively, a table of prime numbers. The totals of 60 and 48 are
multiples of 12, and 12 is known to have been the original base for arith-
metic in later civilizations, before we shifted to base 10.
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Figure 1-3: The Ishango bone,
argued by some to extend from
tallying to calculation

The Lebombo bone appears to be an example of data representation.
Arguably, it may have been used for a simple form of calculation such as
adding one to its total each time a new mark was made. Some interpreta-
tions of the Ishango bone suggest its use in more advanced calculations, per-
haps interactively, like using a pen and paper to perform and keep track of
multiple steps of a math problem.

Could you program a bone to play Space Invaders? You could devise a set
of rules for a human to follow, telling them to make scratches to update rep-
resentations of the game characters. Gameplay would be quite slow, and the
human would have to be there to perform the updates. There’s no evidence
that humans ever used bones in this programmable way—though maybe one
day another bone could be found and its scratches decoded as instructions
for a human operator to follow.

The Bronze Age
The ice melted around 4000 BCE, enabling the first cities to grow. Cities
required new and larger forms of organization, such as keeping track of
trading and taxes. To enable this, by 3000 BCE the Sumerian city culture in
Mesopotamia (modern-day Iraq) developed the first writing system, and by
2500 BCE it possessed the first indisputable calculating machine, the abacus
(Figure 1-4). The word abacusmeans “sand box,” which suggests that before
this date the same machinery was implemented using simple rocks in the
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sand. The oldest abaci we find in archaeology are the more advanced ones
made from wood and beads.

Figure 1-4: An abacus

In its usual usage, the state of the abacus in Figure 1-4 represents the
(decimal, natural) number 070710678. There are nine columns, each rep-
resenting one of the digits in this number. Each column is split into a lower
box containing five beads and an upper box containing two beads. The de-
fault position for the beads in the lower box is down, and the default posi-
tion for beads in the upper box is up. In this state, a column represents the
digit 0. Each bead pushed up from the bottom to the top of the lower box is
worth 1. Each bead pushed down from the top to the bottom of the upper
box is worth 5.

To add 1 to a number on the abacus (that is, increment it), you raise one
bead from the lower box of the rightmost column. If all five beads in a col-
umn’s lower box are raised, you push them all back down and replace them
by lowering one of the beads in the upper box in the same column. If both
upper beads are lowered, you push them back up and replace them by rais-
ing one bead from the lower box in the column on its left. Moving data from
a column to the one on its left is known as a carry operation.

To add two numbers, a + b, you first set up the abacus to represent the
digits of a. You then perform b increments as above. The state of the abacus
then represents the result.

This style of calculation—where the first number is “loaded onto” the
device and the second is “added into” it, leaving only the final result as the
state of the system—is known as an accumulator architecture, and it’s still in
common use today. It “accumulates” the result of a series of calculations;
for example, we can add a list of many numbers together by adding each of
them in turn into the state and seeing the latest accumulated total after each
addition.

NO T E The abacus in this example uses decimal digits for familiarity. The original Sume-
rian version used base 12.

The concept of the algorithm dates from this time. Calculations written
on clay tablets, such as those in Figure 1-5, show that number-literate peo-
ple at this time thought in terms of computation rather than mathematics,
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being taught to perform algorithms for arithmetic operations and carrying
them out for practice, as opposed to doing proofs.

Figure 1-5: A tablet showing the steps of a long
division algorithm

The clay tablets show lines of step-by-step arithmetic that may have been
performed using the tablets themselves as data storage. Or the tablets may
have been used to notate the states of an abacus for teaching purposes.

The abacus was—and in a few places still is—most often used for adding
numbers, such as summing the prices of items in a shopping basket, but
other ancient abacus arithmetic algorithms are also known, including for
subtraction, multiplication, and long division. These were performed simi-
larly to their modern pen-and-paper equivalents. Modern enthusiasts (you
can search for them on YouTube) have also shown how to use the abacus
for more advanced algorithms such as finding square roots and computing
the digits of π. As these algorithms get more complex, the memory of the
abacus often needs to be extended with extra columns. Like the Stone Age
bones, the abacus could be used as the data store for any algorithm if a hu-
man is instructed what actions to perform on it. If you want to argue that it’s
a computer, you may again need to consider the role of the human.

The Iron Age
The Bronze Age city civilizations of Mesopotamia and its neighbors col-
lapsed, mysteriously, around 1200 BCE. They were followed by a “dark age”
period, until classical ancient Greece arose around 500 BCE to 300 BCE:
the time of Pythagoras, Plato, and Aristotle. Greek power was gradually
replaced by the Roman Republic and Roman Empire from around 300 BCE
to 400 CE.
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The Antikythera mechanism (Figure 1-6) dates from this period, around
100 BCE. It was found in 1901 in a Mediterranean shipwreck; the sunken
ship appeared to be on its way from Greece to Rome, with the mechanism
for sale or as tribute. The mechanism was only understood and reverse en-
gineered in 2008. We now know that it was a mechanical, clockwork analog
machine used to predict astronomical (and likely astrological) events, includ-
ing five planet positions, moon phases, and the timings of eclipses and the
Olympic Games. It consisted of 37 bronze gears, and the user turned a han-
dle to simulate the future course of their states. The results were displayed
on clock faces, computed by the ratios of mechanical gears. Enthusiasts re-
cently rebuilt a functioning version using LEGO (Figure 1-6).

Figure 1-6: The Antikythera mechanism remains, as found in a Mediterranean shipwreck
(left), and a reconstructed Antikythera mechanism using LEGO (right)

Odometers were long-range distance-measuring machines that the Greeks
and Romans used to survey and map their empires. There is indirect evi-
dence of their use from around 300 BCE due to the existence of very accu-
rate distance measurements that would have been hard to obtain any other
way. The reconstruction in Figure 1-7 is based on direct archaeological re-
mains from around 50 CE.

This type of odometer worked similarly to the measuring wheels you
might have used in elementary school that clicked each time they were
pushed a certain distance, typically 1 yard or 1 meter. It is also related to
modern odometers used in cars and robotics.
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Figure 1-7: A Roman odometry cart

The odometer is pulled by a horse, like a cart. There are a number of
metal balls stored in cavities in a circular wooden gear. One of the wheels
has a peg attached so that once per rotation it taps and rotates the gear by a
small fixed angle. A ball-sized hole under one position of the gear allows a
ball above it to fall out of its cavity and into a collecting box below. The total
distance traveled is thus logged by the number of balls in the counting box
at the end of the trip.

Are these machines computers? There are clearly notions of data being
used to represent objects in the world, as well as forms of automation and
calculation. But like MONIAC, each machine does only one thing: predict
eclipses or measure distance. You couldn’t easily reprogram either to play
Space Invaders.

Like MONIAC, the Antikythera mechanism is an analog machine: its
gears rotate continuously and can be in any position. The odometer, in con-
trast, is digital, like the abacus. Its gear advances only by a discrete amount
with each “click” as the peg passes it, and the collecting box always holds a
discrete number of balls. Unlike the abacus, however, the odometer is au-
tomatic; it doesn’t require a human operator, only a horse as a source of
power.

You might be able to reprogram the Antikythera mechanism—and with
some creativity, the odometer—if you were allowed to completely reconfig-
ure all the gears, including adding and removing gears of arbitrary sizes in
arbitrary locations. Then you could try to represent and simulate other phys-
ical systems or perform other calculations. As with MONIAC, some consider
physically reconfiguring the hardware in this way to be cheating. They would
argue that this creates a new, different machine, rather than a different pro-
gram running on the original machine.
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The Islamic Golden Age
After the fall of Rome in 476 CE, western Europe entered the so-called Dark
Ages for a thousand years, and the history of computing in western Europe
records basically no progress during this time.

However, the Roman Empire continued to operate from its new east-
ern capital, Byzantium (now Istanbul, Turkey). There was a flow of ideas
between Byzantium, Greece, and the Islamic world, the latter becoming the
new intellectual center of the time. A particular musical idea from this cul-
ture introduces the important concept of programming.

The ancient Greeks previously had a portable hydraulis instrument, re-
lated to modern church organs. It was composed of a set of pipes, played
by a keyboard and powered from an air reservoir pumped by a servant. The
Greeks clearly possessed the technology needed to make self-playing ver-
sions of the hydraulis, but there’s no evidence of them doing so.

It was Islamic scholars, the Banu Musa brothers, who built the first
known automated musical instrument: the automated flute player of Bagh-
dad, around 900 CE, shown in Figure 1-8.

Figure 1-8: A Greek hydraulis (left) and a sketch of the Baghdad automated
flute player (right)

The innovation was to use a slowly rotating barrel with movable pins
around its edge to indicate the positions of musical notes. As the barrel
rotates, the pins make contact with levers that allow air to flow into the in-
strument to sound a note. The movable nature of the pins allows different
compositions to be programmed into the device, making it the first known
programmable automatic machine. The pins may be viewed today as a binary
code: at each time and pitch, there is either a note (1) or no note (0).

Is this a computer? Unlike the Iron Age machines, it can clearly run mul-
tiple programs. However, there’s no notion of calculation or of decision-
making: once a program begins, it will play through and can’t change its be-
havior in response to any input or even to its own state.
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The Renaissance and Enlightenment
Byzantium fell in 1453, sending many scholars and their books back to west-
ern Europe and helping it wake from the Dark Ages. Leonardo da Vinci was
the definitive “renaissance man” of this time: a prolific scientist, artist, and
engineer. He possessed many of these old books and looked to them for in-
spiration. He was probably familiar with Antikythera-like systems thanks to
these books. One of his manuscripts from around 1502, the Codex Madrid,
contains an unbuilt design (Figure 1-9) for a mechanical analog calculator
based on Antikythera-like principles.

Figure 1-9: The da Vinci calculator’s original manuscript

The design was rediscovered and successfully constructed in 1968. There
are 13 wheels, each representing the columns of a decimal number. Their
possible positions are continuous: rather than switching abruptly from one
decimal digit to another, they move smoothly by means of gearing. The gear
ratio is 1:10 between each pair of columns, so each column’s wheel rotates at
one-tenth the speed of the column on its right.

Like the abacus, the calculator is an accumulator whose state at any
point in time represents a single number, again as digits in columns. One
number a can be added to another b. The first number a could be loaded
onto the machine by advancing the mechanism to represent its digits. Then
it would be turned an additional amount b to advance the total to a + b.

For example, to calculate 2,130 + 1,234, we first load 2,130 onto the
device, then advance by 1,234 to get 3,364. The numbers wouldn’t be pre-
cisely aligned at the end of the computation due to the continuous rota-
tion of the wheels. For example, the 6 in the tens place would be almost
halfway between showing 6 and 7 because the digit after it is a 4, which is
almost halfway to the next carry. In a sense it is a “weaker” machine than
the Roman odometer, because the odometer has a notion of converting
from continuous wheel positions to discrete symbols using its pin-and-ball
mechanism.

Da Vinci’s concept was extended by Blaise Pascal in 1642. Figure 1-10
shows Pascal’s calculator design and a modern build of it. (It has recently
been argued that Pascal’s calculator was invented earlier, in 1623, by
Wilhelm Schickard.)
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Figure 1-10: Pascal’s calculator: the original design and a 2016 LEGO rebuild

Pascal’s calculator includes a digital mechanism similar to the odometer
(rather than da Vinci’s analog gearing) to implement its carry mechanism.
When a column reaches the number 9 and another unit is added to it, it trig-
gers a unit turn of the next column as it returns itself to the number 0.

Unlike the Antikythera mechanism, which represented the states of
physical (astronomical) objects, da Vinci’s and Pascal’s machines operate on
pure numbers. You could argue this gives them more general-purpose roles
than the Antikythera mechanism. That said, the range of their calculations
is limited to addition, which in a sense makes them less powerful than the
abacus, which had algorithms for other arithmetic operations. On the other
hand, like the Antikythera mechanism, these calculators require less human
work than an abacus.

Some see the move from da Vinci’s analog to Pascal’s digital operation
as very important. Digital operation appears to involve a simple concept of
the machine making a “decision”: a carry is either made or not made at each
step. Decision-making is certainly important for some tasks, but clearly not
so much for addition because both calculators can do it equally well.

The Steam Age
Steam power had been known to the Greeks and Romans as a curiosity, and
anyone who has ever boiled water with a lid will have noticed that steam
can move the lid around. But it was only from around 1700 in Britain that
steam was harnessed in earnest, to power the industrial revolution. Seeded
by Enlightenment ideas, especially Newton’s physics, this was a positive feed-
back cycle in which machines and coal were used to produce more machines
and extract more coal. Coal was burned to heat water into steam, and steam
was first used to pump water from coal mines. In time, steam came to power
many other machines, some with computer-like characteristics.

14 Chapter 1



The Jacquard Loom
The production of textiles was a major application of new machines during
the Steam Age. But unlike plain cotton clothes, traditional weaving patterns
were highly complex. Thus they were considered to be more valuable be-
cause they were rarer and more expensive.

In 1804, Joseph Jacquard created a variant of the weaving machines of
the time that employed replaceable punched cards to guide the positions of
the hooks and needles used in the weave (Figure 1-11).

Figure 1-11: A Jacquard loom

The punched cards could be “chained” together into long tapes to make
complex, reusable patterns at a lower price.

NO T E “Chain” became the standard command to load the next program from magnetic
tapes in later electronic devices, used until the 1990s. Weaving concepts like
“thread” and “warp” are also used as metaphors in modern multithreaded pro-
gramming and in parallel GPUs.

Victorian Barrel Organs and Music Boxes
Barrel-based musical instruments, similar in technology to the Baghdad
automatic flute player and shown in Figure 1-12, were popular during the
19th century. The job of an “organ grinder” was to push a portable barrel
organ onto a main street, then manually turn its handle to provide power. A
rotating barrel with pins marking the positions of notes would then allow air
into the organ pipes, as in the Baghdad version.
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Figure 1-12: Two Victorian-style barrel organs (left and center) and a music box (right)

The same mechanism was (and still is) used in the music box from this
period, in which a spring is wound up to store energy and then released
to power a smaller pinned barrel, whose pins strike small xylophone-like
metal bars directly to play a few bars of music such as a famous theme from
a ballet. The rotating barrel is often topped with a small sculpture, such as a
ballerina, that rotates along with the music.

Charles Babbage hated organ grinders playing outside his house and led
a public campaign to rid them from the streets of London. But their barrel
organs were to form a fundamental influence on his work.

Babbage’s Difference Engine
Babbage designed two different machines, the Difference Engine and the
Analytical Engine. The former (Figure 1-13) was first; it was successfully built
and commercialized by Georg Scheutz and others from 1855 and widely
used in industry until the 1930s. Recent LEGO rebuilds also exist.

The Difference Engine was designed to produce tables of values of ar-
bitrary polynomial functions. Most mathematical functions can be well ap-
proximated by polynomials via Taylor series expansion, so the machine could
be used to make tables of values for any such function. You may have used
similar tables in modern exams to look up values of trigonometric or statis-
tical functions when a calculator isn’t allowed. In Babbage’s time, the killer
application of these tables was in shipping, for navigation purposes. Tables
had previously been computed by hand and contained many expensive er-
rors, so there was a large economic demand to perfect them by machine.

The machine can be powered either by steam or by a human cranking
the handle. Like Pascal’s calculator, the Difference Engine represents dec-
imal digits by discretized rotations of gears. Numbers are represented by
a vertical column of such digits (like Pascal’s calculator turned on its side).
The Difference Engine then extends this to a 2D parallel architecture, with
multiple vertical columns arranged horizontally. Each of these columns rep-
resents a different number.
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Figure 1-13: A metal rebuild of Babbage’s Difference Engine

There are two dimensions of parallelization in the Difference Engine:
digit-wise and term-wise. Digit-wise addition, for example, is a different
algorithm from the sequential high school method of addition. Instead
of starting from the rightmost column and moving left and applying car-
ries, it adds each pair of digits at the same time, then handles any carrying
afterward. For example, to add 364 + 152, the three additions 3 + 1, 6 + 5,
and 4 + 2 are all performed at the same time to give 416. The carry from
6 + 5 = 11 is then added to give 516. Carrying is a difficult operation to get
right in this context, and Babbage devoted most of his engineering time to
it. The visual effect of carries can be seen on YouTube videos of the Differ-
ence Engine as a visible ripple of information propagating across the 2D sur-
face of the machine. Such ripples are also seen in computations on modern
parallel GPUs.

Is the Difference Engine a computer? It can run different “programs” to
calculate different equations, but these equations have no obvious concept
of changing their behavior during a calculation; there’s nothing like an if

statement to test intermediate results and do something different based on
them. It’s more like a modern media streaming device in which numbers
flow smoothly through a processing pipeline.

Babbage’s Analytical Engine
The Difference Engine was limited to computing tables of polynomial func-
tions, but Babbage’s second project, the Analytical Engine (Figure 1-14), was
designed as a completely general-purpose, programmable machine.
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Figure 1-14: A modern partial rebuild of Babbage’s Analytical Engine

To obtain this generality, the Analytical Engine provides a range of arith-
metic and other operations as simple machines, together with a memory for
storing data and the ability to read in programs from punch cards. The pro-
grams dictate a sequence of memory reads and writes and arithmetic opera-
tions, and allow branching depending on the state of the calculation—an if

statement.
Babbage went through many variations of the Analytical Engine’s de-

sign on paper, but physically built only a tiny part of it just before he died.
He got very sidetracked with the fine details of the carry mechanism and
was obsessed with constantly redesigning components rather than sticking
with one version and getting them integrated to actually work. (Today this
style of project management would be known as yak shaving.) This annoyed
the research funding agencies of the time, making it hard for Babbage to get
money to build anything. Thus, unlike with the Difference Engine, we don’t
have a working version or even a single final design document of the Analyt-
ical Engine. However, components have recently been reconstructed from
Babbage’s plans using modern manufacturing technologies.

With more moving parts than the Difference Engine, the Analytical En-
gine would have required more power; this would have had to come from a
steam engine rather than a manual crank. It would have also required more
precisely machined gears, as computations would need to work their way
through a longer series of gears. Like the factory machines and steam loco-
motives of the period, it would have smelled of oil, smoke, and steam, and
gleamed in polished brass: Babbage was the original steampunk.
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The core of the Analytical Engine contained many independent simple
machines that each performed some function, such as adding numbers and
testing if one number equaled another. The adding machine was roughly a
copy of Pascal’s calculator, and the other simple machines were variations
of it.

The Analytical Engine introduced the modern concept of computer
memory. Its “store” would have consisted of a large number of copies of
a simple machine, again similar to a Pascal calculator, each of which could
retain a different number. Each machine would be given a numerical identi-
fier or “address” to specify the correct one to read from or write to.

A sequence of instructions would have been coded in binary and punched
onto paper tape, using a mechanism taken from the Jacquard loom. Each in-
struction would tell the engine to activate one of the simple machines. Usu-
ally, after each instruction, the machine would have line-fed the punched
paper along to load the next one (a bit like a typewriter). However, the ma-
chine also would have had the ability to check the result of the latest sim-
ple machine and, depending on its value, could jump to a different line in
the paper. This would give programs the ability to alter their behavior in re-
sponse to intermediate results.

A program could also be made to run forever by gluing the bottom of
the punched paper to its top, making a physical loop, as in the (later) paper
tape machine shown in Figure 1-15.

Figure 1-15: A punch tape program loop

We don’t have any examples of actual programs written for the Analyti-
cal Engine. Rather, Babbage and his collaborator Ada Lovelace wrote down
example states and outputs from imaginary runs as long tables, showing them
at each step of program execution. This is similar to the notations on the
Babylonians’ clay tablets, which illustrate algorithms by showing the effects
rather than the instructions used to generate them. From these execution
traces, modern readers can infer roughly what the programs and the ma-
chine’s instruction set used to build them would have been.

Babbage wrote the first of these example traces for small, almost triv-
ial mathematical functions, which illustrate roughly the full set of instruc-
tions in use. But Babbage was the hardware person, more concerned with
designing the machine itself, and never wrote anything longer, thinking that
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programming would be relatively trivial compared to designing the architec-
ture. Lovelace was the software person, and she wrote much longer traces
for complex functions. She also wrote speculations about what larger pro-
grams could achieve, including ideas about AI. If Babbage is claimed as “the
first programmer,” then Lovelace might be “the first software engineer” for
thinking about programming more seriously and at scale.

Was the Analytical Engine a Church computer? Its design contains all
the basic features of a modern computer: CPU, memory, a bus, registers, a
control unit, and an arithmetic unit. It can read, write, and process data. It
can do arithmetic. Unlike the purely calculating machines before it, it can
jump (goto) and branch (if), moving to different instructions in the program
according to the state of its calculations.

However, to be able to simulate any other machine, it would need to be
able to read, write, and execute programs as well as read, write, and process
data. But its programs were fixed on the punched paper, rather than held in
memory like in a modern PC. This kind of architecture, where the data and
program are stored separately, often with the program fixed as firmware, is
called a Harvard architecture, as opposed to a von Neumann architecture, where
the program and data are stored together.

Today, Harvard architectures are used in embedded systems, especially
in digital signal processing chips. It’s possible to set up a Harvard architec-
ture that can simulate other computers, including those that modify their
own programs. This can be done by writing a single virtual machine (VM)
program on the fixed program punch cards (or modern firmware). The VM
reads, executes, and writes further programs in memory.

Lovelace or Babbage could have written a VM program for the Analyti-
cal Engine, but they didn’t consider it. The same could be said about many
other machines, however. For example, a VM could be written for and exe-
cuted on a Sumerian abacus if a programmer chose to do so. Church’s thesis
is about the potential for a machine to simulate any other machine, not the
actualization of it doing so. But it depends on what “level” of machine we
consider: the underlying hardware or virtual machines running at higher
software levels.

And, of course, the Analytical Engine was never built or tested in full—
does this need to be done to justify “being a computer,” or is the basic de-
sign sufficient by itself?

Mechanical Differential Analyzers
The industrial revolution largely progressed through practical hackers build-
ing machines based on their intuitions, then testing whether they worked.
But over time, mathematical theories were adapted or invented to describe
and predict the behavior of many engineering systems, giving rise to aca-
demic engineering. Most of these theories made use of calculus. Developed
earlier by Gottfried Wilhelm Leibniz and (independently) Sir Isaac Newton
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for different purposes, calculus quickly took off as a general tool for mod-
eling how all kinds of systems, including industrial machinery, change over
continuous time, through equations such as

dx
dt
= f(x)

where x is part of the state of the world being modeled, f is some function of
it, and dx/dt is the rate of change of x. This type of equation can numerically
simulate the state of the world over time by iteratively computing dx/dt and
using it to update x. Like making the Difference Engine’s tables of polyno-
mials, this is a highly repetitive and error-prone process ripe for mechanical
automation.

In 1836, the same year that the Analytical Engine was developed, Gaspard-
Gustave de Coriolis realized that since the behavior of a mechanical device
could be described by a differential equation, the same device could be viewed
as computing the solution to that equation. So, to solve a new equation, a
physical device could be designed that matched it, and that device could
then be run for a period of time to give the required answer.

More general differential equations can involve acceleration and higher
derivatives, and multiple variables. Coriolis’s idea was extended by oth-
ers, including Lord Kelvin in 1872 and James Thomson in 1876, to solve
these systems, again by constructing analog mechanical devices to match
them. The key component of these machines was the ball and disc integra-
tor (Figure 1-16), in which a movable ball transfers motion from a spinning
disc to an output shaft.

Figure 1-16: A ball and disc integrator from
Kelvin’s differential analyzer

Like the Difference Engine, these machines were built only to solve a
single class of problems: differential equations. But much, or perhaps all,
of the world and its problems can be modeled by differential equations. As
inherently analog machines, they can be viewed as continuing the tradition
of da Vinci’s analog calculator, while Babbage’s machine built on Pascal’s
digital calculator.
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The concept of using the physical properties of the world to model itself
has recently been revived in quantum computing, where simulating physi-
cal and chemical quantum systems appears to be a major application with a
particularly good fit to the way quantum machines compute.

The Diesel Age
Between the purely mechanical machines of the industrial revolution and
later electronic machines, there was a hybrid period in which electricity was
combined with mechanical motion to build electromechanical machines.

The key electromechanical technology is the relay, a mechanical switch
in an electrical circuit whose physical position is controlled using a magnet,
which, in turn, is controlled by another electrical signal. Relays are a special
type of solenoid, a coil of wire that generates a linear magnetic field when a
current flows through it. This magnetic field can be used to physically move
a magnet (called the armature) inside the coil, and that motion can be used,
for example, to open and close a valve in a water pipe or to start a car en-
gine. Replace the water pipe with a second electrical circuit, and the valve
with an electrical switch, and you have yourself a relay.

Figure 1-17: A relay
showing a wire coil

Relays are still used today (Figure 1-17). For ex-
ample, in robotics safety systems, we often need to
physically connect and disconnect the main battery
to and from the robot’s motors. A safety monitor
checks if everything is okay and makes the physi-
cal relay connection if so, but disconnects it if any-
thing seems wrong. You can hear these relays click
when the current changes and the armature physi-
cally moves.

Electromechanical machines were more ef-
ficient than purely mechanical ones, and found
widespread commercial and military use in the pe-
riod around the turn of the 20th century and the
two World Wars. Some of the machines you’ll see
in the next section were still in use in the 1980s.
Others have uncertain fates due to ongoing government secrecy, as this
period includes the cryptology machines of World War II.

The IBM Hollerith Tabulating Machine
The US Constitution requires that a census be taken and processed every
10 years, and by 1890 the population had grown to a size where human pro-
cessing of its statistics was impossible. This created an embarrassing back-
log of work for the government and a strong demand for an automated
solution.

Herman Hollerith designed a machine to automate data processing and
used it successfully in the 1890 census to do big data analytics on informa-
tion from 62 million citizens. Each citizen’s data was transferred from a
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written census form to a punch card by a human clerk. This seems to have
been inspired not by Jacquard’s and Babbage’s machines, but independently
by inspectors punching holes in train tickets to represent different journeys
or times. Each question on the census was multiple choice, and was encoded
on the punch card by punching out one of the several options. Figure 1-18
shows an example of this.

Figure 1-18: A replica of the IBM Hollerith machine (left) and a punched card (right)

Stacks of cards could be read into the machine, which would check for
the presence or absence of certain features or combinations of features,
then use an electrical analog of a Pascal calculator to accumulate the total
count of cards having these features. As Hollerith (1894) explained:

It is not sufficient to know simply the number of males and fe-
males, but we must know, for example, how many males there are
at each age-period, as well as how many females at each age-period;
or, in other words, we must count age and sex in combination. By
a simple use of the well-known electrical relay we can secure this
or any other possible combination. It must not be understood that
only two items can be combined; in this way any number of items
can be combined. We are only limited by the number of counters
and relays.

This means that the machine is roughly capable of modern SQL queries,
including SELECT, WHERE, GROUP BY, and ORDER BY.

Following the machine’s widely reported success in the 1890 census,
Hollerith incorporated the Tabulating Machine Company in 1896. It be-
came the Computing-Tabulating-Recording Company in 1911, then Interna-
tional Business Machines (IBM) in 1924. IBM was described as doing “super-
computing” by the New York World newspaper in 1931 and performed similar
commercial big data analytics for many governments and companies before
1936. It continues to do so today.

Electromechanical Differential Analyzers
Analog mechanical differential analyzers reached widespread practical use
when it became possible to power them using electricity. Electrical circuits
also provided a major new application for differential analyzers, as they are
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often described using the same kinds of differential equations as used in me-
chanics. Hazen and Bush’s 1928 system, built at MIT, is often credited for
the mass popularization of electromechanical differential analyzers, and its
concept quickly spread to research teams at the universities of Manchester
and Cambridge (Figure 1-19) in the UK. Some of these British research ma-
chines were built using Meccano (similar to an Erector Set) on smaller bud-
gets than the American versions.

Figure 1-19: Maurice Wilkes (right) with the mechanical
Cambridge Differential Analyzer, 1937

Similar machines were used heavily throughout World War II to solve
differential equations, such as when calculating projectile trajectories. By
attaching pens to the machines’ moving parts, some teams added analog
plotters to draw graphs on paper. Versions of these machines were still
used in the 1970s as onboard missile guidance systems.

Electromechanical Machines of World War II
Many popular histories focus on machines used during World War II for
cryptography, the enciphering and deciphering of messages by a transmit-
ter and receiver, and cryptanalysis, the cracking of ciphers. Together, these
fields are known as cryptology. Cracking ciphers is harder than encrypting
and decrypting them. Thus, cryptanalysis machines are the larger, more in-
teresting ones. Should any of the machines from either or both categories
qualify as “computers”? Their history has been concealed by government
secrecy, and we’re still learning more as documents are made public. This
uncertainty has been useful for some biased historians and filmmakers who
want their own country or community to have invented the computer.

The original Enigma (Figure 1-20) was a 1923 electromechanical Ger-
man commercial cryptography product sold to banks and governments in
many countries, including America and Britain.
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Figure 1-20: The German Enigma wiring, showing four input
keys (2), four output lamps (9), three rotors (5, 5, 5), a plug-
board (8), and a reflector (6)

The Enigma consists of a typewriter keyboard, output letter lamps,
three rotors, and electric wiring. Each rotor acts to substitute a letter for
each other letter. The input letter a is passed through the three rotors in
sequence, then “reflected” (substituted for 26 – a) and passed backward
through the three rotors again. Each time this is done, the end rotor ad-
vances by 1, with carries between rotors, as in Pascal’s calculator. Each con-
figuration of a rotor produces a particular set of substitutions. All Enigma
operations were symmetric: the same machine state would perform decryp-
tion on its own encrypted text. Several versions of the machine were used in
the war.

The German military M3 Enigma added a stage swapping pairs of
letters using a plugboard. Seven years before the war, the Polish, led by
Marian Rejewski, broke its encryption by designing and using a single-
purpose electromechanical machine, the Bomba. This incorporated physical
Enigma rotors to brute-force all possible encodings of known message head-
ers in advance. The daily keys were then looked up in a reverse-index file-
card database. The Polish gave this system to the British at Bletchley Park
(which later became GCHQ).
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In 1938, the Germans changed protocol—not hardware—to remove the
known message headers. The Polish mathematician and cryptologist Henryk
Zygalski then broke the Enigma again, using optical computing. Informa-
tion was transferred to punch cards, and the cards were stacked and held up
to a light to very quickly find the locations where the light passes through
the whole stack.

In 1939, the Germans increased the number of possible rotors to in-
sert into the three slots from three to five. This increased the complexity be-
yond what Zygalski’s method could break. To break this version, the British
switched to IBM Hollerith machines to perform similar computations at
higher speeds.

Dolphin was a stronger M3 protocol used by U-boats, including more
swappable rotors and different headers. The British Bombe was designed
based on the Polish Bomba and updated for the new task. The additional
cryptology was done by Alan Turing, Gordon Welchman, and others, then
the machine was designed and manufactured by Harold Keen of IBM.

Typex was the British version of Enigma. Like the Germans, they made
their own modifications to the commercial Enigma for their military com-
munications. Typex was broken frequently by the B-Dienst—the German
equivalent of Bletchley Park—using IBM Hollerith machines.

In 1937, IBM president Thomas Watson met Hitler and received an
award for the Hollerith machines’ “services to the Reich.” Hollerith ma-
chines were later leased from IBM by German concentration camps to en-
able the Holocaust’s precision—“timing so precise the victims were able to
walk right out of the boxcar and into a waiting gas chamber.” They were
used to merge big data sources such as census and medical records to pro-
duce lists of names and statuses of victims. IBM provided IT consultants
to help with the software design, and to make monthly visits to service the
machines on site.

The Zuse Z3
Konrad Zuse was a German engineer who collaborated with the Nazi Party
to build the Z3 machine for its military in 1941. The Z3 was an electrome-
chanical machine using 2,000 electromechanical relay switches and a me-
chanical binary memory with 64 addresses of 22 bits. It could run up to
10 instructions per second.

In 1998, the Z3 was shown to be theoretically a Church computer, but
only via a very obscure and impractical technicality. It could also potentially
have very slowly simulated a von Neumann machine, but it was not used to
do this.
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The Electrical Age
Vacuum tubes (aka valves) were invented in 1904 by John Fleming as an
efficient replacement for relays. Unlike relays, they have no moving parts;
they’re purely electrical, meaning they can switch faster than their electrome-
chanical counterparts. They’re still used today in analog audio amplification,
such as in tube or valve guitar amplifiers (Figure 1-21).

Figure 1-21: A guitar amplifier made with vacuum tubes

A vacuum tube looks and works like an Edison light bulb. A vacuum
is created in a sealed glass tube. Inside the tube are three components: an
anode, a cathode, and a heater. The anode and cathode are the terminals
of the electrical circuit that is being switched on and off, so they have posi-
tive and negative voltages, respectively. The heater is the switch. When the
heater is turned on, the heat allows electrons to escape from the cathode
and travel through the vacuum to the anode, enabling current to flow and
switching on the circuit. When the heater is turned off, electrons no longer
have enough energy to do this, so the circuit is switched off.

When we restrict the heater to being either on or off, we have a digital
switch that functions like a relay, forming a basic unit of purely electrical
computation. (Alternatively, for audio and other signals amplification, we
may allow the heater to have a continuum of heat levels, which cause a con-
tinuum of current sizes to flow in the main circuit, creating an analog am-
plification effect: the small heater control current turns a much larger main
circuit current up and down.)

Pure Electronic Cryptology of World War II
Pure electronic machines appeared later in World War II than the more
famous electromechanical ones. They have also been shrouded in secrecy
but are sometimes argued to be the “first computers.”

In 1942, the German naval Enigma was upgraded to use four instead
of three rotor slots (called the “M4 model” by the Germans; its traffic was
called “Shark” by the Allies). Brute-force cracking this level of cryptographic
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complexity required the American approach of throwing money at comput-
ing power by paying IBM to produce hundreds of new, fast, fully electronic
and vacuum tube–based American Bombes.

Fish was a cipher produced by a different German cryptography ma-
chine, the Lorenz SZ42; this was not an Enigma, but it used similar rotors.
It was discovered by the Allies later in the war than Enigma because its traf-
fic was initially sent only over landline telegraph wires rather than radio,
making it harder to intercept. It was broken by a Bletchley team led by Max
Newman, using the Colossus machine designed and built by Tommy Flowers
and his team in 1944, shown in Figure 1-22.

Figure 1-22: Colossus, Bletchley Park, 1943, with operators Dorothy
Du Boisson and Elsie Booker

Colossus was a fully electronic, vacuum tube–based machine, like the
American Bombes, but it was also able to perform different functionali-
ties if physically rewired for them. The British continued to use Colossus
to break Russian codes up to the 1960s. Like the Z3, Colossus was only re-
cently shown to be theoretically a Church computer, but only in a convo-
luted, speculative configuration requiring 10 machines wired together and
programmed with a novel virtual machine (VM), which was not done at
the time.

ENIAC
ENIAC (Electronic Numerical Integrator and Computer) was an American vac-
uum tube machine developed by John Mauchly and J. Presper Eckert in the
final years of World War II. It was completed in 1945 and used by the US
military for ballistics calculations. It remained in service after the war, doing
hydrogen bomb calculations.

Mauchly and Eckert were explicit in basing their design on Babbage’s
Analytical Engine, translating each of its mechanical components into
equivalent vacuum tubes. Like the Analytical Engine, this gives a fully

28 Chapter 1



general-purpose machine that can be programmed to execute arbitrary pro-
grams of instructions.

ENIAC was programmed by physically patching cables into sockets on
its panels, as is sometimes still done today to “program” electronic synthe-
sizer “patches.” Original photographs of its programmers writing programs
in this way (Figure 1-23) were sometimes mistaken for technicians simply
maintaining the machine or setting it up to run programs written by other
people. We now understand that this is how the actual programming itself
was done and that these pictures show the actual programmers at work. As
in Lovelace and Babbage’s time, and Bletchley’s, it was assumed that pro-
gramming was “women’s work” and hardware was “men’s work.”

Figure 1-23: ENIAC and programmers Betty Jean Jennings and
Frances Bilas at work in the 1940s

ENIAC can run any program (given enough memory), but like the Ana-
lytical Engine, it has a Harvard architecture; some might argue that the need
to physically patch programs limits its claim to being the first computer. As
with many other machines, we could reply that, in theory, someone could
have programmed a VM to work around this problem. It was only recently
that computer historians rediscovered that someone actually did this for
ENIAC!

Virtual Machine ENIAC
The ENIAC programmers Betty Jean Jennings, Marlyn Wescoff, Ruth
Lichterman, Betty Snyder, Frances Bilas, and Kay McNulty eventually got
tired of programming ENIAC by physically rewiring cables for each new pro-
gram. So, as a quick hack, they designed a program with these wires that
allowed the client program to be read from a panel of switches instead. This
created a virtual machine in which a single fixed hardware program emu-
lated a computer that could read higher-level programs from the switches.
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Some people argue that “the first computer” was created at this mo-
ment, as a software rather than a hardware creation. This would be a beau-
tiful story, but there’s still a problem: the architecture is still a Harvard ar-
chitecture because the user program is stored in the physical switches and
not in the computer’s main memory. This means that a program couldn’t
modify its own code, which some people see as a requirement for the “first
computer.”

The ability for a program to modify its own code is a fairly obscure
requirement, rarely necessary outside of a few unsavory security applica-
tions and obfuscated coding contests. In theory, the ENIAC programmers
could have continued to create a second layer of VM, which could have repre-
sented higher-level programs in the data rather than program memory. That
would have created a von Neumann architecture, with programs capable of
modifying their own code using the same VM idea the programmers had al-
ready invented. But they never felt the need to do this. Detractors argue that
the potential for the ENIAC programmers to have done this is no more of a
claim of “first computer” status than the potential for a Z3 programmer to
have built VMs, and so they assert the virtual ENIAC missed being the first
computer by a gnat’s whisker.

NO T E Speaking of gnats, the world’s first computer “bug”—and the origin of the modern
use of the word—was caught and logged in 1947 by the programmers of another ma-
chine, the Harvard Mark II. It was a moth that had gotten stuck inside the machine,
causing it to malfunction.

The Manchester Baby
In 1948, Frederic Williams, Tom Kilburn, and Geoff Tootill demonstrated
the first “electronic stored-program computer” at what is now the University
of Manchester. Stored program means what we now call a von Neumann ar-
chitecture. The machine was officially named the Small-Scale Experimental
Machine and nicknamed “the Baby” (Figure 1-24).

The Baby’s CPU used around 500 vacuum tubes, together with diodes
and other components. It implemented an instruction set of seven instruc-
tions. In modern terms, the Baby was a 32-bit machine, with 32 addresses
each storing one 32-bit word.

The Baby was built from parts including the then broken-up Bletchley
Colossus machines; it was quickly scrapped and cannibalized itself to pro-
vide parts for the later Manchester Mark I machine. A replica of the Baby
can be seen today in Manchester’s Science and Industry Museum. This mu-
seum is especially interesting, as it also contains textile processing machines
from the industrial revolution, which began in Manchester. These machines
form a cultural connection between the Jacquard loom and the Manchester
computers.
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Figure 1-24: The Manchester Baby rebuilt in Manchester’s Science
and Industry Museum, UK. Note the CRT memory in the center, also
used as a display.

The Baby can probably be programmed to play Space Invaders on its
green CRT screen: since the modern rebuild, similar games have been
demonstrated for it both in emulation and on the real machine in what is
perhaps the most extreme example of retro gaming.

Having a von Neumann architecture, the Baby is also able to run pro-
grams that modify their own code. Thus, by the time we reach the Baby, we
appear to have an indisputable Church computer, as long as we’re happy
that it could be “given as much memory as it asks for.” It’s not trivial to won-
der how that could be done, though, as the Baby’s architecture is so specific
to the 32×32-bit memory design. You could redesign it with a larger memory,
but would that really be the same Baby, or a different machine?

The 1950s and Commercial Computing
UNIVAC (Universal Automatic Computer; Figure 1-25) was delivered to
its first customer in March 1951. It was Mauchly and Eckert’s commercial-
ized version of their previous ENIAC, making it the first commercial general-
purpose stored-program computer. Like ENIAC, UNIVAC was vacuum
tube–based. CBS used one to make a successful statistical prediction of the
US presidential election of 1952, which brought fame and sales. Mauchly
and Eckert’s company still exists as the modern Unisys Corporation.
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Figure 1-25: UNIVAC

IBM was slow to understand that UNIVAC and other electronic comput-
ers would destroy their still-profitable tabulating machines business, with
CEO Thomas Watson making the worst futurology prediction in human
history in 1948: “I think there is a world market for about five computers.”
After waking up to the new technology, IBM produced its own first commer-
cial electronic computer in 1952, the IBM 701.

The Transistor Age

Figure 1-26: A big
transistor

A transistor performs the same function as a vac-
uum tube, but it’s smaller, faster, and cheaper, and
it consumes less power and is more reliable. Like
tubes, transistors can be used for both analog and
digital tasks (they’re found in analog audio ampli-
fiers such as transistor radios and guitar amps), but
for computing, they’re used only for their digital
properties.

William Shockley, John Bardeen, and Walter
Brattain discovered the transistor effect in 1947
and were awarded the Nobel Prize in Physics for
it in 1956. Work to commercialize transistors be-
gan in the 1950s in what is now Silicon Valley, and
the technology became mainstream in the 1960s.
Transistors remain the basic technology of computers today.

The 1960s and Big Transistors
The transistor “minicomputers” of the 1960s didn’t use microchips, but in-
stead were made from the “big” kinds of transistors, about 1 cm long, that
you would put in a breadboard circuit today (Figure 1-26). It’s still possible
to make a CPU out of such transistors, and a few hobbyists do it for fun (for
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example, the MOnSter 6502 project by Eric Schlaepfer and Evil Mad Scien-
tist Laboratories).

These computers filled a rack and included the classic PDP machines
(Figure 1-27) used heavily in early AI research. This was also the time when
Seymour Cray began building Cray supercomputers, aiming to make the
biggest and fastest machines for high-end users.

Figure 1-27: A transistor-based 1960s PDP-11 mini-computer

Uses of transistor computers in the 1960s included powering ARPANET,
the predecessor of today’s TCP/IP-based internet, and Margaret Hamilton’s
1969 programming of the Apollo moon landing code in assembly language
(Figure 1-28). The latter was actual rocket science, and required her to create
the modern field of software engineering while searching for ways to make
this highly critical code more correct.

Figure 1-28: Hamilton with a printout
of her complete assembly program for
Apollo 11
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In 1965, Gordon Moore, the CEO of Intel, made an observation known
since as Moore’s law. As you saw in the introduction, depending on who you
ask and how you count, this law says that either the speed of computers or
the number of transistors per area doubles every 18 months or every 2 years.

The 1970s and Integrated Circuits
The 1970s saw the widespread commercialization of integrated circuits (also
called ICs, microchips, or chips). ICs had been theorized in 1952 in Britain by
Geoffrey Dummer, though the 2000 Nobel Prize in Physics was awarded to
Jack Kilby—who had heard Dummer talk about them in 1952—for his inven-
tion and patent of a practical version in 1958 at Texas Instruments.

Figure 1-29: An
Intel 4004 chip
in its packaging

IC technology allows electric transistor-based
circuits to be miniaturized, so that the same wiring
that filled a 1960s rack cabinet can fit on a “chip”
of silicon the size of a fingernail. From an architec-
tural view, chips are not very exciting—if you take
the wiring diagram from a 1940s vacuum tube ma-
chine and just miniaturize it, then you get a chip.
If you look at a chip through a microscope, you’ll
see similar wiring patterns to, say, the wires on the
back of a 1940s, 1950s, or 1960s rack. The silicon
chip is then “packaged” inside a larger, usually black lump of plastic, with
larger metal pins connecting the fine inputs and outputs of the chip to the
outside world, usually a printed circuit board (Figure 1-29).

The 1970s saw the birth of some of the oldest software that is still in use
today. The UNIX operating system was built by Kenneth Thompson and
Dennis Ritchie in this time (Figure 1-30) and has evolved into current Linux,
FreeBSD, and macOS systems.

Figure 1-30: Thompson and Ritchie creating UNIX on a
teletype terminal
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UNIX terminals of the time used typewriter-style print heads on paper
rolls—like Babbage’s Difference Engine—and programmers would interact
with the machine by typing commands on a keyboard; these commands were
printed as they typed, along with their resulting outputs. This teletype sys-
tem is the origin of the x-terminals used today in UNIX-like systems.

In contrast to terminal-based interaction, Xerox (the photocopier com-
pany) researched graphical user interfaces at its Palo Alto Research Center,
Xerox PARC. This included developing the first mouse, as well as the “desk-
top” metaphor, including files and folders based on physical filing cabinets.

This choice to base the interface with a computer on a middle manage-
ment office, with its desks and filing cabinets—rather than on, say, a school,
art gallery, or shop—has been with us, and making computing more boring
than it should be, ever since. This may be starting to change, with the rise of
handheld interfaces such as Android and TV-based “10-foot” interfaces such
as Kodi, which provide feasible alternatives based on “apps.”

The 1980s Golden Age
Any author covering computer history eventually reaches a point where the
story overlaps with their own lifetime, and from then on, they may become
somewhat biased. For this author, it occurs here, so you might want to find
alternative accounts from others to balance mine out.

Figure 1-31: Home
computing in the 1980s:
a happy child with their
first computer

The 1980s was the golden age of computer
architecture: for the first time, electronic comput-
ers became cheap and small enough to be mass-
produced and bought by normal people to use in
their homes. As shown in Figure 1-31, this may
have been the best time in human history to be a
kid interested in computers because you would get
a proper computer for Christmas, with direct ac-
cess to its architecture, at a time before operating
systems hid the architecture away from the user.

These machines were based initially on 8-bit
CPUs, such as the 6502 used in the Commodore
64 and Apple II, and then based on 16-bit CPUs,
such as the Motorola 68000 used in the Amiga and
Atari ST. This period—especially in retro gaming—is
known as the 8-bit era and then later the 16-bit era;
it’s looked back on with fondness and nostalgia by
many who were there, and by many who weren’t.

The IBM 5150 PC launched in 1981, based on the Intel 8088 chip.
IBM and others sold this and other PCs during the 1980s for use in busi-
ness offices. The PC concept is the polar opposite of the heterogeneous,
architecture-driven home computer market for two reasons. First, it en-
forces a standardized architecture on the computer components so that
multiple manufacturers can produce them to be compatible with one an-
other. Second, it wraps all the hardware under a strict operating system,
which controls all access to it via a standardized interface. IBM could use its
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market clout to enforce standards on components, so it could buy them
from the cheapest suppliers and make money by stamping its brand on
assembled PCs.

In a reaction to the proprietary operating systems being installed on PCs
and larger computers, the GNU (recursively standing for “GNU’s Not Unix”)
project and Free Software movement were created in this decade by Richard
Stallman—this later led to the Linux-based systems and philosophies that we
use today.

We will study this period in more detail in Chapter 11.

The Bland 1990s
The 1990s was a bland, boring, beige decade. It was driven by a commercial
focus in the industry that switched from treating users as programmers and
community members to users as customers and consumers of software prod-
ucts, such as word processors and spreadsheets. During this time, schools
stopped teaching computer science and (under the heavy influence of cor-
porate lobbying by their creators) taught the use of commercial office
software.

Computer architecture became dominated by the personal computer
(PC) standard architecture, which had been used in office computing during
the 1980s but was now pushed everywhere by the PC corporations, includ-
ing on homes and schools. Closed source operating systems were pushed as
part of the PC package, making it hard for users to see anything “under the
hood” of their machines.

Physically, these machines appeared as nearly identical “beige boxes,”
as in Figure 1-32, and the general drabness of this middle management–
style computing culture was later caricatured through Apple’s “I’m a PC”
TV commercials, which portrayed the PC as a generic middle manager with
a boring beige outfit.

Figure 1-32: A 1990s desktop

As Moore’s law reliably predicted, pro-
cessor speeds doubled every 18 months;
this was the standard measure of how good
your computer was, and many would build
a new one every couple of years to take ad-
vantage of the new speed.

Related to the move to operating sys-
tems was the move from programming in
assembly and interpreted languages, such
as BASIC, to compiled languages. When
languages are compiled, their authors can
choose to conceal the source code so that users can no longer see how they
work or learn from them by changing them. Compilers had been developed
since Grace Hopper’s work in the 1950s, and were used in high-end com-
puting, but this was the first time they and their generated code arrived in
homes.

The computer games industry similarly became professionalized, sep-
arating consumers, who could only buy and play dedicated consoles and
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games, from commercial developers with the money to access specialist pro-
gramming tools. Games were sometimes fun to play, but not as much fun as
they used to be to write.

The World Wide Web went online at CERN in 1990 and grew in pop-
ularity, leading to the dot-com investment craze at the end of the decade.
As more hackers and eventually consumers joined the web, dedicated rack-
mounted server computer designs became popular, beginning with the
Compaq ProLiant in 1993. Like the Manchester Baby and 1960s mini-
computers, these were designed to be stacked in 19-inch rack units, but to
be always on with high reliability.

For the early modem-connected elite, 1993 also saw the birth of Linux
and the beginnings of its GNU-inspired international authors figuring out
how to communicate and code with one another at the level of architecture
and systems programming.

The 2000s and Reconnecting the Community
The PC architecture of commodity components plus operating system con-
tinued throughout the 2000s. Moore’s law, and the consequent building
or buying of a new doubled-speed computer every couple of years, contin-
ued. Machines used the same basic PC computer design, with various in-
terfaces and components getting upgraded for speed. Internet speeds also
increased, enabling streaming of videos as well as the transfer of text and im-
ages. Servers were reduced in size to blades, many of which could be packed
together in a single rack unit.

Enabled by these advances, Linux matured into a realistic alternative
system to the proprietary operating systems previously bundled with PCs.
Many of the people involved in older computing communities returned and
joined the Linux movement. We realized that things had to go via the oper-
ating system route rather than raw architecture; for free software advocates,
this was a good thing: it removed any dependency we had on any particu-
lar hardware companies. This was now okay because the operating system
was free software and thus no one had to be locked in to buying anyone’s
specific products. With this hindsight, the 1980s was perhaps not so great
because everyone was forced to develop on some non-free architecture plat-
form and was thus utterly dependent on their corporate owners. The 1990s
saw a reduction in freedom as a multitude of these corporations and plat-
forms were replaced by a single dominant PC operating system corporation
and platform, but since then, Linux life has become even better than the
1980s and 1990s, as we have an open platform and many competing hard-
ware suppliers implementing it.

Much of the other open source software we use today developed rapidly
alongside Linux, such as Firefox, Python, MySQL, and Apache. In many
cases, these tools have older origins, but they only grew to a critical mass of
developers and users in the 2000s.

The programmers working on the Linux operating system itself got to
see and work with the underlying architecture, but for everyone else, archi-
tecture was generally still under the hood, as in the 1990s.
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The 2010s and the End of Moore’s Law
During the 1990s and 2000s we happily assumed that the clock speeds of
our processors would double every couple of years—and they did. Moore’s
law became a self-fulfilling prophecy as Silicon Valley chipmakers used it as a
target to be reached.

However, this all fell apart in the 2010s. Transistor manufacturing tech-
nology did continue to double the number of transistors per area, but clock
speeds maxed out by 2010, at around 3.5 GHz. Suddenly, processors weren’t
getting faster anymore. This is due to the fundamental laws of physics around
computation speed and heat. During the Moore’s law period, the tempera-
ture of processors had also been rising along with speed; larger and more
powerful fans and other cooling systems such as water cooling were needed.
The transistors got smaller, but the fans got bigger. If this trend had con-
tinued through the 2010s, we would now have processors hotter than the
surface of the sun.

A closely linked concept is power consumption. As chips give off more
heat, they consume more power, and this decade also saw the beginnings of
a push toward lower-power, more portable computing, especially in the form
of smartphones. This was the decade when we switched from looking up to
the sky to looking down at screens in our hands.

As mentioned in the introduction, the end of Moore’s law has created
what Turing Award winners John Hennessy and David Patterson have de-
scribed as “a new golden age of architecture.” Where the previous two
decades saw computer architecture stagnate as a field, relying on advances
in fabrication technologies to create regular gains, the field is now wide
open again for radically new ideas. We can’t make computers faster via the
speed form of Moore’s law, but we can still fit more and more transistors
onto chips with its density form. We can now consider making everything
parallel, performing many operations at once, rather than one at a time.

As you might expect, the 2010s were characterized by an explosion of
new ideas, architectures, hardware, and software, all to enable paralleliza-
tion. A key computer science question of our time is how much program-
mers need to worry about this. In one possible future, programmers will
continue to write sequential programs, and new kinds of parallel compilers
will figure out how to turn step-by-step instructions into parallel executions.
In another future, we might find this is not possible, and programmers will
have to write explicitly parallel programs themselves. This will completely
change the nature of programming and the kinds of skills and thought pro-
cesses that programmers need.

While there remain many parallel architectures still to be explored—and
hundreds of university researchers and startup companies now trying to
explore and exploit them—the 2010s saw three major new types of parallel
architecture succeeding in the real world.

First, and most basically, multicore processors are simply chips manufac-
tured to contain more than one copy of a CPU design. The decade began
with duo-core systems and progressed through quad, eight, and even more
cores. If you were to run just a single program on these machines, then the
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programmer would have to care about parallelism. But most current com-
puters run an operating system program that in turn enables many pro-
grams to run concurrently, sharing the computer’s resources between them.
A typical desktop machine might run 10 to 20 processes concurrently during
normal operation through this arrangement, so adding N multicores gives a
factor N speed up, but only up to this number of processes. Multicores will
not scale very well beyond this if they are asked to run ordinary programs.

Second, cluster computing, shown in Figure 1-33, is another form of
parallelism in which many conventional single-core or multicore machines
are weakly linked together. Computing work is then split into many indepen-
dent chunks that can each be assigned to a machine. This requires programs
to be written in a specific style, based around the split into independent
jobs, and works only for certain types of tasks where such splits are possible.

Figure 1-33: A 2010s parallel supercomputing cluster

Cluster computing has been especially useful for “big data” tasks where
we usually want to repeat the same processing independently on many data
items, and then collate the results (this is known as map-reduce). The Search
for Extraterrestrial Intelligence project (SETI@home) pioneered this ap-
proach in the 1990s, using compute time on millions of home computers
donated by their users to run in the background, analyzing big data from ra-
dio telescopes to look for alien messages. The method is also used by search
engine companies: for example, a company might assign one commod-
ity Dell PC out of many in a large warehouse to be responsible for storing
all the locations on the web containing one particular word, and handling
queries about that word. During the 2010s, the underlying map-reduce pro-
cess was abstracted and open sourced by the Hadoop and Spark projects,
which enabled everyone to easily set up and use similar clusters.

The third approach, and most interesting architecturally, has been the
evolution of graphics cards (also called graphics processing units, or GPUs)
into general-purpose parallel computing devices. This presents a completely
new silicon-level design concept that also requires a new style of program-
ming, somewhat similar to cluster programming. Now that its graphical
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roots have been left behind, the concept is continually evolving into many
novel architectures, such as recent tensor and neural processing units found
on mobile phones.

It’s not clear whether the concept of a “programmer” will survive if
some of these new parallel architectures become dominant; for example,
we might “program” machines by creating specific parallel circuits in hard-
ware, where everything happens at the same time, rather than thinking of a
“program” as a set of instructions to be run in series.

The 2020s, the Cloud, and the Internet of Things
This is the current decade at the time of writing, so any trends identified are
somewhat speculative. With that said, the systems that we can see in devel-
opment labs today suggest that the present decade will see a fundamental
split of architectures into two main types.

First, increasingly small and cheap devices will be embedded into more
and more objects in the real world. This concept, known as the Internet of
Things (IoT), promises to see smart sensors and computers in cities, facto-
ries, farms, homes, and pretty much everywhere else.

“Smart cities” will be covered in these devices to enable the monitor-
ing of every individual vehicle and pedestrian, to make traffic control and
use of city facilities more efficient. “Smart factories” will have tiny devices
attached to every item of stock and track them through the manufacturing
process. Smart transport, retail, and homes will track the same items right
through their supply chains, “from farm to fork” in the case of food. For ex-
ample, your fridge will sense that you’re running out of cheese, using either
the weight of your cheesebox or machine vision looking for cheese, and au-
tomatically place an order to your local supermarket to replenish it. The su-
permarket will aggregate these orders and balance the demand with orders
from their distribution centers. Small autonomous robots will then deliver
your cheese from the supermarket to your doorstep.

The second trend is in the opposite direction. The low-power IoT de-
vices won’t do much computing, but will instead exist primarily to collect
and act upon “big data” in the world. This data will then be processed on
massive scales in dedicated computing centers: buildings the size of ware-
houses that are packed with computing power.

Computing centers are related to data centers, similar-looking buildings
already in existence that exist primarily to store data and make it available
over the web, rather than to perform heavy computation on it. This type
of computing appeared first at search engine companies, which used many
cheap commodity PCs running together to process web crawls and searches.
Search companies, and their online shopping peers, discovered they could
make a profit by hiring out the spare machines that were sitting idle for gen-
eral computing use by customers. This style of computing is quite like the
big machines of the 1960s and 1970s, whose users would dial in from termi-
nals and share time on them. (Perhaps Thomas Watson’s guess that there is
a world market for only five computers will actually turn out to be true if we
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count each of these cloud computing centers as one computer and ignore
the IoT devices.)

The IoT devices create a particular interest in low-energy design, but
related energy issues also occur in huge cloud computing centers. These
buildings can use as much power as factories, give off significant heat, and
cost a significant amount to run. Computing centers powered most of the
world’s video calls and collaboration tools during the COVID-19 pandemic,
enabling many jobs to switch to remote work for the first time. Some com-
puting centers saw shutdowns in 2022 due to an extreme heatwave. Recently,
some computing centers have been deliberately located in places such as the
Arctic to make use of the natural cooling.

So, like Moses, in this decade we will download from the cloud onto
our tablets. The two trends of the IoT and the cloud are likely to continue
and become more extreme during the 2020s, pulling architecture in two
opposite directions. Medium-sized desktop computers seem likely to fall in
importance.

Already we’re getting used to computing on physically small devices
such as tablet computers and the Nintendo Switch, which are starting to
make larger desktop machines look a bit silly. “A computer on every desk”
was the aim in the 1990s, but these are disappearing and being replaced by
a mix of computers in our pockets, streets, and cloud centers. Similar setups
have been suggested previously from time to time, including 1950s dial-in
mainframes and 1990s “thin clients,” but in the 2020s they seem to be taking
off via mobile phones, Amazon Echo, Nest home automation, and Arduinos,
as well as cloud providers such as Amazon Web Services, Microsoft Azure,
and Google Cloud Platform.

So Who Invented the Computer?
The modern concept of computation was defined by Church. Commercial
electronic machines of the 1950s, beginning with UNIVAC, through 1960s
minicomputers and 1970s microchips up to the present day seem clearly
recognizable as computers. But should anything before them be credited as
“the first computer”?

The Manchester Baby is a Church computer if you are happy that it
could be “given as much memory as it asks for,” but it’s not very clear how
this would be done. Looking at later commercial machines gives more of a
feeling that they could easily be extended with more memory, for example,
by plugging in extra circuit boards or hard disks. But in principle they all
still have the same problem as the Baby.

ENIAC-initial has the potential to be a Church computer if programmed
in a certain VM way. ENIAC-VM actually was programmed that way, but was
still a Harvard architecture. It needed another layer of unrealized VM to get
to RAM programs. Colossus and Zuse Z3 programmers could theoretically
have done all of this, too—but didn’t. The same goes for Analytical Engine
programmers.
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IBM has been doing big data analytics on machines described by the
media as “supercomputers” since the 1890s, but data analytics isn’t general
Church computation unless you can find a way to make any problem look
like an SQL query.

People have probably been calculating since 40,000 BCE, with abaci, me-
chanical calculators, paper, pens, clay tablets, bones, rocks, their fingers, and
natural numbers in their heads. All the above are theoretically Church com-
puters because they can simulate any machine if programmed in a certain
way. So perhaps we have always had computers—and Church was just the
first to notice them.

Summary
In this chapter, we took a whirlwind tour through the history of computing.
Beginning with bones and ending in the cloud, we considered a number of
inventions that might, or might not, be called a computer. We also saw a few
hypotheses for what makes a computer. Initially we suggested that a com-
puter was anything that could be programmed to play Space Invaders. We
then formalized this hypothesis by looking at Church’s thesis, which argues
that a computer is a machine that can simulate any other machine, given as
much memory as it asks for.

Our survey of the history of computing has briefly introduced the big
ideas of architecture. In the next chapters, we’ll dive into the details of data
representation and CPU computation to see how some of the historical
systems work in more detail. This will set us up for Part II’s study of mod-
ern electronic hierarchy and the many particular modern architectures of
Part III.

Exercises
Calculating with an Abacus Simulator

1. Use an abacus simulator (or a real abacus if you have one) and a
tutorial to understand abacus arithmetic. These operations are
still the basis for some modern CPU operations, and learning to
do them on the abacus will help you understand them in CPUs. A
simulator can be found here: https://www.mathematik.uni-marburg.de/
∼thormae/lectures/ti1/code/abacus/soroban.html and a tutorial for using
it at https://www.wikihow.com/Use-an-Abacus.

2. Take the last three digits of your phone number as one number and
the preceding three digits as a second number, and add them to-
gether on the abacus.

3. Take the same pair of numbers and subtract the smaller one from
the larger one.

4. Take the last two digits of your phone number as a two-digit num-
ber and the preceding two digits as a second two-digit number, and
multiply them using the abacus.
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Speculative History
1. How do you think world history could have been different if the

Antikythera mechanism had arrived safely in Rome and inspired
the Roman Empire to use similar machines?

2. How do you think world history could have been different if the
Analytical Engine had been fully constructed and commercialized
in the British Empire?

Challenging
Search the internet for examples of advanced operations using an abacus,
such as square roots or prime factorization, and try to run them. You may
need to use more than one abacus to provide enough columns for some
of them.

More Challenging
1. Write a speculative fiction short story or novel based on one of the

premises raised by the “Speculative History” exercises.

2. How could you implement a Church computer using an abacus?

3. Research the SQL-like functions available on the Hollerith machine.
Can a Church computer be made from them?

Further Reading
• For details of the Hollerith machine, see H. Hollerith, “The Elec-

trical Tabulating Machine,” Journal of the Royal Statistical Society 57,
no. 4 (1894): 678–689, https://www.jstor.org/stable/2979610.

• For details of Hollerith machines’ role in World War II, see Edwin
Black, IBM and the Holocaust: The Strategic Alliance Between Nazi
Germany and America’s Most Powerful Corporation (Washington, DC:
Dialog Press, 2012).

• To learn more about 2020s IoT computing, see S. Madakam,
R. Ramaswamy, and S. Tripathi, “Internet of Things (IoT): A Lit-
erature Review,” Journal of Computer and Communications 3, no. 5
(2015), http://dx.doi.org/10.4236/jcc.2015.35021.

• To learn more about 2020s cloud computing, see I. Hashem,
I. Yaqoob, N.B. Anuar, et al., “The Rise of ‘Big Data’ on Cloud
Computing: Review and Open Research Issues,” Information
Systems 47 (2015): 98–115.

• For a dieselpunk novel featuring World War II cryptography, see
Neal Stephenson, Cryptonomicon (New York: Avon, 1999).
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2
DATA REPRESENTAT ION

A computer is a device that represents
things in the real world and performs

manipulations on these representations.
Entities that we might want to represent and

make computations about include physical objects,
numbers, words, sounds, and pictures. This chapter
examines systems for representing each of these types
of entities.

We’ll begin by exploring the history of how representations of objects,
numbers, and text have evolved. We’ll then look at the modern symbol sys-
tems used to represent numbers—including decimal, binary, and hex—and
use number representations to construct representations of further entities,
such as text, audio, and video.

In this chapter, the modern representations are built from 0s and 1s,
which are left as symbols themselves. In later chapters, we’ll consider how to
instantiate these zero and one symbols in digital electronics and make use of
them in computations.



A Brief History of Data Representations
The concepts of representation and computation are closely linked. Hu-
mans often need to represent the state of part of their world, as an aid to
their own memories or as proof to other humans that something has hap-
pened or is going to happen. Once you have a representation, you can also
use it to perform computations, to simulate what would happen if certain
actions were done, or to deduce conclusions from what is known.

For example, we often need to keep track of who owns what and who
has debts to be paid. Static representations are useful for these purposes,
and once these exist we can use them in computations to answer questions
such as what would happen if we bought something, or how long it will take
to repay a debt. Representation thus comes before computation, both con-
ceptually and historically. Let’s trace how it evolved, from humanity’s first
efforts to the symbol systems that we use today.

Tally Sticks and Trading Tokens

Figure 2-1: A simple tally

The oldest-known data representa-
tion is the use of tally sticks, such as
the Lebombo bone shown in Chap-
ter 1. These are simple sticks with
several marks, where each mark
represents one object. For example,
the number 13 is represented by 13
marks, usually made in a row, as in
Figure 2-1.

Figure 2-2: Sumerian trading tokens

By Sumerian times (4000 BCE),
physical tokens were used to rep-
resent objects, as in Figure 2-2. A
small clay model of an animal, for
example, represented the actual an-
imal and could probably have been
exchanged for it. This would have
simplified trading, as you could
travel from the city of Ur to the city
of Uruk with 10 animal tokens and
make a deal by swapping them for,
say, 20 beer tokens, with the actual
objects only being moved around
later, after a successful deal. These
tokens could also have been divided
between groups of people or given as tax to the king.

Computing with tally sticks and tokens is, however, quite slow. To add
m tallies or tokens to n, you have to go through the process of adding each
of the m into the n, one at a time. If you’ve studied complexity theory, this
means that addition is order O(m) in the size of the numbers being added.
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Figure 2-3: A bulla

By 3000 BCE—still before the
abacus—the Sumerians sped up
their calculations by sealing many
tokens in a clay “envelope” called
a bulla, shown in Figure 2-3. The
bulla was sealed both physically, by
joining its clay to encapsulate the
contents, and informationally, by
stamping a complex, unforgeable
mark onto it. (This is the origin of
ceremonial seals still used today
on royal and governmental docu-
ments, such as the Great Seal of
the USA. It’s also the origin of later
digital signatures.) The seal guaran-
teed, probably in the name of the
king or another powerful and trust-
worthy person, that a certain num-
ber of tokens were contained within
it. This way, instead of counting out 12 animal tokens, you could hand over
a bulla of 12 animals at a time. The bulla would function like a 12-token coin
or banknote, but one that physically contained the 12 tokens inside.

Figure 2-4: A grouped tally

A similar development to the
bulla is found in tally sticks from
this period, where tally marks
started to be grouped together,
as shown in Figure 2-4. Counting
out n scratches usually requires n
operations, but if we replace, say,
every fifth vertical stroke with a di-
agonal one going through the previous four, we can quickly count how many
groups of five we have.

Roman Numerals
In a closely related notation to grouped tallies, we can replace the fifth stroke
with two shorter diagonal strokes to make a V, and the tenth with an X, as in
Figure 2-5, forming the beginnings of the Roman numerals.

Figure 2-5: Early Roman numerals

Roman numerals developed
further to closely represent the
human perception of numbers.
Humans appear to perceive the
sizes of sets of 1, 2, 3, and 4 ob-
jects directly and immediately. Be-
yond this, our immediate percep-
tion is of numerosity or approximate
size rather than exact number, based on sizes roughly around 5, 10, 20, 50,
100, and 1,000. Most number symbol alphabets reflect this, with Egyptian,
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Chinese, and Arabic numbers having special symbols for 1, 2, 3, and 4 that
feature the corresponding number of strokes, and more abstract symbols for
5 and above. The Roman numeral system also uses symbols to represent the
“landmark” numbers, such as V = 5, X = 10, L = 50, C = 100, and M = 1,000,
with smaller-valued symbols positioned before or after to indicate adjust-
ments to the landmark, such as VI = 6 and IX = 9.

Roman numerals have the advantage of being a close model of how
humans actually think about numbers, but if you try to do large-scale arith-
metic such as adding and multiplying with them, you’ll quickly run into diffi-
culty. This is a classic example of how the choice of representation can heav-
ily affect your ability to do certain types of computation.

Split Tallies
A split tally was a variation of the tally stick, in which the stick was marked
up, then split into two pieces down its length, as in Figure 2-6.

Figure 2-6: A split tally

Both halves contain parts of
the same notches, and both halves
could be reunited to show they
were genuine and fitted together.
They were used to record loans,
with the long and short halves (the
stock and foil) given to the lender
and borrower, the origin of our modern financial long and short positions
in stocks. The British government continued to use split tally sticks until it
burned its last wooden tallies to modernize its IT systems around 1836, the
time of Babbage’s Analytical Engine.

Arabic and Other Numerals
Other civilizations developed number representations using copies of sym-
bols for large numbers, as shown in Figure 2-7.

For example, the ancient Egyptians had symbols for 10, 100, 1,000, and
10,000. The number 23 would be shown using two copies of the 10 sym-
bol (a heel) and three copies of the 1 symbol (a tally stroke). The number
354,000 would be shown using three copies of the 100,000 symbol (a tad-
pole), five copies of the 10,000 symbol (a finger), and four copies of the
1,000 symbol (a lotus flower).

Eastern Arabic numbers appeared in the Islamic Golden Age, based on
an earlier Indian system from around 500 CE. This system introduced the
base-exponent method that we use today, with fixed columns containing
symbols for numbers of 1s, 10s, 100s, 1,000s, and so on. Importantly, this
introduced the need for a concept and symbol of zero to fill in columns hav-
ing no counts, which is missing from ancient Egyptian and similar systems.
These symbols evolved into the Arabic numerals (1, 2, 3, and so on) used in
the West today.
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Arabic Suzhou ChineseAncient Egyptian Eastern Arabic

0

1

2

3

4

5

6

7

8

9

10

100

1,000

10,000

100,000

1,000,000

23

540

354,000

4,500,000

Figure 2-7: Modern Arabic, Ancient Egyptian, Suzhou Chinese, and
Eastern Arabic numerals

Suzhou Chinese numerals evolved from ancient Chinese symbols relat-
ing to the base 10 abacus seen previously in Figure 1-4, and are occasion-
ally still in use today. You can see the symbols for 1 to 4 are based on tally
strokes, while those from 5 to 9 are similar symbols placed under a “bead”
for 5. For a few significant digits, Suzhou uses a column system similar to
Arabic numerals. For larger numbers, however, it uses a more advanced
representation that shows the first few significant digits, followed by a sep-
arate symbol denoting what power of 10 they are multiplied by. In English
we sometimes do this by writing 354 thousand or 354k rather than 354,000.

This history of number representation belongs more properly to com-
puter science than to mathematics. We can see that, historically, typed quan-
tities such as “five cows plus three cows” were represented and computed
with before more abstract mathematical number concepts such as “five plus
three.” Mathematics takes numbers for granted and performs proofs about
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their properties. By contrast, the business of representation, both of actual
objects and of abstract number concepts derived from them, is computer sci-
ence, as is the question of how to build algorithms and machines based on
these representations.

Modern Number Systems
We’ve seen how our modern concept of numbers evolved from tallies into
the symbolic, Arabic system used in everyday life today. The key innovation
of the Arabic system is the use of columns to represent digits in a base. This
(as we’ll see when we start computing) makes algorithmic arithmetic easier,
and also reduces the size of representations. For example, you only need
four symbols to represent the number 2,021, rather than 2,021 clay tokens.

Our everyday Arabic numbers are decimal, using base 10, but this isn’t
necessarily the base for computers. This section generalizes the idea of
bases and exponents and presents several related systems that are useful
in computers.

Bases and Exponents
We will make heavy use of exponentiation in representing numbers. Expo-
nentiation is the repeated multiplication of a base, such as:

23 = 2 × 2 × 2

Here, 2 is the base and 3 is the exponent. This may also be written as 2^3. In
some computer languages, it appears as 2**3, or is written via a power func-
tion, such as pow(2,3). Exponentiation is sometimes called “raising to the
power,” as in “two to the power of three.”

More generally, we write a base b to the power of an exponent n as

bn = b × b × b × . . . × b

meaning there are n copies of b. Zero and negative exponentiation are de-
fined as:

b0 = 1 and b–n = 1
bn

If we choose a base b, we may then define a number system as a mapping
from a list of numeral symbols to a number. Symbols are marks on a piece of
paper or entries in some other type of storage system; numbers are the ac-
tual mathematical objects being represented.

To write base b numbers, we need an alphabet containing b symbols.
Strings of N of these symbols can have bN different states, which are used to
represent numbers from 0 to bN – 1.

When we work with symbols in different bases, we will sometimes use
a subscript to indicate what base the symbols are written in. For example,
12310 means one hundred and twenty-three in base 10, while 10012 means
one 8, no 4s, no 2s, and one 1 in base 2 (which equals 910). In other cases,
we’ll omit the subscript where the base is clear from the context.
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Base 10: Decimal
Everyday arithmetic uses base 10, in which, for example, the string of sym-
bols 7, 4, 3, written as 743, is interpreted as representing the number seven
hundred and forty-three. We can see this mathematically using exponents
of 10:

743 = 7 × 102 + 4 × 101 + 3 × 100

Using a point notation and negative exponents, we can represent fractional
numbers. For example:

743.29 = 7 × 102 + 4 × 101 + 3 × 100 + 2 × 10–1 + 9 × 10–2

For base 10 we have an alphabet of 10 symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.
Strings of n symbols from this alphabet can specify one of 10n numbers; for
example, with n = 4, there are 10,000 numbers, 0 to 9,999 inclusive.

Base 2: Binary
Base 2 is known as binary and is used in almost all modern computers. It
has an alphabet of two symbols, usually written as 0 and 1, but sometimes
as T and F for true and false. In electronic computers, the two symbols are
represented using high and low voltages. High is usually the system’s positive
voltage, such as 5 V or 3.3 V, while low is usually ground or 0 V. Binary is
useful for electrical machines because real voltages are noisy, and attempts
to include extra symbols such as medium have been doomed to failure. But
high and low can more easily and cheaply be separated into two clear classes.

A single symbol in base 2 is called a bit, short for binary digit. A string of
N bits can represent one of 2N numbers, such as ranging from 0 to 2N – 1.
The columns of the string represent powers of 2. For example:

100111012 = 1 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20

= 1 × 128 + 0 × 64 + 0 × 32 + 1 × 16 + 1 × 8 + 1 × 4 + 0 × 2 + 1 × 1
= 15710

The powers of two that appear in this calculation (0, 1, 2, 4, 8, 16, 32, 64,
128, 256, 512, 1,024, 2,048, and so on) should be instantly recognizable to
anyone used to computing. They often appear as sizes of memory capac-
ity and as sizes in bits or bytes of data structures used at the hardware level.
If you plan to work at or near the hardware level, you’ll need to memorize
these powers of two for everyday use.

To convert from binary to decimal, add up the powers of two for each
column that has a 1 in it. To convert from decimal to binary, at each step, try
to subtract the highest power of two from the decimal, and make a note of
which powers of two have been subtracted. Write 1s in those columns and 0s
in the others.

Some mathematical operations are faster or slower in different bases.
In base 10, you can quickly multiply or divide by 10 by shifting the decimal
(radix) point one place to the left or right. Where numbers are represented
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in binary, you can use a similar trick to quickly multiply or divide by 2. This
is known as binary shift and is implemented in hardware by most CPUs. In
the C language, for example, a fast multiplication by 8 (23) can be done by
writing y=x>>3;.

Alternate notations used in some books and programming languages
for binary include 11102, 0b1110, and 1110b.

NO T E A famous computer science joke says, “There are 10 kinds of computer scientists:
those who know nothing, and those who know binary.”

Base 1,000
As a means of introducing other notations—hex and byte codes—let’s look
at decimal notation in a different way, which we’ll call compound notation.
It’s common to write large numbers by grouping them into chunks of three
digits separated by commas, to make them easier to read. For example, the
number 123,374,743,125 symbolizes the value one hundred and twenty-
three billion, three hundred and seventy-four million, seven hundred and
forty-three thousand, one hundred and twenty-five. (The “one hundred and
twenty-five” at the end refers to the number of ones.)

Imagine for a moment that these chunks are individual symbols, from
an alphabet containing 1,000 symbols from 0 to 999. Don’t think of 999
as three 9s, but as a single symbol. Under this view, we can consider the
comma-separated string as a string of 4 symbols in base 1,000, rather than
12 symbols in base 10:

123,374,743,125 = 123 × 1,0003 + 374 × 1,0002 + 743 × 1,0001 + 125 × 1,0000

This reflects our spoken language more accurately than thinking in base 10:
we have names for powers of 1,000 (thousand, million, billion, trillion), but
we don’t have names for 10,000 or 100,000 or 10,000,000. Scientific units
also follow this base 1,000 convention: kilo, mega, giga, and so on.

What’s interesting about base 1,000 is the special relationship it has to
base 10. Usually when we change bases, we expect the symbols to have a
completely different appearance in the two bases. But when we switch be-
tween base 10 and base 1,000, the written symbols don’t change at all. We’ve
simply gone from thinking of, say, 123 as three symbols in base 10 to think-
ing of it as a single symbol in base 1,000. This makes it very easy and conve-
nient to convert between the bases, as we do in our heads whenever we see
or hear large numbers in everyday life.

Base 60: Sexagesimal
Let’s talk about sexagesimal, also known as base 60. This system is relevant to
modern computing for two reasons: first, like base 1,000, it’s another exam-
ple of the sort of compound notation we’ll explore later; and second, it’s still
in heavy computational use today.

We believe that some prehistoric human groups counted in base 12.
When we reach the time of the first cities (4000 BCE), the Sumerians
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switched to base 60 for their scientific studies, which included astronomy
and the invention of an algorithmic version of the Pythagorean theorem.
This may have arisen through a fusion, collision, or compromise between
people using bases 10 and 12, as 60 is readily divisible by both.

Rather than invent an alphabet of 60 distinct symbols, which would have
required a large effort to learn, the Sumerians used a hybrid notation. They
wrote the numbers from 0 to 59 (inclusive) in the existing base 10, but they
treated these compound symbols as individual numerals in a base 60 system.
For example, the symbols (using modern Arabic digits with compounds sep-
arated by colons) 11:23:13 would represent the following number:

11 × 602 + 23 × 601 + 13 × 100 = 39,88910

We still use a sexagesimal system today to represent time: the number above
means 23 minutes and 13 seconds past 11, which is equal to 39,889 seconds
into the day. Modern databases, data science systems, and date-time libraries
therefore need to be carefully designed to handle conversions between sexa-
gesimal, binary, and decimal.

Base 16: Hexadecimal
Let’s talk about hex! Short for hexadecimal or hex code, hex is a base 16 system.
Its symbols are a mix of the digits 0 through 9 and the letters a through f (for
the decimal numbers 10 through 15), often prefixed by 0x to indicate they
are hex.

You’ve probably seen hex numbers around in any computer programs
in languages that allow direct access to and use of memory, including C and
assembly. They also appear in higher-level languages as a way to differen-
tiate copies of objects that otherwise have the same properties. For exam-
ple, if you copy a Cat object (in an object-oriented language) with properties
numberOfLegs = 4 and age = 6, you’ll get a second Cat object with those same
properties, but the two copies are distinct because they have different names
and are stored in different locations in memory. Some debugging tools will
show these memory locations to allow you to see which object is which. For
example, when you ask Python to print an object, you’ll see a hex address,
like this:

>> print(cat)

<__main__.Cat at 0x7f475bbf6860>

Human interfaces to low-level computer architecture, such as memory
locations, often use hex as an alternative, more human-readable way to dis-
play what is binary information. The address in the output above is really
a long string of 0s and 1s in binary, but this would be hard for a human to
recognize, for example, when comparing two addresses to see if they’re the
same or different. Comparing hex numbers is much easier.

Hex is used for displaying binary, rather than some other system, be-
cause it has a similar relationship to binary as base 1,000 has to base 10. Be-
cause 16 is a power of 2, just as 1,000 is a power of 10, there’s a one-to-one
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relationship between groups of columns in binary and columns in hex. This
allows for fast, easy conversion between the two systems. Consider a binary
number with its digits organized into groups of four: 0010,1111,0100,1101.
We can view this as

00102 × 212 + 11112 × 28 + 01002 × 24 + 11012 × 20

which is the same as:

210 × 163 + 1510 × 162 + 410 × 161 + 1310 × 160

Each of these powers of 16 has a number from 0 to 15 inclusive, so if we use
the letters a16 to f16 to denote 1010 to 1510, then we can write the number
in hex as 2f4d16. Every 4 bits in the binary number (a quantity sometimes
called a nybble) corresponds to one hex digit: the 2 in hex corresponds ex-
actly to the first 4 bits, 0010; the f to 1111; the 4 to 0100; and the d to 1101.
This four-to-one correspondence makes it easy to convert back and forth be-
tween hex and binary—much easier than, say, converting between decimal
and binary.

HEX EDITORS

Hex editors (for example, in Vim, %!xxd, as shown in the following image) dis-
play the contents of files or memory in byte notation, sometimes together with
other translations such as ASCII characters. They allow you to edit the corre-
sponding binary data directly. This is useful for editing binary data and exe-
cutable (compiled program) files on disk, or poking (overwriting programs and
data) in the computer’s memory, such as programs currently running. These
editors have many interesting security-related applications. For example, you
might use one to try to find and circumvent parts of a proprietary program that
check for verified purchases, or to overwrite your number of lives in a computer
game to get 255 instead of 3.
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Hex is a convenient tool for humans to think about binary numbers in
a computer, but it’s important to recognize that hex isn’t a tool the comput-
ers themselves use. We don’t build physical computers using hex as a base;
we build them using binary. Then we chunk the computers’ binary numbers
into fours and translate them into hex to make them more human-friendly.
After all, 16 is just a bit more than 10, and so is the kind of number that hu-
mans can get used to thinking in, rather than binary.

Alternate notations used in some books and programming languages
for hex include 2F4D16, 0x2f4d, 2F4Dh, &2F4D, and $2F4D.

Base 256: Bytes
Using the base 1,000 trick again, it’s common to see hex code grouped into
pairs of hex digits, such as 2D 4F 13 A7. Here, each pair can be viewed as a
single symbol from an alphabet of 256 symbols, with each symbol represent-
ing 8 bits, known as a byte. Bytes were the main unit of computation in the
8-bit era. The nybble is so-called because it’s half a byte. Remember that a
nybble is one hex digit; a byte is a pair of hex digits.

How to Convert Between Bases
To convert from any base b representation to decimal, sum the decimal val-
ues of each of the base b columns:

xnbn + xn – 1bn – 1 + . . . + x0b0

For example, here’s how to convert a number from base 19 to decimal:

6H92A819 = 6 × 195 + 17 × 194 + 9 × 193 + 2 × 192 + 10 × 191 + 8 × 190

= 14,856,59410 + 2,215,45710 + 61,73110 + 72210 + 19010 + 810
= 17,134,70210

To convert from decimal to base b, use repeated integer division by b with
remainders. Table 2-1 shows the steps of converting 18610 to binary.

Table 2-1: Converting 186 to
Base 2
Step Result Remainder
186/2 93 0
93/2 46 1
46/2 23 0
23/2 11 1
11/2 5 1
5/2 2 1
2/2 1 0
1/2 0 1

Here, the binary form of 18610 is obtained by reading up the remainder
column: 101110102.
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Most programming languages provide functions that automatically carry
out common conversions, with names like bin2hex and hex2dec.

Representing Data
Once you have a basic representation for whole numbers, such as any of the
base systems we’ve discussed, you can use it as a first building block to con-
struct representations of other things: more complicated types of numbers,
text, multimedia, and any general hierarchical data structure. Here we’ll see
such representations, often using systems we’ve already defined as compo-
nents of other higher-level systems. This can be as simple as using a pair of
whole numbers to represent a fractional number or as complex as using bil-
lions of floating-point numbers grouped into spatiotemporal hierarchies to
represent a multimedia stream of video, multilingual audio, and text sub-
titles, as found in your movie player.

Natural Numbers
The natural numbers (traditionally denoted by the set symbol N) are the num-
bers 0, 1, 2, 3, 4, and so on. They’re often used to represent numbers of
physical things in the world, such as rocks or cows.

Natural numbers can be represented in many ways, including tallies and
Roman numerals. In computer architecture, the most obvious way is to use
one of the base-exponent systems we’ve discussed. Some computers have
used the decimal base (see the “Decimal Computers” box), while most mod-
ern machines use binary. For example, using light bulbs that can be either
on or off, we can represent the binary columns of the number 74 (one 64,
one 8, one 2), as in Figure 2-8.

Figure 2-8: A representation of the number 74
in binary

There’s some subtlety to this, which will become important in more
complex representations. First, you need to choose a convention for how
to read the bulbs. In this case, we’ve chosen to put the highest power on
the left, as with human-readable decimal numbers. We could equally have
chosen the other way around, however, with the highest power on the right.
Second, we’ve assumed in our example that eight bulbs are available and are
being used. This means we can only represent the numbers 0 through 255.
If we want to represent larger numbers, or even communicate the fact that
we’ve run out of bulbs to represent a larger number, we’ll need a new plan.
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DECIMAL COMPUTERS

Decimal computers have a long history, spanning the mechanical and electronic
ages. Here are some details of how they worked.

Babbage’s Analytical Engine

Like Babbage’s Difference Engine, his Analytical Engine uses a decimal repre-
sentation, with gear wheels containing the digits 0 through 9. A gear’s orien-
tation represents a particular decimal digit, d, when that digit is oriented toward
a fixed marker, as shown in the following figure. As in Pascal’s calculator (and
unlike da Vinci’s), the gear never stops at continuous angles in between digits;
it has only 10 discrete states.

The gear is hollow, and there’s a shaft inside it. The gear and this shaft may
connect via two tappets, one attached to each of their circumferences. These
tappets are arranged so that if the shaft is rotated by a full circle, the tappets
will connect for part of the circle, with the effect of rotating the gear by the
value of its digit rather than the full circle. To read the represented number,
you rotate the shaft by a full circle. For the first part of this rotation, the tappets
aren’t in contact and the gear doesn’t move. For the second part of this rota-
tion, the tappets come into contact and the rotating shaft makes the gear rotate
along with it for n-tenths of a rotation, where n is the number represented. This
rotation of the gear is what gives you access to the number. For example, if you
first connect the gear to a second gear, it will have the effect of advancing that
second gear’s digit by n.

Importantly, the data is lost from the first gear when it’s read, as the tappet
always moves the gear into its zero position during the second part of the
rotation. The act of reading the data is thus a move rather than a copy.

Many gears can be stacked vertically to represent digits of larger decimal
numbers. Likewise, many of these vertical stacks are arranged horizontally in
the Analytical Engine to represent many numbers together.

(continued)
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Electronic Decimal Machines

Less well known in history are decimal machines of the early electronic age.
The first commercial computer, UNIVAC (1951), discussed in the previous
chapter, was one of them. Its main console (see the following figure) is
characterized by many groups of 10 lights, used for displaying various
decimals.

The IBM 650 in the following figure, dating from 1953, was notable for its use
of a “bi-quinary” representation. Exactly as in the abacus, this involved a mix-
ture of units and fives making up decimal columns.
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Binary isn’t the only way for digital systems, such as light bulbs, to repre-
sent natural numbers. Sometimes a one-of-N representation is more useful,
as in Figure 2-9.

Figure 2-9: A representation of the number 5 in a
one-of-N system (the leftmost bulb represents 0)

Here, we assume that N bulbs are available and being used, and that ex-
actly one of them will be on at any time. This can be wasteful, because we
don’t use most of the possible states of the set of bulbs. But it can also be
useful: for example, if we want to actually shine a light on some object in the
real world, such as the fifth car in a row, we now have a single physical light
bulb dedicated to that purpose. This will be very useful in computer archi-
tecture, as we very often want to switch on and off one of N physical circuits
in a similar way. As with binary, we need to agree on a left-to-right or oppo-
site convention, and there’s no way to indicate that we’ve run out of bulbs if
a number is too large.

Integers
The integers (set symbol Z) are the numbers . . . , –3, 2, –1, 0, 1, 2, 3, and so
on. They can be defined as pairing natural numbers with positive or nega-
tive signs (apart from zero, where +0 = –0). Table 2-2 shows three different
options for encoding them in binary.

Table 2-2: Three Possible Binary Encodings for Integers
Integer Signed One’s complement Two’s complement
3 011 011 011
2 010 010 010
1 001 001 001
0 000 and 100 000 and 111 000
–1 101 110 111
–2 110 101 110
–3 111 100 101
–4 n/a n/a 100

A naive way to represent integers is to use binary codes for the natural
numbers corresponding to their absolute values, together with an extra bit
for their sign, as in the signed column of Table 2-2 (the leftmost bit indicates
the sign). It’s difficult to build machinery to correctly process these repre-
sentations, however, as the sign has to be handled separately and used to
select what should be done with the rest of the number. Having two differ-
ent representations of the number 0 may also be a problem, requiring extra
machinery to sort out.
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Consider for a moment the alternative one’s complement representa-
tion of the same integers given in the table. (Few people actually use this,
but it will help you understand the next one.) In this representation, the
codes for the positive integers are the same as for natural numbers, but
the codes for negatives are obtained by inverting all of the bits for their
corresponding naturals. For example, to get the code for –2, we start with
the code for +2, which is 010, and invert all the bits to get 101.

Now consider the two’s complement representation of integers in the
table. This is formed by taking the one’s complement codes and adding 1
to them for negative numbers only. For example, –2 becomes 110, which
is 101 + 1. This may seem like a random thing to do, but as you’ll see later,
the two’s complement approach turns out to be very useful. It simplifies
the required arithmetic machinery, which is why today’s computers typically
use it.

Rationals
The rationals (set symbol Q) are defined as, and may be represented by, pairs
of integers a/b, with b ≠ 0. Examples include 1/2, –3/4, 50/2, –150/2, and
0/2. Many rationals are equivalent to one another, such as 4/2 and 2/1. De-
tecting and simplifying equivalences requires dedicated computational work,
and without this work rationals tend to expand to silly scales such as the rep-
resentation 1,000,000,000/2,000,000,000 representing the number 1/2.

Representing rationals is our first example of combining multiple exist-
ing representations: we need to use a pair of integers. For example, consider
Figure 2-8, which we previously interpreted as a single natural number; this
figure could instead be viewed as representing the rational 4/10 = 2/5 by
assuming that the first and second groups of four bulbs represent 4 and 10.

There’s some subtlety in this: we need to agree that the first four of the
eight bulbs are to represent the first integer, and the second four the second
integer, plus we need to agree on conventions for the integers themselves
(how to convey positive versus negative values), as discussed earlier. We will
end up with multiple representations for many rationals, such as 4/10 and
2/5, which may initially confuse us if we want to ask whether two rationals
are equal.

Fixed Point
Fixed-point numbers, such as 4.56, 136.78, and –14.23, are numbers with a
limited number of digits before and after the point. In these examples there
are always two digits after the point. Formally, fixed-point numbers are a
subset of the rationals, as they can always be written as an integer divided
by some power of 10. They can be easily represented in computers as pairs
of integers, corresponding to the two parts of the number before and after
the decimal point, provided we agree on a convention for their ordering and
size, as well as a convention for the integers themselves.
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For example, the bulbs in Figure 2-8 could now represent the fixed-
point binary number 0100.1010 = 45

8 if we agree that the point is fixed af-
ter the fourth bulb. Note that these are exactly the same bulbs that we pre-
viously used to represent the rational 4/10 and the integer 74; to interpret
data as a representation, we need to agree on which representation system is
being used.

Floating Point
Floating-point numbers, such as 4.56 × 1034 and –1.23 × 10–2, are a comp-
utational version of the Suzhou place notation system seen previously in
Figure 2-7, and are composed of a fixed-point mantissa (here, 4.56) and an
integer exponent (here, 34). They are easily represented in computers by
pairing together an integer representation and a fixed-point representation.

To do this in practice, you need to choose specific representations for
the fixed-point and integer parts, with specific bit lengths and a specific or-
dering for how to pack them together into a pair. It’s also useful to reserve a
few bit strings for special codes, such as plus and minus infinity (which can
be used to code results for 1/0 and –1/0) and “not a number” (NaN, used
to code exceptions such as when trying to compute 0/0.0). IEEE 754 is a
commonly used standard for making these choices. It includes a set of bit
orderings to best make use of 8, 16, 32, 64, 128, or 256 bits as floating-point
representations. For example, IEEE 754’s 64-bit standard specifies that the
first 53 bits should be used as the fixed-point mantissa in a signed encod-
ing, with the first bit holding the sign; the remaining 11 bits should serve as
a two’s complement integer exponent. Some bit patterns are reserved for
infinities and NaNs.

COMPUTABLE REALS

Beyond floating points, computer science has its own concept of computable
real numbers, sometimes written as T, which are different from—and better
than—the real numbers used in mathematics, denoted with R. Computable
reals are all the numbers that can be defined by programs. In contrast, the
much larger set of mathematicians’ real numbers are useless as they can’t be
individually defined or used in computation.

Imagine a physical turtle robot controlled by a language like Scratch, moving
left and right along a number line. The computable reals are all the locations on
the number line that you can write a program for the turtle to stop at. Specifi-
cally, they’re all the numbers whose nth digit can be specified by some finite-
length computer program.

(continued)
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For example, we can write a function pi(n) that takes an integer n as input and
returns the nth digit of π. Likewise, we can add two computable reals, a(n) +
b(n), by forming a new program from the programs a(n) and b(n). The new
program will take n as an input and call a() and b() one or more times to
generate the nth digit of the output.

Computable reals have many fascinating and almost paradoxical properties,
which have deep implications for both computer and human arithmetic. For
example, it’s generally impossible (uncomputable) to know whether two comput-
able reals are equal or different! The programs formed from performing just a
few basic arithmetic operations on computable reals can quickly get quite large
and unwieldy. It would be nice if we could optimize them by replacing them
with shorter (or shortest) programs that give the same outputs, but it’s impossible
to do this. There is a “countable” number of computable reals, which is the
same “size” of infinity as the integers. This is different from the mathematicians’
reals, which have a larger “size” that’s “uncountable.”

Alan Turing defined the computable reals in his great paper “On Computable
Numbers,” hence the letter T. They are his true genius contribution to computer
science, rather than “inventing the computer” (the title of this paper is a clue
that it’s about computable numbers, rather than about computers). Turing’s
theory is still underappreciated. If it were more widely developed and used, we
might one day get rid of the errors caused by floating-point approximations and
be able to make perfectly accurate computations.

Arrays
A one-dimensional array is a sequence of R values:

{ar}r=0∶R–1

A two-dimensional array is a collection of R × C values (standing for numbers
of rows and columns), where:

{ar,c}r=0∶R–1,c=0∶C–1

A D-dimensional array is a collection of values with D indices, such as the 3D
R × C ×D array with the following elements:

{tr,c,d}r=0∶R–1,c=0∶C–1,d=0∶D–1

The values in arrays may be numbers (of any of the types of numbers we’ve
discussed) or other types of data.

Often numerical arrays are used to represent vectors, matrices, and ten-
sors. These are mathematical concepts that extend the data structure with
specific, defined, mathematical operations. For example, a vector is a 1D ar-
ray with specific rules for addition, multiplication by a scalar, and comput-
ing dot products and norms. A matrix is a 2D array with specific rules such
as for multiplication and inversion. A tensor is an N-dimensional array with
specific rules for covariant and contravariant coordinate transforms, in addi-
tion to multiplication and inversion. Vectors and matrices are special cases
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of tensors. (Many computer scientists use the term tensor incorrectly to refer
only to the N-dimensional data structure, forgetting the other mathematical
requirements of true tensors.)

A basic data representation for all types of arrays is to “pack” them into
a series of individual numbers in contiguous areas of computer memory.
For example, Figure 2-8 might represent the 1D array of integers [1,0,2,2]
if we agree on a convention that each integer is represented by two bulbs.
Similarly, it might represent this 2D array of integers:

[ 1 0
2 2 ]

In this case we’re considering each of the 2D array’s rows as a 1D array,
[1,0] and [2,2]. We encode each 1D array using two bulbs per integer and
store the series of encodings for the rows in order. By extension, for a gen-
eral N-dimension array, we may do the same: split it into a series of (N – 1)-
dimension arrays, encode each of them, and store the series of encodings in
order.

Optimizing data representation and computation architectures for vec-
tors, matrices, and tensors has become a major driver of the tech industry.
GPUs were first built to perform fast 3D vector-matrix operations for real-
time 3D games, and have more recently been generalized for fast tensor
computations, which have found important applications in neural network
acceleration. Google’s tensor processing units (TPUs) are designed specifi-
cally for this task.

Text
Let’s talk about text. Once you have a finite, discrete alphabet of symbols,
such as the characters we use to write human-readable text, you can assign a
natural number to represent each one. You can then use a bunch of natural
numbers in an array to represent strings of text. This idea has evolved from
the long-standard-but-now-outdated ASCII to modern Unicode.

A HISTORY OF TEXT

Numbers aren’t very useful by themselves: we need to know what is being
counted. Sumerian trading tokens were “typed”—three cow tokens to represent
three cows. But when we moved from tokens to more abstract numerals, we lost
the information about what the numbers were supposed to represent. The num-
bers needed to be accompanied by extra symbols describing the type, as in
“3 cows.” Writing thus emerged from the same trading tokens as numbers, but
it forked to become pictograms and then text.

(continued)
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The first writing appeared in Sumeria around 4000 BCE. It used pictures of
objects (pictograms) to represent them. Pictograms appeared in many cultures,
then gradually transformed into phonetic symbols. The phonetic and semantic
uses may coexist for a while—as in modern Chinese—but the phonetic use
usually becomes dominant. Text symbols also evolved over time to become
simplified and easier to write, losing the original pictorial similarities to their
objects. Where writing was carved on stone, the symbols evolved to be made
from straight lines that are easier to carve. The most common symbols evolved
fastest into quick-to-write shapes. They thus became the handiest to use in
phonetic transcriptions, so the phonetic letters that survived the transition from
pictures to sounds tended to come from the most common words.

Text isn’t always written from left to right. Arabic and Hebrew go right to left,
and many East Asian languages can be written from top to bottom.

Morse code was developed around the great computing year, 1836, to enable
operators of the Victorian internet—the telegraph—to communicate quickly.
Samuel Morse studied the frequency of letter usage in English to give the com-
mon ones the shortest representations. Morse is almost a binary code, as it uses
sequences of two symbols to represent letters, but they’re usually used together
with a third symbol, empty space, to show breaks between words.

Braille was also developed around 1836 by Louis Braille. It’s a true binary
code, with each letter represented by binary states of a 2×3 grid. It was
originally developed for secret use by soldiers but became popular for its
present-day use by blind readers.

ASCII
The American Standard Code for Information Interchange (ASCII), shown in
Figure 2-10, represents each character as a unique 7-bit code, meaning it can
represent 128 characters in total. This allows for uppercase and lowercase
letters, digits, symbols, and punctuation, as well as historical controls such as
delete, carriage return, line feed, and ring a bell.

In old email systems, ASCII control codes would sometimes be trans-
mitted and displayed as part of the email message rather than actually being
executed. The backspace control code was particularly prone to this effect,
so you would get emails such as:

The team has identified several fuckups^H^H^H^H^H^H^Hchallenges
in the plan.

Today, old-timers sometimes type out similar “backspace fails” on purpose
for humor.

Some operating systems use different conventions to represent the ends
of lines, involving line feeds (code 10) and carriage returns (code 13) in text
files, which may need to be fixed if you move text files between systems. In
the days of typewriters and then teletype machines, these were two different
physical controls, one to advance the paper in the machine by a row, and the
other to return the print head carriage back to the left side of the paper.

ASCII code 0 is commonly used to represent the end of a string. If a
string is laid out in memory, programs need a way to work their way through
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it one character at a time. The convention is that when they reach a zero,
they know to stop.

As a 1960s American standard, ASCII is a product of a time before glob-
alization and the internet, and it has come to show its age. It can only repre-
sent characters from the Latin alphabet, so it can’t directly represent char-
acters needed by languages other than English. Many European languages
require multiple versions of Latin characters containing accents, for exam-
ple, while languages such as Chinese and Arabic use completely different
alphabets.

However, in one of the most foresighted design decisions ever made in
computing, coupled with coincidence, the designers of ASCII were aware
of this potential future issue and planned for it. The coincidence was that
the machines of the time used groups of 8 bits, while the size of the set of
characters needed for English was just under 7 bits. The design decision was
to thus use 8-bit representations for ASCII characters but to always make the
first bit a 0. In the future, if additional characters were needed, this first bit
could be used for other purposes. This has now happened, giving rise to the
modern Unicode Standard.
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Figure 2-10: The ASCII character representations
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ASCII AS BASE 256

Suppose you’ve written a program in your favorite language, such as the
following in BASIC:

10 PRINT "HELLO"
20 GOTO 10

Then suppose you encode the characters of this program as ASCII characters
and save them in a text file. Each one of these characters is a byte. If you open
your program in a hex editor rather than a normal text editor, you’ll see your
program represented as a list of byte codes, such as:

31 30 20 50 52 49 4E 54 ... 30

Think about the compound notation concept we’ve previously used in base
1,000, sexagesimal, and byte codes themselves, and apply it to this whole list
of byte codes. Consider each byte code as a base 256 digit, and form the
entire program into a single very large number, such as:

31256 × 25627 + 30256 × 25626 + 20256 × 25625

+ 50256 × 25624 . . . + 30256 × 2560

This calculation would give a single astronomically sized integer. This means
we have a mapping between programs and integers: we can represent any
program with a single integer. When you write a program, you’re just choosing
which integer to apply. This view can be used in computational theory, because
it allows math about numbers to talk about programs.

Unicode
What we collectively know as Unicode actually refers to three different but
related standards defined in 1991: UTF-8, UTF-16, and UTF-32. UTF-8 ex-
tends ASCII by making use of the previously unused eighth bit. If it’s a 1,
then a second byte follows to enlarge the space of symbols. If the second
byte starts with a 1, then a third byte follows as well. If the third byte starts
with a 1, then a final, fourth byte is also used. UTF-8 thus allows for more
than one million different characters. Its standard doesn’t use all of them,
but it includes mappings to symbols needed for all major world languages.
So many character encodings are available that international communities
have been able to add to the standard, including symbols for less widely spo-
ken languages, ancient languages such as Cuneiform, fictional languages
such as Klingon, other symbols such as from mathematics and music, and a
large number of emoji (see Figure 2-11).

66 Chapter 2



U+0e10

U+0e11

U+0e12

U+0e13

U+0e14

U+0e15

U+0e16

U+0e17

U+0e18

U+0e19

U+0e1a

U+0e1b

U+2200

U+2201

U+2202

U+2203

U+2204

U+2205

U+2206

U+2207

U+2208

U+2209

U+220a

U+220b

U+1f600

U+1f601

U+1f602

U+1f603

U+1f604

U+1f605

U+1f606

U+1f607

U+1f608

U+1f609

U+1f60a

U+1f60b

U+12000

U+12001

U+12002

U+12003

U+12004

U+12005

U+12006

U+12007

U+12008

U+12009

U+1200a

U+1200b

Figure 2-11: Unicode Thai, math, emoji, and Cuneiform sectors

For efficiency, the most widely used languages are given the symbols
that require only 2 bytes, with the rarer ones requiring 3 bytes and the com-
edy ones requiring 4 bytes. There are sometimes lively debates about which
of these sectors a newly proposed character set should be assigned to. The
next time you send a text with just the right emojum to express your feel-
ings, you can thank the ASCII designers for their foresight.

UTF-32 is a fixed-width encoding that uses all four available bytes in
every character. From a storage standpoint, this is obviously inefficient, but
for some applications it may speed up the process of looking up symbols.
For example, if you want to read the 123rd symbol, then you can find it right
away in bytes 123×4 to 123×5.

UTF-16 is like UTF-8, but at least 2 bytes are always used, even for ASCII
characters. This covers a large set of symbols in common use around the
world, so it can often act as if it were a fixed-width coding, to enable fast
look-ups as in UTF-32. It’s a compromise encoding.

Converting files between the different UTF formats is a modern version
of the pain we used to have with carriage returns and line feeds in ASCII. Es-
pecially with CSV spreadsheet files, using the wrong UTF import can make
good files look like garbage.

Multimedia Data Representation
Data representation gets more fun as we move to images, video, and audio
to bring our computers to life. These representations are all built on the ar-
rays of numbers we’ve previously constructed.

Image Data
Grayscale images can be represented by 2D arrays of numbers, with each
element representing a pixel, and its value representing the shade of gray.
The type of integer representation within this array affects the quality of
the image: if 1-bit integers are used, then each pixel can only be black (0)
or white (1), whereas if 8-bit integers are used, then 256 shades of gray are
available between black (0) and white (255).

Human eyes are receptive to three main frequencies of light: red, green,
and blue. This means the experience of seeing an image in color can be
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reproduced by shining lights at each of these frequencies from each pixel.
To represent a color image, we can therefore take three grayscale image rep-
resentations; use them to represent the red, green, and blue channels of the
image; and somehow store them together. Different systems may use differ-
ent approaches to this storage. For example, we might store the complete
red image first, then the green after it, then the blue. But some computa-
tions may run faster if we interleave the channels, with the red, green, and
blue values for the top-left pixel stored first, one after the other, then the
red, green, and blue values for the pixel next to it, and so on.

For some applications, it’s useful to add a fourth channel, called alpha,
to represent the transparency of each pixel. This representation is known as
RGBA. For example, in sprite-based games this tells the graphics code how
to mask each sprite, leaving the background intact behind its shape. Non-
binary alphas can also be used to blend images together by making them
partially transparent to various degrees. Including an alpha channel is es-
pecially convenient because having four channels makes a power of two,
which plays nicely with binary architectures. For example, it is common to
use 32-bit colors with four 8-bit channels, rather than 24-bit colors with three
8-bit channels, on a 32-bit machine. Of course, this requires more storage, so
pixel values might be stored as 24 bits and converted to 32 bits when loaded
into memory. (Since 24-bit RGB is usually considered the maximum color
depth that humans can distinguish, there’s little point in going to 64-bit
color, even on 64-bit machines.)

Video can be represented (most basically) as a sequence of still images
packed in temporal sequence.

Audio Data
Continuous sound waves can be represented as a series of discrete samples.
The samples need to be taken at a rate of double the highest frequency
present in the signal. Human hearing ranges from around 20 to 20,000 Hz,
so common audio sample rates are around 40,000 Hz. Each sample is a
number, and as with color depth, the choice of the number of bits to devote
to each sample affects the sound quality. Consumer media such as Blu-ray
uses a depth of 24 bits, around the maximum distinguishable to humans,
while 32 bits may be used internally and by audio producers, as it’s a power
of two and gives more robustness to editing manipulations.

Stereo or multichannel audio can be thought of as a collection of sound
waves meant to be played together. These might be stored as one whole wave
at a time in memory, or interleaved over time, with one sample from each
channel stored contiguously for each sample time.

Almost all sound representations use either integer or fixed-point rep-
resentations for the individual samples. A consequence of this is that there
are clear minimum and maximum values that samples can take. If the signal
goes out of this “headroom” range it will clip, losing information and sound-
ing distorted. Musicians and voice actors often curse these data representa-
tions if they have just performed a perfect take but it got clipped and they
have to do it again. A recent trend in professional audio systems is a move

68 Chapter 2



to all floating-point representations, which are much more computationally
intensive but free the artists from the clipping problem.

When dealing with multimedia, such as movies that include video and
audio together, the interleaving representation concept is often extended so
that data from each medium for a point in time is coded together in a con-
tiguous area of memory—for example, all the data for one video frame, plus
an audio segment for the duration of that frame. The interleaving schemes
are known as containers. Ogg and MP4 are two well-known container data
representations used for movies.

Compression
The simple media representations for images, video, and audio that we’ve
just discussed are good during computation, but they aren’t usually ideal in
terms of storage. For efficiency, we often look for ways to compress the data
without changing the human experience of it.

The natural world tends to contain a lot of redundancy—that is, it has
regions of space and time that are composed of similar stuff. For example,
in a video of a thrown red ball, if you see one red pixel belonging to the ball,
then it’s very likely that the pixels around it are also red, and that this pixel
or nearby pixels will be red in the next frame as well. Also, the human senses
have particular focuses and blind spots, for example being sensitive to the
amplitude but not the phase of audio frequencies, and not hearing some
frequencies in the background when others are present.

Information theory explains how to compress media data by exploiting
and removing these redundancies and perceptual blind spots. This way, a
smaller number of bits can be used in a more complex way to represent the
same or perceptually similar media data. This is useful both to reduce phys-
ical storage needs, such as the size of a Blu-ray disc, and also to reduce net-
work use when streaming media. However, it comes at a cost of additional
computation: we usually need to convert the compressed representations
back to the raw ones, which can be quite complex, depending on the com-
pression scheme used. Most schemes rely on mathematical operations like
Fourier transforms to find spatial or temporal frequencies. These can be
costly for conventional CPUs to compute and have been a major driver of
specialized signal processing architectures to accelerate them. Implementa-
tions of compression algorithms are known as codecs.

Data Structures
Any data structure, such as the structs and objects found in most program-
ming languages, can be represented through serialization, whereby the data
is transformed into a series of bits to store in memory. Serialization can be
performed hierarchically: if a complex structure is composed of several
smaller structures, we serialize it by first serializing each of these compo-
nents, then joining their representations together in series to make the total
representation. If the component structures are themselves complex, the
process becomes recursive, but eventually we always reach a level of simple
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elements such as numbers or text, and we’ve already discussed how to repre-
sent these as a series of bits (that is, serialize them).

To give an example, say we have the following data structure:

class Cat:

int age

int legs

string name

This will be serialized as a bit sequence beginning with the encoding for in-
teger age, followed by the encoding for integer legs, and then perhaps a Uni-
code sequence for the string name.

Now say a Cat object is included in another structure:

class Game:

Cat scratch

int lives

int score

The Game object will be serialized with its first bits being the encoding of the
Cat object (itself a serialization of various components), followed by the en-
codings of the lives and score integers. We can continue to build higher and
higher levels of structure in this way, which is how real-world large-scale pro-
grams work.

Measuring Data
The basic unit of data is the bit (b), which can take one of two possible states,
usually written as 0 and 1. When studying data, we’ll often be working with
very large numbers of bits, however, so we need notations and visualizations
to handle these.

SI (Système Internationale) is an international organization of scientists
and engineers that sets generally accepted standards for scientific measure-
ment units. This includes defining standard prefixes for powers of 1,000, as
shown in Table 2-3.

Table 2-3: Large SI Prefixes
Name Symbol Value

kilo k 103 =1,000
mega M 106 = 1,000,000

giga G 109 = 1,000,000,000

tera T 1012 = 1,000,000,000,000
peta P 1015 = 1,000,000,000,000,000

exa E 1018 = 1,000,000,000,000,000,000
zetta Z 1021 = 1,000,000,000,000,000,000,000
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To visualize the large scales represented by SI prefixes, it can be use-
ful to imagine 3D cubes, based on a cubic meter. Perhaps the reason we
give special names and prefixes to powers of 1,000 is that 1,000 is three
scalings of 10, which in 3D means scaling an object by 10 in all three of its
dimensions.

Using SI prefixes with bits should be the preferred standard for de-
scribing quantities of data, according to SI—for example, 5 megabits means
5,000 bits. In fact, network speeds are often measured in megabits per sec-
ond. However, at the architectural level we more commonly need to work
with numbers that are exact powers of 2, not 10. For example, a 10-bit ad-
dress space provides 210 = 1,024 addresses, while a 16-bit address space pro-
vides 216 = 65,536 addresses. Before architects adopted the SI standards—
during the 8-bit era, for example—it was common for architects to abuse the
prefix “kilo” to refer to 1,024 instead of 1,000.

This naturally led to much confusion. Data sizes have gotten larger, and
most computer people operate at a higher level, where working in proper
SI units makes more sense. As a compromise, in 1998 the International
Electrotechnical Commission defined an alternate set of prefixes to distin-
guish the powers of two from the SI prefixes. These have the morpheme bi
in them, from the word binary. For example, 210 has become kibi, 220 has
become mebi, and so on, as in Table 2-4.

Table 2-4: Large Binary Prefixes
Name Symbols Value

kibi k2, ki 210 = 1,024

mebi M2, Mi 220 = 1,048,576

gibi G2, Gi 230 = 1,073,741,824

tebi T2, Ti 240 = 1,099,511,627,776

pebi P2, Pi 250 = 1,125,899,906,842,624

exbi E2, Ei 260 = 1,152,921,504,606,846,976

zebi Z2, Zi 270 = 1,180,591,620,717,411,303,424

Binary prefixes are slightly larger than their SI counterparts. Not every-
one is using them yet, and many older people and machines still use SI names
to refer to binary units. Unscrupulous hardware manufacturers often exploit
this ambiguity by picking whichever interpretation of the SI names will give
them the best-looking numbers on their products.

Summary
Computers usually need to represent various types of numbers, text, and
media data. It’s convenient for modern machines to do this using binary.
Hex representations chunk binary together to appear more readable to
humans. Different representations make different computations easier to
perform.
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Once we have methods for representing data, we can begin to build up
methods for computing with the data. In the next chapter, we’ll preview a
simple but complete computer that does this. We’ll then build up a more
detailed modern electronic computer to do similar.

Exercises
Base System Conversions

1. Convert your phone number to binary.

2. Convert your phone number to hex. Making use of the binary from
before might be helpful. Convert it again to byte codes, and convert
the bytes to ASCII characters. What do they spell out?

3. Negate your phone number and convert this negative number to its
two’s complement.

4. Place a decimal point halfway through your phone number to make
a floating-point number. Write it in IEEE 754 standard binary.

Text and Media
Find out how to type in Unicode on your computer. On many Linuxes, for
example, you can press and release SHIFT-CTRL-U, then type a series of hex
numbers such as 131bc to enter an ancient Egyptian digit at your command
line or in your editor.

Measuring Data
Obtain street, aerial, and satellite photos of an area you know, and draw a
kilocube, megacube, gigacube, teracube, petacube, exacube, and zettacube
on them, where, for example, each side of a kilocube is 10 m long.

More Challenging
Use a hex editor and the internet to reverse engineer and modify some of
your favorite media files.

Further Reading
• For discussions and psychological models of numerosity, see

Stanislas Dehaene, The Number Sense (Oxford: Oxford University
Press, 2011), and the “Numbo” chapter in Douglas R. Hofstadter,
Fluid Concepts and Creative Analogies (New York: Basic Books, 1995).

• For an advanced but classic paper full of details on floating points,
see D. Goldberg, “What Every Programmer Should Know About
Floating Point Arithmetic,” ACM Computing Surveys (CSUR) 23,
no. 1 (1991): 5–48.

• For an extremely advanced but blindingly beautiful book on Turing
reals, see Oliver Aberth, Computable Calculus (San Diego: Academic
Press, 2001).
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3
BAS IC CPU-BASED ARCHITECTURE

Modern CPUs are some of the most
complex structures known to humanity,

but the basic concepts underlying them,
such as executing instructions sequentially or

jumping forward or backward to different instructions,
are actually quite simple and haven’t changed for over
150 years. To ease our way into the study of CPU ar-
chitecture, this chapter introduces these fundamental
concepts by looking at a related but simpler system:
a mechanical music player. You’ll then see how the
same concepts, together with RAM, form the basis of
Charles Babbage’s Analytical Engine. Studying—and
programming—this mechanical system will make it eas-
ier to understand what’s going on when we turn our
attention to electronic systems in Chapter 4.



A Musical Processing Unit

For a machine to be a computer, it needs to be general purpose, mean-
ing it must be able to perform different tasks according to a user specifi-
cation. One way to arrange for this is to have the user write a sequence of
instructions—a program—and have the machine carry them out. A musical
score can be viewed as a program, and so we can think of a machine that
reads and performs musical scores as a kind of musical computer. We’ll
call such a device a musical processing unit.

In Chapter 1 we looked briefly at musical processing units such as
barrel organs and music boxes. After Babbage, musical automata and their
programs continued to evolve. Around 1890, “book organs” replaced bar-
rels with continuous, joined decks of punch cards (“book music”), which
could accommodate arbitrarily longer compositions without the size limit
imposed by a barrel. By 1900 these had evolved to pianolas, or player pianos
(Figure 3-1), which used punched paper piano rolls instead of cards to drive
domestic pianos, rather than church organs. Player pianos are still found to-
day; you might hear one providing background jazz in a mid-range hotel that
can afford a piano but not a pianist.

Figure 3-1: A player piano (1900)

Let’s think about some of the types of instructions found in musical
scores that might be playable on these machines. These will be similar to
but perhaps more familiar than concepts that we’ll need later to make com-
puters. We’ll consider only a monophonic instrument here, meaning it can
only play one note at a time.

The set of possible instructions that we can give to an automated mu-
sical instrument usually contains one instruction per available note. This
might be an instruction to “play middle C” or “play the G above middle
C,” for example. Each row of a player piano’s paper roll represents a time
and contains one column per musical pitch, which is specified to be either
on (punched) or off (not punched) at that time. Modern computer music
software such as Ardour 5, released in 2018, continues to use this type of
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piano roll notation (turned on its side for human viewers, so time scrolls
more intuitively from left to right) to generate electronic music (Figure 3-2).

Figure 3-2: An Ardour 5 piano roll interface (2018)

When a player piano reads a piano roll, one row at a time is placed into
a reader device. Let’s call this fetching the instruction. The instruction is
then decoded by some machinery that looks at the punch-hole coding and
turns it into a physical activation of some machinery that is going to play the
note, such as by opening a tube for air to flow into an organ pipe. Then this
machinery actually executes the performance of the note.

Usually when a human or mechanical music player is following a music
program (score), they will execute (play) each instruction (note) and then
move on to the next one, advancing their position in the program by one
instruction. But sometimes there will also be special additional instructions
that tell them to jump to another place in the program rather than advanc-
ing to the next instruction. For example, repeats and dal segno (D.S.) are used
to jump back to an earlier instruction and continue execution from there,
while codas are instructions to jump forward to a special ending section.
Figure 3-3 shows a musical program.

Figure 3-3: A musical program with notes G, A, B, high C, and low C, as well as
jumps shown by repeats, dal segno, and coda

You can build a barrel organ or player piano that encodes these jump
instructions using extra, non-note columns in their punch cards. When one
of these is punched, it might be interpreted as an instruction to fast-forward
or rewind the barrel or punch cards to a previous or later line. Figure 3-3
could then be coded with punches representing something like:

1. play note: G

2. play note: A

3. check if you have been here before

4. if so, jump to instruction 10

5. play note: B

6. check if you haven't been here before
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7. if so, jump to instruction 5

8. play note: high C

9. jump to instruction: 2

10. play note: low C

11. halt

If you don’t read music, this program explains exactly what the musical
score does!

From Music to Calculation
It’s a small conceptual step from this musical processing unit to building a
machine that performs arithmetical, rather than musical, operations.

Suppose you’ve already built several small mechanical devices that each
perform some arithmetic operation. For example, Pascal’s calculator is a ma-
chine that performs integer addition. With some thought, we could similarly
construct machines like Pascal’s calculator to perform integer multiplication,
subtraction, division, and column shifting. We could then write a program,
much like a musical score, that would specify the sequence in which we’d
like each of these simple machines to be activated.

Assuming that your arithmetic machines all share a single accumulator
where the result of each operation is stored, you could describe calculations
similarly to sequences of instructions for pressing buttons on a calculator,
such as:

1. enter 24 into the accumulator

2. add 8

3. multiply by 3

4. subtract 2

5. halt

This program would halt with the result 94 in the accumulator. The pro-
gram could be executed by a human, activating the simple machines in se-
quence, or we could use a player piano–style roll of punch cards to specify
the sequence of instructions, and a Jacquard loom–style mechanical reader
to read them and automatically activate the corresponding simple machines
in turn.

From Calculation to Computation
To make a Church computer, it’s not enough to run programs of fixed se-
quences of arithmetic instructions. Computation theory tells us that some
functions can only be computed using decisions and jumps, so we need to
add similar instructions to those of our musical processing unit, facilitating
repeats, codas, and the like. This would enable programs such as:

1. enter 24 into the accumulator

2. add 8

3. multiply by 3
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4. subtract 2

5. check if the result is less than 100

6. if so, jump to instruction 2

7. halt

Computation theory also tells us that some computations require mem-
ory to store intermediate results. To distinguish between these results, we’ll
give each value an address, which for now is just an integer identifier. Mem-
ory that is addressable in this way is widely called random-access memory (RAM).
(This is not quite the correct definition of RAM, but you’ll get to that in
Chapter 10.)

Having RAM available means that we can add instructions to load (read)
and store (write) to addresses, as in this program:

1. store the number 24 into address 1

2. store the number 3 into address 2

3. load the number from address 1 into the accumulator

4. add 8

3. multiply by the number in address 2

4. subtract 2

5. check if the result is less than 100

6. if so, jump to instruction 4

7. halt

Computation theory tells us that we can simulate any machine if we have
the three kinds of instructions I just demonstrated: those that do the actual
work of the arithmetic operations; those that make decisions and jumps; and
those that store and load from RAM. This is exactly how Babbage’s Analyti-
cal Engine was designed.

Babbage’s Central Processing Unit
Despite its age, Babbage’s Analytical Engine is a striking modern design:
its basic architecture is still used in all modern CPUs. At the same time, it
has only the most essential CPU features, so studying it provides a simpli-
fied introduction to the basic concepts underlying more modern CPUs. The
motion of the Analytical Engine’s mechanical parts also makes it easier to
visualize how it works compared to today’s electronic computers.

In this section I use modern terminology to describe the Analytical En-
gine’s parts and functions. These aren’t the terms Babbage used, but they’ll
help later when I transfer the concepts to modern machines. (Some of Bab-
bage’s original terms are included in parentheses in case they’re of interest.)
Babbage and Lovelace never left documentation for their instruction set, but
it’s been largely inferred or fantasized from other documents. I assume the
instruction set and assembly language notation used by the Fourmilab em-
ulator, an online re-creation of the Analytical Engine (https://www.fourmilab
.ch/babbage/).
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Both my presentation and the Fourmilab emulator take some liberties
with the historical truth. This is easy to do because the original source doc-
uments are messy and often contradictory. There was never a single defini-
tive design, so we can pick the versions that best suit our story. Our purpose
here is really to understand modern CPU concepts, so I sometimes simplify,
modernize, or outright lie about some of the engine’s details to make this
study easier.

High-Level Architecture
The Analytical Engine consists of three things: a CPU, which executes pro-
grams; RAM, which stores data and allows the CPU to read and write it; and
a bus that connects them. If that sounds similar to the overall architecture
of a modern, single-core computer, that’s because it is! This isn’t a coinci-
dence: the Analytical Engine’s architecture was explicitly used in ENIAC
(after translating its mechanics into electronics), and ENIAC then became
the template for our modern electronic machines.

Physically, the Analytical Engine is made of 50 copies of the slice (what
Babbage called a “cage”) shown in Figure 3-4, stacked vertically, one on top
of the other, as in Figure 1-14.

Figure 3-4: Babbage’s Analytical Engine architecture (1836)

The circles are mechanical gears. The CPU, RAM, and bus each extend
through all slices, and we can see each of them in Figure 3-4. For each num-
ber represented in each structure of the machine, the slice shows and han-
dles one of its many digits. The stack of all the slices together handles all
digits.

The RAM (“store axes”) consists of 100 stacks of gears, with each stack
representing one 50-digit decimal integer number. It appears on the slice as
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the large homogeneous area on the right side of Figure 3-4. Each of these
locations in the RAM has an address, numbered from 0 to 99 inclusive; this
address distinguishes the location from the other locations and is used to
identify it.

The RAM locations are all physically close to, but not usually touching, a
mechanical bus (“rack”). The bus is a rack gear—exactly like the one found in
modern car steering racks and LEGO Technic sets (Figure 3-5).

Figure 3-5: A rack (linear gear) and
pinion (rotating gear)

The rack gear can physically shift left and right. Each of the RAM loca-
tions can be brought into contact with the rack by levers. The gears in that
RAM location then act as pinions so that giving off the number from the lo-
cation makes the bus physically shift to the left by that amount. Or, acting
in the opposite direction, shifting the bus to the right from elsewhere adds
numbers into the memory location.

The CPU (“mill”) is the active part of the machine. It requests data
from and sends data to the RAM on the bus, and then processes it in
various ways.

Programmer Interface
Unlike the Difference Engine, the Analytical Engine was designed as a
general-purpose computer. This means we can ask it to perform different
operations in different orders. To do this, we need a way to specify what
these operations and orders are.

Let’s clarify some terms I’ve been using loosely. An ordered list of in-
structions to perform operations is called a program. The act of carrying out
a program is called execution or a run. The set of all available instructions is
the instruction set.

Programs are stored as codes on punched cards, like those of the
Jacquard loom seen previously in Figure 1-11. Each card contains one row
of holes and non-holes, which together code for one instruction. Usually
the instructions are executed in order, with the cards advancing in sequence,
but some instructions make the cards rewind or fast-forward to jump around
in the program. Let’s look at what particular instructions are available.
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Constants
One basic instruction is to set one of the RAM addresses to a given integer.
For example, “Put the integer 534 into RAM address 27.” This will move the
gears in the 27th RAM location’s column to the (decimal) digits 534, with
zeros on the gears for the thousands place and higher. Let’s first denote this
using a human-readable notation:

N27 534

Here, N (for number) tells us that this is a RAM integer-setting instruc-
tion. The following number (27) tells us which RAM location is to be set, and
the final number (534) is the value we’re setting it to. A typical program be-
gins by setting many RAM addresses to specific values in this manner. For
example:

N27 534

N15 123

N99 58993254235

N0 10

N2 5387

Once we have some starting values, we can then use further instructions
to compute with them, as in the next sections.

Load and Store
To process values from RAM, they must be moved into the CPU. To load
a value from RAM into the CPU, we write L for load, followed by the RAM
address where the value is stored. For example, this program sets the 27th
RAM location to the value 534, then loads the value from this location into
the CPU:

N27 534

L27

To store the CPU’s latest result to RAM address 35, we write S for store
followed by the desired address:

S35

Storing (S) is different from setting RAM to a constant (N) because it in-
volves the CPU’s accumulator. It transfers whatever value is in the accumula-
tor to the RAM, rather than putting a fixed constant into RAM.

Now that we can move data around, we would like to perform calcula-
tions in the form of arithmetic on it.

Arithmetic
The Analytical Engine is able to perform elementary arithmetical opera-
tions: addition, subtraction, multiplication, and division, all on integers.
These are denoted by the instructions +, -, *, and /.
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To do arithmetic, you first have to set the mode, which tells the engine
which of these operations you want to do. For example, to add two num-
bers, you put it into adding mode and then load the two arguments in order
into the CPU. Consider the following program:

N0 7

N1 3

+

L0

L1

S2

This program first puts the integers 7 and 3 into addresses 0 and 1, re-
spectively. It then puts the CPU into adding mode with the + instruction and
loads the number from these addresses. It finally stores the result of the ad-
dition into address 2.

Now that we have arithmetic, we finally need to move from calculation
to computation by adding jumps and branches.

Jumps
If you want part of a program to repeat forever, a simple method is to glue
the end of the last punch card to the top of the first one to create a physical
loop, as in Figure 1-15. However, this doesn’t generalize well, so it’s useful
instead to have an instruction to rewind or fast-forward the cards to jump
to any other line of the program when needed. Call this C for control. We’ll
then say whether we want to go backward (B) or forward (F) in the cards, and
by how many. We’ll also include the symbol + before the number (for rea-
sons you’ll see in the next section). Putting it all together, CB+4, for example,
is a control instruction to go backward by four cards.

The following program uses CB+4 to loop forever:

N46 0

N37 1

+

L46

L37

S46

CB+4

Here we use address 46 as a counter, adding 1 to its value every time we
go around the loop.

Branches
Looping forever often isn’t very useful; we usually want to loop until some-
thing has happened, then stop looping and move on to the next part of the
program. This is done with a conditional branch, which asks whether a con-
dition holds and jumps only if it does.
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We’ll use the same CF and CB notation we used for jumps, but with the
symbol ? replacing the + to denote that the jump is conditional. For exam-
ple, CB?4 is the control instruction to go backward by four cards only if some
condition is true.

The following program uses a conditional branch and an unconditional
jump together to compute the absolute value (always positive) of the sum of
two numbers.

N1 -2

N2 -3

N99 0

+

L1

L2

S3

+

L99

L3

CF?1

CF+4

-

L99

L3

S3

This program uses the + instruction to add the two numbers in RAM
locations 1 and 2, storing the result at location 3. It then adds zero (loaded
from address 99) to that result, loaded back from location 3. Behind the
scenes this addition operation also sets a special status flag to a 1 if the sign
of the result differs from the sign of the first input (zero is considered pos-
itive). The conditional instruction (CF?1) then uses this status flag to decide
what to do. If the flag is a 1, we skip over the next instruction, and so we ar-
rive at the - instruction and perform a subtraction of the result from 0 to
swap its sign. If the status flag is a 0, the conditional jump doesn’t occur, so
we simply move on to the next instruction (CF+4). This is an unconditional
jump that skips over the four lines of subtraction code so as not to swap the
sign. The final result is stored in address 3.

Branching completes the instruction set of the Analytical Engine and
(assuming enough memory is always available) makes it into a Church com-
puter. You can try tackling the end-of-chapter exercises and programming
the Analytical Engine now—or, if you’re interested to see how the machine
works on the inside, read on.

Internal Subcomponents
Let’s look at the subcomponents within the CPU that are needed to execute
these programs. This section describes their static structure; we’ll bring the
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subcomponents to life in the next section when we cover how they move and
interact with one another.

A CPU is formed from many independent simple machines, each made
from several number representations and the machinery that acts upon
them. The simple machines are grouped into three types: registers, an arith-
metic logic unit, and a control unit.

As shown in Figure 3-4, all of these simple machines are arranged in a
circle around a single large gear called the central wheel. Like the bus, the
central wheel makes and breaks arbitrary data connections between com-
ponents, in this case between the simple machines inside the CPU. These
connections are made and removed by levers that put small additional gears
into contact between the central wheel and the various machines.

Registers
Registers (what Babbage called “axes”) are small units of memory location
inside the CPU itself, rather than in the main RAM. There are only a few
registers in the CPU, while there are many RAM addresses.

Recall from Chapter 2 that integers are represented in the Analytical
Engine by digital, decimal gears. A digit d is read off a gear by rotating a
shaft by a full circle, which results in the gear rotating by d tenths of a circle.
To represent an N -digit integer, we simply stack N of these gears vertically,
spanning the N cages of the machine. A register is one of these stacks.

The input register (“ingress axle”) receives incoming data from RAM.
The output register (“egress axle”) temporarily stores (or buffers) results from
the CPU’s work, which are then transferred out to RAM. Other registers are
used during computations for other purposes.

Arithmetic Logic Unit
The arithmetic logic unit (ALU) is a collection of independent simple ma-
chines that each perform a single arithmetic operation. For example, a
simple machine similar to Pascal’s calculator is used to do addition. Mul-
tiplying by m can be done by a machine that triggers m repetitions of this
adder. Multiplying or dividing by the nth power of 10 can be done by an
especially simple machine that shifts all of its digits by n columns, the me-
chanical equivalent of “putting a zero on the end.”

In addition to sending the result to an output register, some ALU opera-
tions can also set a single status flag as an extra, side-effect output. The status
flag in the Analytical Engine is a single mechanical lever that is in either the
up (1) or down (0) position. It might have had an actual red fabric flag on
it to visually alert human as well as mechanical observers that “something
interesting just happened” in the ALU.
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ALU MECHANISMS

A digit d is given off from a gear D when it’s read by physically rotating the
gear by d tenths of a full circle. This digit can be added to another digit a
stored on gear A by placing the gears next to one another so that their teeth
mesh together, then giving off from D. As gear D rotates d tenths of a circle,
gear A will be caused to rotate by the same amount, so gear A will end up
storing the digit a + d. We say that A acts as an accumulator because we can
go on adding many digits into it, and it accumulates their sum—that is, until the
total goes above 9.

Integers larger than 9 are represented on stacks of gears, such as in registers.
Adding them together is done similarly to adding in columns with pen and
paper: the two digits in each column need to be added, but we also need to
keep track of carrying when a digit goes above 9 by passing a 1 to the next
column. Pascal had already developed a basic mechanical ripple carry sys-
tem in his calculator, which allowed numbers to be added into an accumulator,
and Babbage’s carries are based on this. The following figure shows part of
Babbage’s design.

When a gear reaches the number 9 and is rotated by one more position in an
addition, such as by an incoming carry (c), a tappet (f) connects to another
tappet (e). The latter connects to a rod (m) that transfers the carry “upstairs” to
the next cage, where it appears as (c) for the next column. Getting the timing
right for long ripples of carries is very difficult, and this is where Babbage spent
most of his design time.

Control Unit
The control unit (CU) reads instructions from the program in memory, de-
codes them, and passes control to the ALU or elsewhere to carry the instruc-
tions out. Then it updates the position in the program according to either
normal sequential execution or a jump. The CU is like the conductor of an
orchestra, coordinating the actions of all the other components at the right
times. Babbage’s CU is shown in Figure 3-6.
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Figure 3-6: The Analytical Engine control unit

A mechanical barrel, just like that of a barrel organ, rotates over time,
and each column of the barrel has several sockets for pins that may or may
not be present. The pins trigger tappets that activate the other simple ma-
chines in the CPU through a complex system of mechanical levers. This
enables each phase of the control unit’s work to be triggered in sequence,
much like a barrel organ playing a sequence of notes. The speed of rotation
of the barrel can be controlled by feedback mechanisms, so the next step
doesn’t commence until the current step has been completed.

The configuration of the barrel’s pins is not the user’s program, but
rather a lower-level microprogram that defines the sequencing of the CPU
itself: the fetch-decode-execute cycle that we’ll discuss next. As the micro-
program runs, it causes individual commands from the user’s higher-level
program to be read into registers from punched cards, then causes those
commands to be executed via the simple machines in the rest of the CPU.

Internal Operation
The CU—in Babbage’s case the rotating barrel—triggers a regular cycle of
activities. These are usually grouped into three main stages: fetch, decode,
and execute. All of the CU’s operations must be carefully timed to occur in
the right order. Let’s look at these three stages in turn.

Fetch
Fetching means reading the machine code for the next instruction into the
CPU. Recall that the human-readable assembly language instructions such
as N37 1 and CB+4 are actually represented as binary machine code on the
punched cards. For the Analytical Engine, fetching could be done exactly
as on the Jacquard loom, by attempting to insert a set of physical pins into
the locations on the card. Where there’s a punched hole, the pin can pass
through, but where there isn’t a hole the pin gets stuck on the card and
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doesn’t move as far. The physical positions of these pins can then be am-
plified and transmitted into the CPU by metal levers.

The card reader is a physical device, rather like a typewriter, in which
there’s a current line accessible to the pins. To read from any other line, it’s
necessary to pull the string of punch cards through this reader until the de-
sired line is positioned in it. The current physical state of the punch cards—
which one is currently in the reader—thus acts as a form of memory. We’ll
call this physical state the program counter.

The physical positions of the metal levers can also be considered as a
form of memory that contains a copy of the current instruction inside the
CPU. We’ll call this the instruction memory.

Decode
It isn’t immediately obvious what the binary encodings on the punch cards
mean, either to a human or a machine: at this stage, they’re just patterns
of 0s and 1s. Decoding means figuring out what this code means. The card-
reading levers traveling into the CPU can activate different pieces of ma-
chinery there, depending on what combinations of levers are up or down. For
example, if the load instruction (L) is represented as binary 010, a machine
could be set to respond only if three fetch levers are down, up, and down,
respectively. Similarly, numerical addresses included in instructions need to
be decoded, from decimal codes to mechanical activations of the addresses
they represent. The decoder is a bank of machines that each look for a spe-
cific pattern in the fetched signal and activate something when they see it.

Execute: Load and Store
Executionmeans carrying out the decoded instruction. How this is done will
depend on what type of instruction it is. Each form of execution is imple-
mented by a different simple machine, and the decoder will select and acti-
vate the appropriate one.

Values can be loaded into the CPU registers from RAM when the CPU
needs to use them—for example, as part of a calculation. The results of the
CPU’s work are also placed in registers, whose values can then be stored by
copying them out to RAM addresses.

To load a value, the CU makes mechanical connections between the
gears at the RAM address and the bus, and between the bus and input reg-
ister at the CPU end. It then triggers a giving off at the RAM address, spin-
ning the gears by a full circle so that they make the bus physically shift to-
ward the CPU by n steps, where n is the digit represented. This occurs in
parallel, with each column of the number having its own RAM gear, bus,
and input register gear.

When a value is to be stored, the CU triggers the opposite set of steps.
Storing assumes that the value to be stored is already in the output register.
First, it clears the RAM at the target address by rotating all the digits to zero.
Then it makes mechanical connections from the output register to the bus,
and from the bus to the required address in RAM. Then it spins the output
register by a full circle, which physically shifts the bus by n steps toward the
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RAM, which in turn rotates the RAM gear by n steps so that the number is
stored there.

Execute: Arithmetic Instructions
When an arithmetic instruction, such as an addition, is required, the appro-
priate simple machine, such as an adder, is brought into mechanical con-
tact with the input and output registers and activated. In the Analytical En-
gine this is done mechanically by inserting gears (cogs) that physically link
the registers to the simple machine, then transmitting power to the simple
machine to make it run. Babbage’s adder was similar to a Pascal calcula-
tor, loading in the first argument, adding the second argument to, and then
transferring the result to the output register. When the calculation is done,
these gears are pulled away to disable the simple machine.

In addition to affecting the output register, the ALU’s simple machines
may also raise or lower the status flag if something interesting happens dur-
ing the arithmetic. The different simple machines in the ALU each have
their own definition of “interesting” and can each set the flag according to
these interests: + and - set the status flag to true if and only if the sign of
their result differs from the sign of their first input, while / sets the status
flag to true if a division by zero was attempted.

Execute: Program Flow
At the end of each instruction, the CU must complete the fetch-decode-
execute cycle and prepare for the start of the next one. How this is done
differs depending on whether we have a normal instruction (such as load
and store or ALU instructions) or one whose purpose is to alter the program
flow—that is, jumps and branches.

In normal execution, when an instruction completes, we want to advance
to the next instruction in the program, which for Babbage is the one on the
punch card whose top is attached by string to the bottom of the current in-
struction’s punch card. This will prepare the system for the next fetch, which
will be on the new instruction. To do this, the CU needs to trigger and in-
crement the program counter. For the Analytical Engine, this is done by
making mechanical connections that supply power to the punch card reader
to perform a line feed, pulling the card deck through the reader by one card.

Jump instructions mean fast-forwarding or rewinding the program as re-
quested. Consider the instruction CF+4, which means forward by four lines.
When the CU sees this instruction, it will again modify the program counter,
but rather than simply incrementing it, it will advance or rewind it by the
number of lines requested. In the Analytical Engine, this is done by sending
power to the line feeder for a longer time than a single line advancement,
and also by mechanically switching the direction of line feed between for-
ward and backward.

Branch instructions such as CB?4 are executed differently, depending on
the state of the status flag. This instruction, for example, tells the CU to
jump, decreasing the program counter by four, if and only if the status flag
is up. Otherwise, the instruction has no effect, and normal execution is used
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to increment the program counter and move to the next instruction. This
branching is the important difference that separates the Analytical Engine
from previous barrel and punch card program machines such as music play-
ers and the Jacquard loom. Unless historians discover any previous machines
that could do it, this engine marked the first time that a machine was de-
signed to modify the execution of its own program rather than always follow
it in the same sequence. This ability to look at the state of things and make
decisions based on it is a key requirement of a Church computer.

Summary
We’ve studied Babbage’s Analytical Engine in this chapter because it was
and still is the blueprint for all computers that came after it, including mod-
ern PCs. Its high-level architecture includes a CPU, RAM, and a bus con-
necting them. Inside the CPU is an ALU, registers, and a CU that conducts
a fetch-decode-execute cycle. The instruction set includes load and store,
arithmetic, and jump and branch instructions. There’s a program counter
storing the current program line number, and a status flag that gets set if
something interesting happened in the latest arithmetic operation. All of
these features are found essentially unchanged in a modern PC.

As a mechanical system, the Analytical Engine can be much more con-
crete to visualize and understand than electronics. But electronic computers
are based on simply translating each of Babbage’s components into a faster
and smaller implementation based on electronic switches grouped into logic
gates. In the second part of this book, you’ll see how this is done by building
up the modern electronic hierarchy from switches to CPUs. Now that you’ve
seen what a CPU needs to do, you should have a clearer picture of where this
electronic hierarchy is heading.

Exercises
Programming the Analytical Engine

1. Install the Fourmilab Analytical Engine emulator from https://www
.fourmilab.ch/babbage, or use its web interface.

2. Enter and run the Analytical Engine programs discussed in this
chapter. If you run the programs using the java aes -t test.card

command, then the -t option will print out a trace of changes to the
machine state at each step.

Lovelace’s Factorial Function
Write a factorial function for the Analytical Engine. Ada Lovelace wrote one
of these, and it has since become the standard “Hello, world!” exercise to
try whenever you meet a new architecture. (Actually printing “Hello, world!”
tends to be more complicated, as it requires ASCII and screen output—you’ll
see how to do this in Chapter 11.)
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Further Reading
• For a more historically accurate description of the Analytical En-

gine, see A. Bromley, “Charles Babbage’s Analytical Engine, 1838,”
Annals of the History of Computing 4, no. 3 (1982): 196–217.

• For a more fictional version, see William Gibson and Bruce Sterling,
The Difference Engine (London: Victor Gollancz, 1990). This is the
original steampunk novel, featuring Babbage, Lovelace, and a work-
ing Analytical Engine.
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PART II
THE ELECTRONIC HIERARCHY





4
SWITCHES

Switching one signal on and off in re-
sponse to the state of another signal is a

fundamental ingredient of computation.
It’s what separates a limited machine like the

Jacquard loom from a general-purpose machine
such as Babbage’s Analytical Engine. Whereas the
Jacquard loom can only ever perform a predeter-
mined sequence of operations and can’t change that
sequence in response to what’s happening, the Ana-
lytical Engine has instructions that can evaluate the
state of a register and jump around the program in
response to that evaluation. Switching makes this
possible.

From basic switches, we can build more sophisticated devices like logic
gates, simple machines, and CPUs. As we saw in Chapter 1, the main type of
switch used in today’s computers is the transistor. Transistors work through
a mixture of fundamental physics ideas around directionality and specific
implementation of those ideas that hinge on the properties of substances



like silicon. If we jump straight to discussing transistors, however, these two
threads can be hard to separate.

Accordingly, in this chapter we’ll first consider the fundamental physics
ideas in a simpler directional system: water flowing through a pipe. We’ll
see how a valve can start and stop the flow of water, then transfer what we’ve
learned to electrical diodes made with vacuum tubes and semiconductors.
We’ll then build more complex switches, starting again with a water analogy
and applying it to the transistors found on modern silicon. Finally, we’ll ex-
plore how modern silicon chips are fabricated, so that you can understand
computers right down to the grains of sand they’re made from.

Directional Systems
A switch is a directional system: it takes an input and does something, caus-
ing an output. This feels fairly intuitive, but in physics you can take any equa-
tion describing a physical system, invert the direction of time, and it will still
work. So why is it that when we drop a glass, its atoms don’t usually jump
back up into place to form a new glass? The answer is entropy, or the or-
ganization of energy; the chemical and potential energy in the glass dissi-
pates into the atmosphere as a tiny amount of heat. There actually is a small
chance the glass would reconstitute itself, but energy is much more likely to
spread out as heat than to concentrate into organized structures. At the start
of the Big Bang, all the energy in the universe was in one very organized
place, and ever since then it’s been spreading out more and becoming less
organized.

It’s entropy that enables us to experience the direction of time and the
feeling of causation. The past was more organized than the future, so it’s
easier for our brains to store information about the past than about the fu-
ture. Because we have memory of the past, we can link it to what we see in
the present and describe past events as causing present ones.

Entropy also enables us to build machines, including computers, in
which we experience being able to cause sequences of events to occur in
a given direction. To give the machine a very high probability of running
in a given direction, rather than randomly switching between running back-
ward and forward, we create it in a highly organized energy state, and set up
the desired sequence of states so that each step uses up some of the orga-
nized energy and gives it off as heat. This is why computers have to use up
energy organization and emit heat—to make their programs run in the right
direction over time.

Water Valve
A water valve found in everyday plumbing is a simple example of a direc-
tional system. For instance, there’s typically a valve positioned in the pipe
that feeds water from the local supply into your home. It ensures that the
water can travel only into your home through the pipe, and not out of your
home. This prevents you from, for example, poisoning the rest of your street
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by pouring chemicals down your drain. The way this water valve works is
shown in Figure 4-1.

Figure 4-1: A one-way water valve. When the water flow is forward-biased (left), it
pushes open the valve and passes through. When reverse-biased (right), the water
pushes the valve into the block, sealing it shut so nothing can flow.

Here, a gate mounted on a hinge is free to swing to the right, but it can’t
swing to the left because its movement in this direction is blocked. If wa-
ter pressure is applied from right to left, it simply pushes the gate shut even
more firmly, so nothing can flow. We’ll call this flow direction reverse-bias.
When pressure is applied from left to right, it pushes open the gate and al-
lows current to flow. We’ll call this flow direction forward-bias.

The valve isn’t as simple as it first appears. Imagine the water is made
of individual mass particles, pushing their way through. As a particle strikes
the gate, some kinetic energy is transferred from the particle to the gate.
After the particle passes through, the gate still has this energy. In the ab-
sence of any damping, the gate will bounce off the top of the pipe, then off
the blocker on the bottom, and it will keep oscillating open and closed for-
ever. A more realistic model includes damping, where the gate may begin to
oscillate but its kinetic energy is quickly absorbed by the block and emitted
out of the system as lost heat. A system must emit heat as the price for being
one-way.

Meanwhile, the particle that passed through lost some of its velocity
when it transferred energy to the gate. Because the output particles have
less energy than the input particles, we’ll need to do work on them to add
some energy back if we want to use them as input to a second valve with the
same physics. Adding this energy compensates for the heat lost.

You could make current flow in the reverse-bias direction if you really
work hard to push it. You’d need to push hard enough to smash the block.
This would likely make a loud bang and permanently destroy the device.
We’ll see similar behaviors in electrical analogs of the water valve, which we
turn to next.

Heat Diode
A diode is any electrical system that enables current to flow in one, forward-
bias direction and not (easily) in the other, reverse-bias direction. The first
diodes were vacuum tube heat diodes, built in the electromechanical (“diesel”)
age; they’re easier to understand than modern ones, so we’ll start there.
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A vacuum tube diode (Figure 4-2) looks a bit like an old-fashioned fila-
ment light bulb. Two external wires connect to the components: the cathode
(something that emits electrons) and the anode (something that absorbs elec-
trons). Here, the cathode is a metal core and the anode is a cylindrical wrap-
per around it, separated from it by a vacuum. The cathode is heated up by
an external energy source.

Glass tube

Anode

Heater

Heated cathode

Figure 4-2: A vacuum tube diode

When a voltage is applied in the forward-bias direction, electrons flow
into the cathode from outside. They are heated up by the heater, which gives
them enough energy to fly out of the metal cathode and across the vacuum
to be picked up by the anode. This is current flowing across the diode.

When a voltage is applied in the reverse-bias direction, electrons arrive
at the anode from outside, but they don’t have enough energy to fly out of
the metal and across the vacuum because the anode isn’t heated. Current
doesn’t flow in this direction.

To create the directionality in this system, we have to do work on it by
inserting energy in the form of heat. This heat energy is then dissipated into
the outside environment.

You could make current flow through the vacuum tube in the reverse-
bias direction if you really work hard to push it. You would need a very high
voltage to persuade electrons to jump off the anode. This is likely to make a
loud bang and permanently destroy the device.

p-n Junction Diode
Most diodes used today aren’t vacuum tubes, but are instead formed from
p-n junctions on silicon, where p and n stand for positive and negative charge
regions, respectively. To understand how p-n junctions work, we’ll need a
quick crash course on semiconductor chemistry and physics.
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A Semiconductor Crash Course
Basic electronics divides materials into insulators, which don’t conduct elec-
tricity, and conductors, which do. Semiconductors are materials that in their
normal states are insulators, but that can be coaxed into becoming conduc-
tors through a very small change. Silicon (Si), element 14 of the periodic
table, is a semiconductor. You can see a representation of a silicon atom in
Figure 4-3.

14

Figure 4-3: A silicon (Si)
atom has 14 electrons,
4 of which are visible and
available for interactions
in the outer shell.

A silicon atom has 14 positive protons and
14 negative electrons. The electrons come in three
concentric shells. The innermost is a full shell of
two electrons, the middle is a full shell of eight,
and the outermost is a half-full shell, having four
of eight electrons.

Quantum mechanics (a topic beyond the scope
of this book) shows that atoms are in a low-energy
state when their outermost shell is full. Informally,
low-energy states are called happy and high-energy
states unhappy. This anthropomorphism reflects the appearance of physical
systems to “want” to move from unhappy to happy states. The “wanting” is
a consequence of statistical physics, which shows that there are more ways
to be happy than unhappy, so the system is more likely to find its way into a
happy state.

Happy states are highly probable because moving into them is a direc-
tional system. When electrons move from an unhappy to a happy energy
state, they give off the excess energy as a photon, usually lost as heat. To get
the electron back to the high-energy state, you would need to find a similar
or higher-energy photon and shoot it back at the atom, which is unlikely un-
less you work to make it happen. These probabilities function as a chemical
force acting on the electrons, pushing them into configurations that have
full outer shells.

The happiest state for a set of silicon atoms is thus for them to share
electrons in their outer shells via covalent bonds. Each atom bonds to four
neighbors by sharing an electron pair, ostensibly giving each atom a full
outer shell of eight electrons. This can be drawn in 2D as a regular square
grid of atoms, as in Figure 4-4.

14 14 14 14 14

14 14 14 14 14

14 14 14 14 14

Figure 4-4: Silicon atoms form a crystal lattice, sharing
electrons to fill their outer shells with eight electrons.
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In the real, 3D world, however, the structure is tetrahedral, with the four
neighbors positioned in different 3D directions, as in Figure 4-5. This struc-
ture is called a crystal lattice, and it’s very strong and stable. (For carbon, the
crystal form is called diamond. Silicon crystal has some similar properties,
but it’s easier to work with and substantially cheaper to obtain.)

Figure 4-5: The silicon lattice
is really 3D and tetrahedral.

Silicon crystal doesn’t conduct because all the electrons are happy to
be where they are and don’t need to move around to lower their energy.
However, we can make a silicon crystal conduct, like a metal, by adding just
a very small number of different atoms into its lattice. This process is called
doping. Consider doping with either of silicon’s neighbors on the periodic
table: aluminum (Al), element 13, having three electrons in its outer shell,
and phosphorus (P), element 15, having five electrons in its outer shell.
Doping with aluminum gives rise to a net shortage of electrons in the crys-
tal, called p-doping (p for positive). Phosphorus gives rise to a net surplus of
electrons in the crystal, called n-doping (n for negative). The doped crystals
are still electrically neutral: they contain equal numbers of protons and elec-
trons. The shortage and surplus have to do only with the chemical state of
the atoms wanting to have full outer shells.

In p-doping, some atoms will have “holes” in their outer shells where
electrons are missing. In n-doping, some will have excess electrons that re-
sult in a fourth non-full shell appearing with only one electron in it (on top
of the three full inner shells with two, eight, and eight electrons). Both types
of doped silicon behave as metals. In n-doped silicon the excess electrons
aren’t tightly bound into the stable structure, and circulate freely between
different atoms. This means they can flow through the crystal, and that it
has become a conductor. Similarly, holes may circulate through p-doped sil-
icon, making it into a conductor. This works even if the number of doping
atoms is tiny compared to the number of silicon atoms.

How a p-n Junction Works
A p-n junction consists of a p-doped and an n-doped region next to one an-
other, as in Figure 4-6.
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14 14 14 14 14

14 15 14 14 15

14 13 14 14 13

14 14 13 14 14

13 14 14 13 14

n region p region

Figure 4-6: A p-n junction in a high-energy state, made by doping two regions of silicon

Here we see the surplus electrons around the phosphorous atoms
(element 15) in the n region and the shortage of electrons around the alu-
minum atoms (element 13) in the p region. In this state, both regions are
conductors, as they have either free electrons or holes, so current can flow
across the junction.

When the junction is created, there’s no effect on the parts of the crys-
tals that are far from the boundary where they touch. But in the region close
to the boundary—called the depletion zone—something interesting happens
almost instantly. In this zone, the excess electrons on the n-doped side expe-
rience a chemical force that attracts them across the boundary to complete
the outer shells on the p-doped side, as in Figure 4-7.

15 14 15 14 15

14 14 14 14 14

14 15 14 14 15

14 13 14 14 13

14 14 13 14 14

13 14 14 13 14

n region Depletion zone p region

Figure 4-7: A p-n junction in a low-energy state, when electrons cross near the junction, giving off
energy in the process

This chemical force is strong enough to overcome some of the electrical
force, which usually keeps the electrons close to the protons to which they
were originally matched. The chemical and electrical forces balance each
other out at a point where the electrons cross only in the depletion zone. (If
they crossed any further, the electrical forces would become stronger than
the chemical ones and push the electrons back again.) The chemical force
is strong enough to produce a stable, low-energy state in which the atoms in
the depletion zone have full outer shells. The atoms are also ionized, since
they have differing numbers of protons and electrons: there’s a net positive
charge in the n region and a net negative charge in the p region. Since this
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is a lower-energy state than the starting state, photons are emitted and lost in
the form of heat as the electrons enter their new positions. And because all
the atoms in the depletion region have full outer shells, the region acts as an
insulator (like pure silicon), so current can’t flow across the junction.

The p-n junction functions like the water valve: in its high-energy state
it’s like an open valve, enabling current to flow; in its low-energy state it’s
like a closed valve, preventing current from flowing. Like the water currents
pushing open the valve and lifting it against gravity, an electrical current
flowing in the forward-bias does some work, adding energy back into the
system and pushing it into its open, high-energy state. And like the water
currents in reverse-bias pushing the valve firmly closed, an electrical current
in reverse-bias pushes the system into the low-energy state, which doesn’t
conduct. This works as follows.

In forward-bias, extra electrons are pumped from outside into the
n region. The depleted part of the n region is only mildly unhappy to re-
ceive them because they can bind to the shells of the element 15 ions, whose
electrons were previously lost to the p region. They stop being ions and go
back to being regular atoms. They’re unhappy to not have a full outer shell
now that a new electron has started a new shell, but this is almost compen-
sated for by their becoming electrically neutral. As such, only a bit of work is
needed to overcome this mild unhappiness and shove the electrons in.

Something similar happens in the p region as electrons are pulled out
by the forward-bias; it’s mildly unhappy because it loses its full shells, but it
gains electric neutrality, which almost—but not quite—counters that loss.

To summarize, electrons have entered the n region and exited the p re-
gion, which means they’ve effectively flowed from the n side to the p side as
current. We have now also returned the system to its original high-energy,
conducting state, as in Figure 4-6, because we’re back to having the original
numbers of electrons on each side. We had to do some small work to over-
come the atoms’ unhappiness about being changed, and this work is equal
to the photons that were lost as heat when we moved from the high- to low-
energy state. Almost immediately after this has happened, the system will
fall back to the low-energy state again, emitting new photons as heat as it
does so. We’ll need to continue to do work on the system to force further
batches of electrons through it, and see that work come out as photon heat.

In reverse-bias, we try to pump electrons from outside into the p region
side. In this case, the atoms in the p region depletion zone very strongly
don’t want the electrons. They aren’t just mildly unhappy, but very unhappy
to take them, because doing so would both spoil their full outer shells and
also double-ionize them into 132– ions. So the incoming electrons don’t go
there. Instead, the undepleted part of the p region will take them, because
this area contains element 13 atoms that are happy to be ionized into
13– ions because this fills their outer shells. The effect of this is that the new
electrons that arrive act to enlarge the depletion zone, as each newly ionized
atom stops conducting because it has a full shell. This makes the p region
even less conductive, the analog of the reverse-bias water current pressing
on the valve to slam it shut even harder.
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Something similar happens on the n side as we try to pump electrons
out of this region. Here, the 15+ ions really don’t want to give up electrons,
as this would both destroy their nice full outer shells and also make them
into more strongly charged 152+ ions. So instead we end up pulling elec-
trons out of the undepleted part of the N region. This makes the 15 atoms
happy to have full shells, but turns them into insulators and again makes the
depletion zone larger.

It’s possible to force electrons to enter these very unhappy states and
then to cross the junction in reverse-bias, but only if very large forces are
applied to them. The system will resist the forces for a long time, entering
a very high-energy state, then eventually break down, releasing all of that
energy as the electrons cross. This is likely to make a loud bang and perma-
nently destroy the device.

In a light-emitting diode (LED), the photons emitted when electrons cross
the junction and fall into lower-energy states have frequencies that are vis-
ible as light. Here it’s especially clear that you have to do a small amount
of work on the system by putting power in, in order to get the electrons to
cross the junction and emit the photons. You may also see a larger emission
of light and possibly sound and smoke if you try to force electricity backward
through your LED.

Figure 4-8: The diode
symbol

Note that in this discussion we’ve deliberately
considered the “flow of electrons” rather than
“electric current,” to make it as simple as possible
to follow the analogy of the flow of water. Due to a
very unfortunate historical accident, “electric cur-
rent” was defined as the negation of the “flow of
electrons,” and is said to flow from anode to cath-
ode rather than from cathode to anode. This is reflected in the diode sym-
bol (Figure 4-8), where the arrow shows the direction in which current—not
electrons—can flow. The bar at the tip of the arrow suggests that current
flow in the opposite direction is blocked. Swapping the entrenched def-
inition of current to reflect the flow of electrons would be about as hard
as getting everyone in the UK to drive on the more sensible right side of
the road.

Switching
Directional systems are the building block for our next level of architectural
structure: switches. A switch allows us to turn a flow on and off automati-
cally using another flow. Once again, we’ll consider this general principle
with a simple water example before transferring it to electronics.

Water Current Switch
Consider two water valves placed in sequence, with both of their blocks re-
placed by a spring-loaded moving platform, as in Figure 4-9.
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Figure 4-9: A water pressure switch

When the platform is up, the left valve can’t open to the right, nor can
the right valve open to the left, so water can’t flow in either direction. We’ll
call the region between the two valves the base, the water pipe entering from
the left the emitter, and the water pipe exiting on the right the collector.

If we were to connect a small additional pipe to the base (as shown in
Figure 4-9), we could then force a current of water through this pipe and
into the base. This would push down the spring-loaded platform, allowing
both valves to open, which in turn would allow water to flow in either direc-
tion along the main pipe. This creates a switch: by turning the current in the
small pipe connected to the base on and off, we can control when current
can flow along the main pipe.

Consider the energy used in this system. We have to put energy into our
switching current, which must come out somewhere. In this case, energy
has gone into the spring, and when we stop piping water into the base this
spring will bounce back up and give off heat as it damps down. Also note
that the water we’ve piped into the base has to go somewhere: it joins the
main water current from the emitter pipe and leaves through the collec-
tor pipe.

Electrical Tube Switch
As the water switch extends the water valve, electrical tube switches extend
electrical heat diodes by using one electrical current to control the flow of
another electrical current. This works by inserting a metal grid in the mid-
dle of the vacuum between the cathode and anode in the heat diode, as
shown in Figure 4-10.

Like the heat diode, the tube switch also looks like a filament light bulb.
The added metal grid is connected to a third “base” wire. If you push elec-
trons down this wire into the grid, they make the grid negatively charged.
This prevents other electrons from jumping from the cathode to the anode,
as negative charge repels negative charge. If you release the electrons from
the base, then the tube behaves exactly as a heat diode and enables current
to flow from the cathode to the anode.
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Glass tube

Anode

Heater

Heated cathode

Grid

Figure 4-10: A vacuum tube switch

Electrical tube switches are confusingly known as valves in some con-
texts, though they’re analogous to water switches rather than to water valves.
These are the switches used in early electrical computers such as ENIAC.
They aren’t ideal for practical computing, however, because they require vac-
uums inside highly breakable glass bulbs, and also require messing around
with heat, which can make them overheat and explode; as you can imagine,
they need to be replaced frequently. Electrical tube switches are found in
tube amps (or valve amps) for electric guitars, where they’re used for their
analog qualities rather than the digital ones relevant to computing. (So you
could build a computer out of old Marshall amp tubes—a nice project!)

p-n-p Transistor
The p-n-p transistor is a better way to make electrical switches; it avoids many
of the practical problems of vacuum tubes. Its design is based on the p-n
junction diode. As the water current switch can be viewed as two mirror-
image water valves stuck together with a base pipe attached to their center
region, a p-n-p transistor can be viewed as two mirror-image p-n diodes stuck
together to form a p-n-p sequence, with a base wire attached to the central
n region. The transistor is shown in its high-energy state in Figure 4-11.
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Emitter Collector

Base

p region p regionn region

Figure 4-11: A p-n-p transistor in its high-energy state
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The two junctions between p and n regions are analogous to the valve
gates in the water switch. A switching electrical wire into the base (n) region
between the boundaries is analogous to the switching water pipe into the
base region between the water valves. The wire containing current entering
from the left is the emitter, and the wire carrying it out on the right is the
collector.

As water injected into the water valves’ base region pushes open the two
valves, electrons injected into the base region open up both p-n junctions.
The work done to push them into the base lifts the system into its higher-
energy, conducting state, enabling electrons to flow across the transistor
from the emitter to the collector. The transistor thus acts as an electrical
switch, with the electrons pumped into the base switching on the flow of
electrons from the emitter to the collector.

NO T E Like vacuum tubes, transistors have analog properties that can be used in audio
amplifiers, such as transistor radios and more modern guitar amps. As with vacuum
tubes, we’re interested only in their digital qualities here.

As with the water switch, there’s a cost to this process. It requires energy
to inject current into the base and kick both junctions into their high-energy,
conducting states. This energy is later given off as photons (heat) when both
diodes fall back into their low-energy states, shown in Figure 4-12.
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Figure 4-12: A p-n-p transistor in its low-energy state

Like the water switch, the injected base current also has to go some-
where, and its electrons flow out of the collector along with the main cur-
rent from the emitter.

The standard symbol for a transistor, with E, C, and B meaning emitter,
collector, and base, respectively, is shown in Figure 4-13.

E

C

B

Figure 4-13: The p-n-p
transistor symbol
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As with diodes, we’ve discussed transistors in terms of the “flow of elec-
trons” rather than “electric current,” to preserve the water analogy. In fact,
electric current flows from collector to emitter in our p-n-p transistor,
whereas the electrons flow the other way around.

NO T E It’s also possible to make n-p-n transistors that use the regions the other way around—
that is, they work by pulling electrons out of the base to open the gates. Again, in this
case, electrical current is said to flow into the base region to open the n-p-n transistor.

Early silicon chips used p-n-p transistors, but they’re inefficient because
of the loss of electrons from the base into the collector. Modern chips use a
modified device, a field-effect transistor, to improve this. We’ll again intro-
duce this idea using its water analogy, then translate it to semiconductors.

Water Pressure Effect Switch
In the water switch, water from the base is lost to the collector because it’s
pushed into the switch and joins the main flow of water from the emitter.
We can address this inefficiency by covering the end of the base pipe with a
rubber membrane where it joins the base region, as in Figure 4-14.

Figure 4-14: A water pressure switch

The rubber can stretch, but it doesn’t allow water to flow through it.
When work is done to pump water into the base pipe, the pressure created
will stretch the membrane so it expands into the base region. This will dis-
place the water in the base region and force it through both valves, again en-
abling a main water current to flow from the emitter to the collector. When
the pressure on the base is released, the membrane will shrink back, re-
leasing the pressure on the valves so they close and turn off the main water
current.

The advantage of adding the membrane is that the water pumped
into the base is no longer lost to the collector. No water leaves the base.
The water in the base acts only to temporarily apply pressure on the valves.
Less moving stuff means that less energy is wasted, so the system can run
smoother and faster.
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Work is needed to push water into the base. This is converted into po-
tential energy to lift up the valves against gravity. Then it’s lost as heat as the
valves close, bounce around, and damp down.

Field-Effect Transistors
Field-effect transistors (FETs) are the exact analog of water pressure switches,
as p-n-p transistors are to water current switches. The FET improves on
the p-n-p transistor by covering the end of the base wire with an electrical
insulator (such as silicon oxide, SiO2) where it joins the n region, as in
Figure 4-15.
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Figure 4-15: A FET transistor in its low-energy state

The insulator allows an electrical field to transmit through it, but it
doesn’t allow electrons to flow through it. This means an electron on one
side can push away an electron on the other side, without the electron itself
crossing over. When work is done to push electrons into the base wire, the
negative charge accumulated in the base will push away electrons in the n
region, forcing them through both p-n junctions, again enabling a main elec-
tron flow from the emitter to the collector. When the voltage on the base
is released, the electrical field across the insulator will shrink back, releas-
ing the voltage on the p-n junctions so they close and turn off the main elec-
tron flow.

The advantage of adding the insulator is that the electrons pumped into
the base are no longer lost to the collector. No electrons leave the base. The
electrons in the base act only to temporarily apply voltage rather than elec-
tron flow on the p-n junctions. Less moving stuff means that less energy is
wasted and that the system can run smoother and faster.

Work is needed to push electrons into the base. This is converted into
potential energy to raise the p-n junctions from their low- to high-energy
states. Then it’s lost as heat as the junctions fall back to their low-energy
states, giving off photons.
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Clocks
Often we want to automatically switch a signal on and off regularly over
time. Such a signal is called a clock, and it can take the form of a binary in-
put that oscillates in a square wave over time, as in Figure 4-16.

Positive
edge

Period

Negative
edge

Figure 4-16: A square wave clock

Fast electrical clocks can be made from materials having piezoelectric
properties, meaning that they mechanically oscillate in response to a volt-
age placed across them. These oscillations in turn change the material’s elec-
trical resistance and create an oscillating voltage as a result. Quartz crystals
and some ceramics have this property, with oscillations in the megahertz
(MHz) to gigahertz (GHz) range depending on their exact structure and the
voltage applied to them. These can be made into clock units by adding hard-
ware to apply the required voltage across them and to rectify their signals
into the square waves needed for clock signals.

We’ll depend on clocks to drive the “sequential logic” structures in
Chapter 6. These are structures whose state can update at regular time in-
tervals. Sequential logic structures, in turn, form subcomponents of CPUs.
Physical clocks are thus very important to computation and can be found on
motherboards in modern electrical computers, as Figure 4-17 shows.

Figure 4-17: A quartz crystal oscillator

These clocks can be bought for a few dollars on eBay to mount on a
breadboard in your own projects (search for terms like “quartz crystal
oscillator”).
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Fabricating Transistors
Modern integrated circuits use FET transistors, created on silicon chips. A
“chip” of silicon is a small, very thin slice, much like a potato chip (known as
a “crisp” in the UK). Silicon is an abundant element that can be obtained as
sand from the beach. Once purified, it can be formed into sausage-shaped
lumps called ingots. Ingots are sliced like salami into large, very thin slices
called wafers. Each wafer is later cut into many small, thin, square chips.

The process of creating transistors and wires and connecting them to-
gether on wafers is called fabrication. A wafer presents a two-dimensional sur-
face on which transistors are laid out. Tiny metal wires are added to connect
them together.

The same masking concept used for printing T-shirts and PCBs that
we discussed in the introduction is used, albeit in miniature, to fabricate
application-specific integrated circuit (ASIC) silicon chips. Unlike with PCBs,
the components themselves—transistors—are fabricated along with the wiring.
You design circuit layouts in a CAD program, using a fixed number of dop-
ing chemicals to form the different regions of each transistor, and copper to
form wires connecting the transistors. You then print out one binary image
for each chemical, onto a transparency, to show where its atoms will go onto
the 2D silicon surface. This transparency is used to create a physical mask,
which allows particles to pass through in the desired areas and blocks them
in undesired areas.

You lay your mask on top of a blank wafer of silicon and pour atoms all
over it. The atoms will pass through onto the wafer only in the allowed areas
of your design. You allow this chemical layer to dry, and repeat the whole
process for each chemical to build up the design. Usually the transistors are
laid down first via masks that create the doped regions in the silicon surface
itself. Further masks are used to build up metal wires connecting the transis-
tors above the silicon surface. Figure 4-18 shows a single FET transistor and
its wires formed on a silicon chip.
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Figure 4-18: A single n-p-n FET transistor formed
on a chip, shown as a cross section of the silicon
surface, with chemical layers made in and on
the surface
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Fabrication is difficult and expensive. Rather than just “pouring” atoms
onto the mask, they need more energy to smash their way into the silicon lat-
tice, which may involve a particle accelerator. In addition to, or instead of,
aluminum and phosphorus, many other chemicals are used for doping, such
as germanium, boron, arsenic, gallium, lithium, indium, and the heavy met-
als antimony and bismuth. These other chemicals have similar properties to
aluminum and phosphorus, but they’re easier to work with. Unlike T-shirt
printing, fabrication can also make heavy use of subtractive processes, which
use similar masks to apply chemicals that remove rather than add layers.

Traditional fabrication required the wires to not cross one another; they
had to be laid out in 2D circuits, with the wires going around one another.
This was a major driver for network theory algorithms research to find op-
timal layouts. Modern fabrication allows for limited crossing of wires, such
as via 20 alternating layers of copper and insulators laid down by masks in a
kind of 3D printing, as in Figure 4-19.

Figure 4-19: Some 3D copper wiring laid down
above transistors in silicon

Most systems create FET transistors from a particular selection of chem-
icals, and so the devices are known as MOSFETs (metal-oxide-semiconductor
FETs). They typically use a particular style of masking sequence known as
CMOS (complementary metal-oxide semiconductor). A modern CMOS process
might have around 300 masks applied in a specific sequence of additive
and subtractive layers. In 2018, a fabrication plant cost around $5 billion to
build, and producing one mask set cost around $5 million. You really don’t
want to have any bugs in your circuit design by the time you send it to a fab-
rication plant, or you’ll need to pay another $5 million to redo the mask set.

Moore’s Law
Fabrication technologies have advanced rapidly throughout the transistor
age, roughly doubling the amount of transistors that can be created per unit
area of silicon every two years. As you saw earlier, this empirical observa-
tion is known as Moore’s law, after Intel’s Gordon Moore, who first noticed
it. Early chips had a few thousand MOSFETs, with around 2,250 in the 4-bit
Intel 4004 shown in Figure 4-20, connected into circuits by non-overlapping
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copper wires. Modern chips have billions or even trillions of MOSFETs, con-
nected by overlapping, 3D copper wires.

As transistors got smaller, they also got faster, being clocked at higher
speeds, so until the 64-bit era “Moore’s law for clock speed” was often stated
as a doubling of clock speed every two years.

Figure 4-20: The layout of the 4-bit Intel 4004 processor chip,
photographed with its designer, Federico Faggin

Some thought Moore’s law would last forever in both forms, but as we’ve
seen in our study of directional systems, there are fundamental links be-
tween switching, computation, power consumption, and heat. The faster we
switch transistors on and off, the more heat will be generated, as there is a
relationship between clock frequency f, capacitance C, voltage V, and power
usage P:

P = CV2f

As a result, the two forms of Moore’s law have diverged since the start of
the 64-bit era. This was known as “hitting the power wall,” and it has been a
major driver of recent changes to architecture that you’ll meet in Chapter 15.
The original law, of doubling the density of transistors, has continued to
hold; while there are more transistors needing to be powered, they’re also
smaller, so each one uses less power and the total power use remains simi-
lar. Meanwhile, clock rates flattened out at around 3.5 GHz. You can already
fry an egg on a 3.5 GHz CPU. But if Moore’s law for clock speed had contin-
ued through the 64-bit era, CPU temperature would have reached that of the
surface of the sun by 2010.

Summary
Switches are directional systems used to cause desired computations to hap-
pen. Directional systems must use up organized energy and emit heat. Mod-
ern electronic computers are built from FETs as switches, connected to-
gether by copper wires. The transistors and the wires are fabricated onto
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silicon chips by expensive and complex masking processes. Throughout
the transistor age, Moore’s law has observed a doubling of transistor density
every two years, made possible by advances in fabrication. This continues to
hold, though increases in clock speeds ended in the 64-bit era due to energy
and heat limits.

To make sense of large, complex networks of transistors, architects chunk
them into higher-level structures, beginning with logic gates, which we’ll
study in the next chapter.

Exercises
Poor Man’s AND Gate
Why can’t you use a single transistor as an AND gate? (Hint: Consider the
energy, electrons, and heat going in and out. Also consider the water switch
equivalent as a simpler case.)

Challenging
Try to visit a fabrication plant. Some may have visitor tours, especially if you
ask as an organized group such as a student society. They are not just in Sili-
con Valley; for example, there are several in the UK. For an international list,
see https://en.wikipedia.org/wiki/List_of_semiconductor_fabrication_plants.

Further Reading
• For a beautiful book on the fundamental physics of computation,

see Richard Feynman, The Feynman Lectures on Computation (Boca
Raton: CRC Press, 2018). The book includes detailed but intuitive
discussions of the links between energy, heat, information, and com-
putation. It’s also the original source of the concept of quantum
computing, which relies on these ideas.

• Another beautiful read is Richard Feynman, “Lecture 46 on Rachet
and Pawl,” in The Feynman Lectures on Physics (Boston: Addison–
Wesley, 1964), https://www.feynmanlectures.caltech.edu/I_46.html. This
lecture explores the general physics of directional systems.

• For an animated look at how chips are manufactured, see Intel,
“The Making of a Chip,” YouTube video, 2:41, May 25, 2012, https://
www.youtube.com/watch?v=d9SWNLZvA8g.

• If you’re interested in the analog properties of tubes and transistors,
including their use in audio amplifiers and digital switches, see Paul
Horowitz and Winfield Hill, The Art of Electronics (Cambridge: Cam-
bridge University Press, 1980).
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5
DIG ITAL LOGIC

Switches such as the semiconductor tran-
sistors seen in the previous chapter are the

most basic building block of modern elec-
tronic computation. But architects don’t usu-

ally think in terms of switches. Instead, they build up
a hierarchy of more complex structures from them,
eventually forming a CPU. The next layer of this hi-
erarchy consists of logic gates: devices formed from
a few switches in standard circuits representing basic
Boolean functions, such as AND and OR. Logic gates,
in turn, can be used to build up larger structures such
as simple machines for arithmetic and memory.

In this chapter, we’ll examine some common types of logic gates and
see how they’re constructed from switches. We’ll discuss how universal gates
such as NAND can replace all the others and how Boolean logic can model
and simplify circuits made from logic gates. But first, a little history.



Claude Shannon and Logic Gates
By 1936, complex electronic switching circuits were in heavy use in tele-
phone exchanges. These circuits automated the work previously performed
by human telephone operators, making and breaking connections between
users’ telephone wires to enable their calls. For example, a circuit might cal-
culate functions such as, “If the caller has sent us a sequence of pulses en-
coding number 024 680 2468, and there is an available wire from here to the
exchange managing 024 numbers, then connect the caller to the available
wire and transmit 680 2468 in binary on it until the exchange replies with a
connection code, and start billing them. Otherwise, connect the caller to a
line-busy signal.” These call-routing functions grew in complexity as more
telephones, wires, exchanges, and companies connected to the network.
There was an urgent economic need to reduce their wiring and complexity
if at all possible. Many hacks existed for replacing complex groups of switches
with simpler ones that seemed to have the same function, but how to do this
reliably or optimally wasn’t understood.

As we saw in the last chapter, switching devices use energy, so the energy
of their outputs is less than that of their inputs; this made it difficult to reuse
an output of one switch as an input to the next. For example, an electrical
implementation using 0 V and 5 V to represent binary 0 and 1 as inputs will
produce something like 0 V and 4.9999 V as outputs, because the switching
mechanism loses some of the energy and voltage. If you build a large system
from many switches, these voltage drops will accumulate until the output is
no longer recognizable as representing the binary code.

All this changed in the great computing year of 1936, when Claude
Shannon began his master’s degree at MIT, which produced arguably the
greatest master’s thesis of all time. Shannon’s thesis introduced two innova-
tions to computer architecture that solved the switch simplification problem.

First, it defined a method to organize groups of switches into a new
higher-level abstraction, the logic gate. Logic gates are defined as devices that
take a representation of one or more binary variables as inputs, and produce
one or more binary outputs using the same representation. Simple switches
are not logic gates because they lose energy, so the output representation has
lower energy and is different from the input representation. In contrast, a
logic gate must top up any energy lost from switching so that its output cod-
ing is exactly the same as its input coding. This property enables the output
of one gate to be cleanly used as the input to the next gate, and thus for ar-
bitrarily long sequences of gates to be connected together without having to
worry about noise introduced by the energy loss at each step.

It’s much easier for a circuit designer to think in terms of logic gates
because they no longer have to keep track of the lower-level energy consider-
ations. Shannon showed how to implement logic gates from the switch tech-
nology of his day (electromechanical relays), but they can be implemented
using many technologies, including water switches and modern metal-oxide-
semiconductor field-effect transistors (MOSFETs).

Second, Shannon showed that any computation could be performed by
combining instances of small sets of standard logic gates, such as AND, OR,
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and NOT. He showed how to map these gates and their connections onto
the mathematical logic of George Boole, Boolean algebra, which had been
discovered 100 years earlier, around 1836. Boole’s theory can be used to
find equivalent expressions to complex circuits to simplify them and retain
the same functionality using fewer gates and switches.

NO T E As if this work weren’t enough for one lifetime, Shannon also went on to invent com-
munication theory, an entirely separate and equally brilliant contribution to com-
puter science. Smart guy.

Logic Gates
In modern terms, a logic gate is any device that has some binary inputs
and some binary outputs and doesn’t contain any memory, where the in-
puts and outputs use exactly the same physical representations for two sym-
bols, 0 and 1. A logic gate’s function can be completely and deterministically
described by a truth table, which lists the resulting outputs for each configu-
ration of the inputs. You’ll see some examples soon.

It’s possible to invent infinitely many different logic gates, but the most
common ones today, and those studied by Shannon, are those with only one
or two inputs and only one output. These standard gates include AND, OR,
NOT, XOR, NOR, and NAND gates. Figures 5-1 to 5-6 show these gates and
their truth tables.

XY

X

Y

Figure 5-1: An AND gate and its truth table

X

Y

X + Y

Figure 5-2: An OR gate and its truth table

X X

Figure 5-3: A NOT (inverter) gate and
its truth table
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Figure 5-4: An XOR (exclusive OR) gate and its truth
table
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Figure 5-5: A NOR gate and its truth table
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Figure 5-6: A NAND gate and its truth table

Each gate’s truth table lists every possible combination of inputs in the
left-hand columns, and shows the corresponding output in the rightmost
column. For example, the AND gate’s output is 1 if and only if both of its
inputs X and Y are 1. For any other combination of inputs its output is 0.

The names and functions of these gates are intended to mimic our hu-
man sense of logical combinations, with 1 corresponding to truth and 0 to
falsehood. For example, the AND gate says that X AND Y is true if and only
if X is true and Y is true. An XOR gate, short for “exclusive OR,” requires
exactly one of its two inputs to be true; the output is false if both inputs are
true. This is distinct from regular OR, which is true if either or both of its in-
puts are true. (Students of digital logic have been known to reply “yes” to
questions such as “Would you like beer or wine?”) NOR stands for “neither
X nor Y,” and the output is true only when both inputs are false. NAND can
be read as “not X and Y,” and its truth table is the opposite of AND.

Logic gates can be connected together into networks to represent more
complex expressions. For example, Figure 5-7 represents X OR (Z AND
NOT Y), and will set the output to 1 if X is 1, or if Z is 1 and Y is 0. Note
that “or” here is inclusive.
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Figure 5-7: The logic gates for F(X, Y, Z) = X + YZ

The network of gates in Figure 5-7 may be used, for example, in Shan-
non’s telephone switching application, where it might be a circuit that dis-
connects a call if the receiver hasn’t picked up after 30 seconds (X), or if the
call previously began (Z) and the caller has no remaining credit (Y).

Identifying Universal Gates
In his research, Shannon wanted to identify a set of universal gates, a group
of different types of logic gates that could be reconfigured to build any ma-
chine at the hardware level. He showed that several universal sets exist. For
example, if you have a drawer containing an infinite number of AND and
NOT gates, you can build anything from them. You could also do this with
an infinite number of OR and NOT gates, but you can’t build arbitrary func-
tions from only a drawer of AND and OR gates. Most interestingly, a drawer
containing only NAND gates, or only NOR gates, is universal. For example,
Figure 5-8 shows how to build the standard NOT, AND, and OR gates from
only NANDs. You’ll get a chance to explore this figure more in an exercise
at the end of the chapter.

X X X + Y
Y

X
X + Y

Y

X

Figure 5-8: Building NOT, AND, and OR gates from universal NAND gates

Universal gates are important because they allow us to reduce the num-
ber of types of physical gates we need to manufacture down to just one. This
is what we do in modern integrated circuits (ICs).

Making Logic Gates from Transistors
You might initially think that we could just use a single electrical switch, such
as a transistor, as an AND gate. After all, a switch takes two inputs, its emit-
ter and a base, and turns on one output, the collector, if and only if both
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inputs are on, which is the definition of logical AND. However, we’ve seen
that a switch must convert some of the incoming energy to heat, so the out-
put is not quite in the same form as the inputs and can’t be used directly as
an input to the next logic gate. To keep the output in the same form as the
inputs, we instead combine several switches, while using an external power
source to keep topping up the energy that they lose as heat.

There are many different ways to do this. Shannon’s original designs
were optimized for electromagnetic relay switches rather than transistors.
Modern chips use so-called CMOS (complementary metal-oxide semiconductor)
style, which forms NAND gates from two positive-type and two negative-type
transistors, as shown in Figure 5-9. With NAND as a universal gate, you can
make all the other gates out of these CMOS NAND gates.

Y

X

X NAND Y

Figure 5-9: A NAND gate made from p-type and n-type
transistors

An electrical circuit is a concept that exists at the transistor level, where
electrons flow from the power source to ground, then are pumped back
from ground to power by a power source, creating a closed loop. While it’s
common to informally refer to networks of logic gates as “digital logic cir-
cuits,” this is technically incorrect because at that higher level of abstraction,
the networks don’t usually form closed circuits and instead can have arbi-
trary network topologies. If we were to implement the same networks using
non-electronic implementations of logic gates, there might not be any circuit
even at lower abstraction levels. When we draw diagrams and build systems
made from logic gates, we should therefore more properly call them “digital
logic networks” rather than “digital logic circuits.”
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MAKING LOGIC GATES FROM BILLIARD BALLS

Logic gates don’t have to be made from transistors or even electricity. For ex-
ample, billiard-ball computers are a theoretical invention where computation is
done with balls in a complex geometric maze environment, in which versions of
logic gates such as AND and OR are implemented through geometric structures
and mechanics. The gates are arranged so that, for example, an AND gate
tests for the collisions of two balls and directs one of them to the positive output
only if the collision occurred, as in the following figure.
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XY

XY

Due to the mechanical laws of conservation of energy, the billiard-ball com-
puter models can be used to show that computation needs the same amount of
energy and therefore the same number of bits of information to exit and enter.
This isn’t the case for a normal AND gate, which has two inputs and one out-
put. The model shows that we should add a second “garbage” output for the
exhausted second bit. This has the interesting property that it makes the compu-
tation reversible in the sense that the input could be reconstructed if we know
the output. This allows us to run the machine backward. If that sounds strange,
consider that there are many programming situations where it would be nice to
have a reverse debugger that could undo the effects of recent lines of code.

The billiard-ball computer was intended to enable us to think clearly about the
role of energy usage and heat in computation. This has become a big topic
recently as the rise of portable computers dependent on small batteries has
increased the need to conserve computational energy, and as concerns have
mounted about the environment, fuel resources and costs, carbon emissions,
and heat pollution. A conventional AND gate has two inputs and only one
output, so one billiard ball’s worth of energy is lost as physical heat every time
we do an AND operation. The billiard-ball model suggests that we could build
electric AND gates that don’t waste energy if we were to keep track of a
second output bit from the gate—the same bit needed to make it reversible.
Heat is actually energy that we’ve lost track of, in this case by throwing infor-
mation away. This is why your phone gets hot when doing heavy computation,
and it’s why your processor needs a large fan. The fan is pumping waste infor-
mation in bits out of your computer’s vents. (In this sense, the world running out
of fuel isn’t an energy crisis, but rather an information crisis. Energy can’t be
created or destroyed, but we can lose the information about where the energy
is—information we’d need to make the energy do useful work for us.)
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Putting Logic Gates on Chips
When you first look at a chip through a microscope, or at any computer
built from any kind of logic gates, you won’t be able to point to a single com-
ponent and say, “That’s a logic gate.” What you’ll actually see is a whole load
of transistors, organized into gates. For example, take a look at Figure 5-10,
which shows a microscope photo (“die shot”) of a very simple silicon chip
containing only four CMOS NAND gates, each formed from four transistors
(as you saw in Figure 5-9).

Figure 5-10: A die shot of a simple silicon chip containing four
CMOS NAND gates

Figure 5-11 is a mask set for a single CMOS NAND gate, showing how to
physically lay out the p- and n-doping regions along with the copper wiring.

Modern processors may have billions of transistors grouped into logic
gates. But older-style ICs containing just a few logic gates are still manufac-
tured and are very useful for building your own circuits. The 7400 TTL se-
ries is a famous example of such simple chips. Originally produced by Texas
Instruments in the 1960s, they’re now widely manufactured as generic prod-
ucts. Most chips in this series contain just a handful of logic gates of a sin-
gle type, such as four AND gates, four NAND gates, or four NOR gates, as
shown in Figure 5-12.
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Figure 5-11: A CMOS NAND gate made from transistors and copper wire as a chip
layout
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Figure 5-12: Some 7400 TTL series chips, each containing a few
logic gates
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These diagrams show the physical layouts and pinouts of the chips; to
connect the logic gates you attach physical wires to the appropriate pins.
You can buy bags of these chips for a few dollars on eBay and wire them up
on a breadboard with a 5 V power source and ground, as in Figure 5-13, to
make your own physical digital logic networks.

Figure 5-13: Building a digital logic network (forming
a 4-bit CPU) using the logic gates on TTL 7400 series
chips on a breadboard

You can see from Figure 5-13 that the wiring for digital logic networks
can get quite complicated. Wouldn’t it be nice if we had a way to simplify
networks to use fewer gates and wires, while still performing the same func-
tionality? This is where the next part of Shannon’s innovation comes in:
how to use George Boole’s logic to perform such simplifications.

Boolean Logic
Logic allows us to formalize statements and inferences about truth and false-
hood. It was developed by the ancient Greeks and remained largely un-
changed until George Boole’s work around 1836. Boole’s work was picked
up by Shannon in 1936, who realized that it could be used to model, sim-
plify, and verify circuits built from his logic gates.

Boolean logic uses variable names to represent conceptual statements
whose values are either true or false. It then provides connective symbols
for AND, OR, and NOT, and rules that give truth values to expressions built
from variables and these connectives.

Consider the following example. We have two variables: X represents
the statement “God exists” and Y represents “snow is white.” We can then
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represent “God exists and snow is white” with X AND Y. Or we can rep-
resent “Either God doesn’t exist and snow is white, or God does exist and
snow is white” with (NOT X AND Y) OR (X AND Y).

Now let’s see how to work with these statements.

Logic as Arithmetic
Boole discovered a structural similarity between logic and arithmetic. Pre-
viously, these had been two entirely different fields of study. Logic was an
“arts subject” performed using natural language text and by studying rules
to analyze arguments. Arithmetic was a “STEM subject” made of numbers
and equations. As mathematicians had managed to unify geometry and alge-
bra, so Boole managed to unify logic and arithmetic.

He did this by noticing that truth, represented by the symbol T, behaves
like the number 1, and falsehood, represented by the symbol F, behaves like
the number 0, if we replace AND with multiplication, OR with addition, and
NOT with inversion about 1.

As we write x + y for addition and xy for multiplication in arithmetic,
we can thus use these same notations for OR and AND. When using this
notation, it’s common to also write x̄ for NOT x, which corresponds to the
arithmetic operation (1 – x).

The similarity isn’t quite perfect, because 1 + 1 = 2 in arithmetic but
we need 1 + 1 = 1 in logic. Boole worked around this by choosing to work
in a number system with only two numbers, 0 and 1, and by defining 1 plus
anything to equal 1 within this system.

Using Boole’s system, logical arguments can be converted into simple
arithmetic. The advantage of doing this is that we know a lot about arith-
metic already, in particular how to use laws such as associativity, commutativ-
ity, and others listed in Table 5-1 to simplify expressions.

Table 5-1: Useful Arithmetic Theorems for Simplifying Boolean Logic
Name AND form OR form
Identity law 1A = A 0 + A = A
Null law 0A = 0 1 + A = 1
Idempotent law AA = A A + A = A

Inverse law AA = 0 A + A = 1
Commutative law AB = BA A + B = B + A
Associative law (AB)C = A(BC) (A + B) + C = A + (B + C)
Distributive law A + BC = (A + B)(A + C) A(B + C) = AB + AC
Absorption law A(A + B) = A A + AB = A

De Morgan’s law AB = A + B (A + B) = AB

For example, say we want to calculate the truth value of:

(F AND (T OR F)) OR ((F OR NOT T) AND T)
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We can do it by converting the logic to arithmetic, then using standard arith-
metic rules to simplify the expression:

(0(1) + 0(0)) + ((0)1 + (1 – 1)1)
= (0 + 0) + (0 + (0)1)
= (0) + (0 + 0)
= 0 + 0
= 0

Finally, we convert the resulting number, 0, back to the logical value false.
This also works using variables rather than particular values; for exam-

ple, the previous statement about God and snow can be written and then
manipulated arithmetically as:

((1 – x)y) + (xy)
= (y – xy) + (xy)
= y – xy + xy
= y

This can then be converted from the arithmetical number y back to the log-
ical value Y. This shows that the truth of the statement is actually indepen-
dent of the existence of God (X) and depends only on whether snow is white
(Y ). So assuming that snow is indeed white, the statement is true.

NO T E The ability to move back and forth between logical truth values and integer 0s and
1s is now often used (or arguably misused) in languages such as C that play fast and
loose with these types.

Model Checking vs. Proof
We often want to know whether two Boolean expressions are equal. There
are two main ways to go about determining this.

The first is called model checking. Given a potential equality, we simply
compute truth tables for both the left side and the right side of the poten-
tial equation. If the truth tables match completely, then the expressions are
equal. As an example, let’s check that the AND form of the distributive law
from Table 5-1 always holds. First, we calculate and compute the table for
the left side of the equality, A + BC. We begin with three columns for our
variables: A, B, and C. We then add a column for our intermediate term, BC,
and use this to compute the value of the whole expression in the rightmost
column, as in Table 5-2.
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Table 5-2: The Truth Table
for A + BC
A B C BC A + BC
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 1 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Next, we do the same for the right side of the equality, (A + B)(A +C), in
Table 5-3.

Table 5-3: The Truth Table for (A + B)(A + C)
A B C (A + B) (A + C ) (A + B)(A + C )
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 1 1 1
1 0 0 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 1 1 1

Finally, we compare the tables. Here we can see that for every possible
assignment of values to the variables, the resulting value is the same in both
tables. Therefore, by model checking, the left side equals the right side.

Model checking makes use of the values of the terms. If an equality has
been shown by model checking, we say that it has been entailed, and that it is
true, and we write ⊧ A + BC = (A + B)(A + C).

The second way to show equalities is by proof. If some equalities have
already been established, such as the laws of Table 5-1, we can make use of
their results symbolically without having to grind through the truth tables of
everything. A proof is a list of transformations from the first to the second
expression, where each transformation is justified by stating which law has
been applied. If an equality has been shown by proof, we say it is proved and
write ⊢ A + BC = (A + B)(A + C).

For example, here’s one way to prove that A + BC = (A + B)(A + C):

A + BC = (1A) + (BC) : by AND identity law

= (A(1 + B)) + (BC) : by OR null law

= (A1) + (AB) + (BC) : by OR distributive law

= (A(1 + C)) + (AB) + (BC) : by OR null law

= (A(A + C)) + B(A + C) : by OR distributive law

= (A + C)(A + B) : by OR distributive law
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NO T E For Boolean logic it can be shown that any equality established through model check-
ing can also be proved, and vice versa, so you can use either method according to
taste. It may seem obvious that model checking and proof give the same answers in
Boolean logic, but this isn’t always the case for other logics, as found later by Gödel.

The ability to check whether two expressions are equal isn’t purely
academic. Shannon recognized its value in simplifying his digital logic
networks.

GEORGE BOOLE

George Boole published his books The Mathematical Analysis of Logic (1847)
and The Laws of Thought (1854) a few years after Babbage’s Engines. Boole
grew up and formed his ideas in Lincoln, England. Unlike most historical aca-
demic heroes from rich families able to buy their way into Cambridge—such as
Babbage and Turing—Boole came from an ordinary, poor family. His father
was a shoemaker. Boole had no formal education, going instead to the public
library and reading books to teach himself, like you can do today.

Boole created many new ideas outside the academic system, without that
system’s constraints on his thinking. In particular, no one told him that arts and
sciences were supposed to be kept separate, so he would physically wander
between both sections of the library, making comparisons between them. While
his name is strongly associated with Boolean logic and the boolean or bool
data types in modern programming languages, he also worked on probabilistic
and other forms of reasoning, and was motivated by trying to understand and
model human intelligence, as in modern AI and cognitive science. His real
motivation for studying logic and other forms of reasoning was to formalize,
analyze, and check the many arguments from classical philosophy, especially
concerning the existence of God. He wanted to find out if these arguments
were valid, breaking them down into their parts and testing each step so he
could find out which of their conclusions were true and what to believe.

For example, here’s part of Boole’s logic for the existence of God (from The
Laws of Thought, Chapter 13):

Let x = Something has always existed.
y = There has existed some one unchangeable and
independent being.
z = There has existed a succession of changeable and
dependent beings.
p = That series has had a cause from without.
q = That series has had a cause from within.
Then we have the following system of equations, viz.:
1st. x = 1;
2nd. x = v{y(1 – z) + z(1 – y)};
3rd. z = v{p(1 – q) + (1 – p)q};
4th. p = 0;
5th. q = 0:
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Boole’s short life—the founder of modern logic was killed by his homeopathic
wife’s theory of wrapping him in ice-cold blankets to cure pneumonia—was a
subset of Babbage’s, so they would likely have read each other’s work. Boole
wasn’t interested in computer science, however. His ultimate interests were phil-
osophical, and his work understanding and modeling intelligence was primarily
intended as a contribution to the philosophical method. Still, he would have
been aware that creating such formalisms would also enable them to be mech-
anized as AI, as discussed by Lovelace. It’s a great shame the two never got
together to develop this idea.

Simplifying Logic Circuits Using Boolean Logic
Shannon discarded Boole’s conceptual interpretations of the variables, and
instead showed that Boole’s algebra could be used to simplify physical digital
logic networks composed of logic gates. Simplification can include reduc-
ing both the number of gates and also the number of types of gates, such as
reduction to all NAND gates.

This is done by translating a logic gate network into a Boolean expres-
sion, simplifying the expression using the laws of arithmetic, then translat-
ing the result back into a smaller logic gate network. Simplifying networks
is useful because it reduces the number of transistors needed, which in turn
reduces manufacturing costs and energy usage. Nowadays, CAD software
is available that performs simplifications automatically: you input your dig-
ital logic network, click an icon, and get back a smaller and more efficient
version.

For example, suppose we’ve designed the digital logic network on the
left-hand side of Figure 5-14. Using Boole’s theory this can be converted to
an arithmetic expression and simplified to obtain (A + B)(A + C) = A + BC.
This corresponds to the smaller network on the right side of Figure 5-14.

C

A

B

C

A

B

Figure 5-14: A logic network for (A + B)(A + C) (left) and reduced A + BC form (right)

We can use Boolean logic to further simplify the logic network to use
only universal NAND gates, then reduce the number of NAND gates, as in
Figure 5-15.
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Figure 5-15: The Boolean logic converting A + BC to NAND gates (left) and then
reducing them (right)

This allows us to convert any network into one that can be built more
easily, using just one type of gate and as few of them as possible.

Laying Out Digital Logic
Once you’ve designed and simplified a digital logic network, you’ll usually
want to transfer it to real hardware. There are several ways to do this, which
we’ll examine here.

7400 Chips
One way to implement a simple logic network has remained unchanged
since the 1960s: lay it out across a bunch of 7400 chips and connect them
together with a rat’s nest of wires.

As you saw earlier, each 7400 series chip contains a number of gates,
usually all of the same type. Unfortunately, a single chip doesn’t usually cor-
respond to any particular topological region of your circuit. You need to
consider each gate in your circuit and choose a specific gate on a specific
chip to instantiate it. You can choose what goes where completely arbitrarily
and your circuit will still work, but if you apply a bit of cleverness to the lay-
out you’ll be able to considerably reduce the length of wire needed to con-
nect it.

For example, suppose you want to build the network shown on the up-
per left of Figure 5-16 and you have two TTL chips available in your electron-
ics drawer: one containing four XORs and one containing four NANDs. The
upper right of Figure 5-16 shows the result of using Boolean logic to convert
the network to use the available gates, and the lower part of the figure shows
one possible way to lay this out across the two TTL chips.

You can buy the TTL chips, plus a breadboard, switches, LEDs, 9 V bat-
tery, and resistors to drop the battery down to the 5 V used by the TTL chips
(plus a resistor for each LED to prevent them exploding), and wire them up
as in Figure 5-17 to implement your design.
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Figure 5-16: A plan for converting a network to NANDs
and laying it out using TTL chips

It’s possible to build a whole CPU from TTL chips in this way, and in-
deed this is how many early CPUs were built.

Figure 5-17: The TTL plan laid out on a breadboard (using Fritzing)

NO T E The “bit of cleverness” required to optimize the wiring will very quickly grow in size
as you try to do it for larger circuits. Similar cleverness is needed to optimize the
physical layouts for the other hardware methods we’ll discuss next. Designing algo-
rithms to do this automatically and at scale is a major area of computer science and
is heavily used, researched, and developed by chip companies.

Photolithography
The ASIC process described in Chapter 4 is the most heavyweight method
for implementing digital logic networks, costing $5 million to make a mask
set. Here, masks are prepared containing the transistor layouts needed to
form the logic gates. This process gives the smallest, fastest hardware, but
it’s economical only at large scales to justify the setup costs.
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Programmable Logic Arrays
A programmable logic array (PLA) is a chip with many inputs and many
outputs, made with photolithography, such that every input and every in-
put’s negation are connected to a series of AND and OR gates by fuses.
Figure 5-18 shows a small example of a PLA structure. The plane in the
figure is stacked multiple times, with each layer sharing the same AND
and OR gates. The circles are fuses.

Input

OR plane

AND plane

Output

Figure 5-18: A PLA schematic showing the inter-
connectivity of inputs and outputs

Beginning with this structure, you can make any Boolean logic function
by blowing out some subset of the fuses to effectively remove those wires. If
you have a big enough PLA, you can take any digital logic design, perform
some Boolean logic transformations to get it into the best form, then “burn”
it into the PLA by blowing the fuses. This is nice because instead of having
to custom-design your chip and spend $5 million on making a set of pho-
tolithography masks, only one set of masks is ever needed—the one to make
the generic PLAs. You can then buy generic PLAs from a mass-producer
and turn them into your own chips.
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Field Programmable Gate Arrays
A field programmable gate array (FPGA) is similar to a PLA, but you can re-
write it whenever you like with new digital logic rather than only being able
to burn it once. This is because rather than physically blowing fuses, FPGAs
operate by electronically switching on and off connections between blocks of
standard logic. Each of these blocks can be configured to act as some small
simple machine. Figure 5-19 shows an example of this design.

I/O cells

Interconnect resources

Logic blocks

Figure 5-19: The structure of an FPGA
chip, made from configurable blocks
and connections between them

Boolean logic is again used to transform any initial digital logic design
into a collection of such simple machines and connections between them.
This is almost a software approach, with a list of the connections to enable
and disable sent to some firmware memory on the FPGA board, then used
to make the electronic configurations.

FPGAs are often sold on a development board with extra hardware
around the FPGA chip to help connect it to a PC and program it. You can
buy cheap, maker-friendly consumer FPGA boards starting at around $30.
There are two main manufacturers of FPGAs: Xilinx and Altera (the former
is now part of AMD; the latter is now part of Intel). Alternatively, FPGAs
intended for use in production can be obtained without any supporting
structure, in which case an external programmer machine is needed. FPGAs
come in a variety of sizes; the larger of these chips are used for prototyp-
ing CPU designs before more expensive ASIC photolithography, while the
smaller ones are intended for embedded systems.

Figure 5-20 shows a typical example layout of some digital logic on a
physical FPGA surface, and the development board used to place it there.
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Figure 5-20: A display of the logic configuration inside an FPGA (left) and an FPGA (the large,
central chip) on its development board (right)

When humans lay out digital logic manually, they tend to organize it
spatially so that different regions correspond to different structures. Auto-
mated layouts, as seen inside the FPGA, tend to be visually unstructured and
thus hard or impossible for humans to understand.

Summary
Logic gates are abstractions: they’re one way to organize small groups of
switches, such as transistors, into functional units. Human designers like to
think at this level rather than at the level of switches, so they design circuits
using logic gates. Each logic gate is then “compiled” into small groups of
switches. (A few professional chip designers really can “see” the logic gates
on the silicon. They get so used to looking at the standard patterns of tran-
sistors created by the gates that these patterns jump out in their perception.
But for the rest of us, we see only the transistors.)

Unlike simple switches, logic gates have the key property that their
output preserves the same representation as their input. For example,
transistor-based logic gates don’t produce lower voltages on their outputs
than they receive as input. This means they can be combined into complex
logic networks.

Claude Shannon showed us that we can use George Boole’s algebra to
simplify circuits of logic gates, often reducing the number of gates needed,
and replacing all other types of gates with only NAND gates. This reduces
the number of transistors that we need to fit onto silicon and simplifies the
design.
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Exercises
Universal Gates
Work out the truth tables for each of the NAND gate–based circuits in
Figure 5-8, or otherwise convince yourself that they are equivalent to the
standard NOT, AND, and OR gates.

Setting up LogiSim Evolution
LogiSim Evolution is a graphical digital logic simulator. It was used to create
the digital logic circuit figures in this book. It can simulate circuits that you
design, and later also transfer them onto real chips.

1. Install and run LogiSim Evolution from https://github.com/logisim
-evolution/logisim-evolution.

2. Create a project and play around to create some gates and wires con-
necting them. Components are connected by clicking the output of
one and then the input of another. Activate a component or wire
by clicking it. Delete components with the DEL key and the latest
wire with ESC. Press the Simulation button to run the simulation.
Voltages on the wires are shown as black for 0 and red for 1. Some
components can be right-clicked to edit their properties.

3. Use constant inputs and LED outputs to build and test the circuits
in Figure 5-14.

Simplifying Circuits
1. In LogiSim, use only NAND gates to build each of the other gate

types.

2. Use model checking or proof to show why the circuits in the section
“Simplifying Logic Circuits Using Boolean Logic” are all equivalent.
How would you find the forms on the right of the figures from
those on the left? Is there an algorithm guaranteed to give the mini-
mal NAND form?

3. Calculate the truth table for a Boolean function such as W(YZ̄ + X̄Y)
and check it by building and simulating an equivalent circuit in
LogiSim.

4. Use Boolean identities to simplify the function from the previous
problem, and build a new LogiSim circuit of the simplified version.
Simulate it to check that the truth table remains the same.
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Further Reading
• To learn about Boole’s logic (and theology) straight from the source,

see George Boole, The Laws of Thought (1854), https://www.gutenberg
.org/ebooks/15114.

• For arguably the greatest master’s thesis of all time, see Claude
Shannon, “A Symbolic Analysis of Relay and Switching Circuits”
(master’s thesis, MIT, 1940), https://dspace.mit.edu/handle/1721.1/
11173#files-area.
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6
S IMPLE MACHINES

In mechanical engineering, simple machines
are a well-known set of standard designs

including levers, axles, screws, and pulleys
that each perform one function and can be put

together to make larger machines. Analogously, com-
putational simple machines are standard designs that
are often used as subcomponents of computers. For
example, the arithmetic logic unit in a modern CPU—
exactly as in Babbage’s Analytical Engine—is made of
many such simple machines that each perform one
kind of arithmetic, such as addition, multiplication, or
shifting.

This chapter introduces a range of simple machines as the next archi-
tecture level above logic gates. Then, in the next chapter, we’ll make use
of these simple machines as components of a CPU. The simple machines
we’ll discuss come in two main groups: combinatorial machines, which can be
written as Boolean expressions, and sequential machines, which require feed-
back and sequential logic, extending Boolean logic with a temporal element.
Feedback and sequential logic are needed to create memory.



Combinatorial Logic
Combinatorial logic refers to those digital logic networks that can be de-
scribed by regular Boolean logic, without considering the role of time. In
this section, we’ll see examples of several combinatorial simple machines,
which we’ll later rely on as we build up CPU structures.

Bitwise Logical Operations
The individual logic gates of the previous chapter act on single bits of data:
they usually take one or two single-bit inputs and yield a single-bit output.
It’s simple to arrange multiple copies of a single gate, in parallel, thus cre-
ating an array operator, a simple machine that simultaneously performs the
same operation on each bit of an input array to give an output array, as in
Figure 6-1.

x 0 1 0 1 0 1 1 1

out 1 0 1 0 1 0 0 0

x 0 1 0 1 0 1 1 1

y 1 1 0 0 1 0 1 0

0 1 0 0 0 0 1 0out

x 0 1 0 1 0 1 1 1

y 1 1 0 0 1 0 1 0

1 1 0 1 1 1 1 1out

x 0 1 0 1 0 1 1 1

y 1 1 0 0 1 0 1 0

1 0 0 1 1 1 0 1out

NOT:

AND:

OR:

XOR:

Figure 6-1: Some bitwise
logical operations

Here, the input arrays x and y (or just x in the case of the NOT opera-
tion) pass through an array of identical gates, producing z as the output.
These array operations are well known to low-level C programmers, as the
C language includes them and assigns symbols to them. C compilers will
ultimately execute these instructions using exactly this simple machine, if
it’s present in the target CPU.

Multi-input Logical Operations
We can create multi-input versions of AND gates from hierarchies of their
two-input versions, as in the eight-input AND gate shown in Figure 6-2.
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Figure 6-2: An eight-input AND gate made from
two-input AND gates (left) and its symbol (right)

This structure will output 1 if and only if all of its inputs are 1. The same
structure works to create multi-input OR gates, which will output 1 if one or
more of its inputs are 1.

Shifters
In base 10, there’s a fast trick for multiplying integers by 10: just append a
zero to the end. We can also multiply by a higher natural power of 10, 10n,
by appending n zeros. Rather than thinking of it as appending a zero, think
of it as shifting each digit one place to the left. Then the trick also works
for multiplying non-integer numbers by powers of 10. We can similarly do
easy and fast divides by powers of 10 by shifting the digits to the right. These
tricks remove the need for the usual slower work of human pen-and-paper
multiplication involving repeated single-digital multiplications, additions,
and carries.

The same tricks work in binary for fast multiplication and division by in-
teger powers of 2. To multiply or divide a number by 2n, shift the number’s
bits n places to the left or right.

Figure 6-3 shows a simple machine that, when enabled, performs a left
shift, thereby multiplying an input number by 2. The machine is enabled
by setting the S (shift) input switch to true. If the S input isn’t enabled, the
machine outputs the original input unchanged.

X
3

X
2

S

X
1

X
0

Figure 6-3: A left-shifter made from logic gates
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The shifter design is based on a sub-machine consisting of two ANDs,
one NOT, and one OR. Each column (digit) of the number has a copy of
this sub-machine, which either allows the column’s own bit to pass through
unchanged, or takes the bit from the column to its right.

When you do multiplication by powers of two with an operation like
x>>2 using a high-level language like C, your CPU may contain a dedicated
shifter that gets activated rather than its usual multiplication digital logic.
This makes the multiplication operation go faster than one that isn’t by a
power of two. This is an example of how knowing architecture enables you
to write fast programs. You’ll often see speed-critical code designed to ex-
ploit this trick, such as games and media codecs enforcing values to be pow-
ers of two.

NO T E Shifting by more than one place can be done in several ways. You could reuse the
same shifter network several times, which would save on transistors but take longer
to run. Or you could use more transistors to implement many different switches that
request different kinds of shift, and implement them immediately. Deciding whether
to trade off transistors for speed in this way is a common architectural dilemma.

Decoders and Encoders
Suppose you have a positive integer x represented as an M-bit binary num-
ber. Computers often need to convert this binary representation into an
alternative 1-of-N representation, which has N = 2M bits, all 0 except for a 1
in the xth bit. For example, an M = 3 bit input such as 101 (coding the num-
ber 510) would be converted to 00000100, which has 23 = 8 bits with only the
fifth one high (counting the bits from left to right, starting from 0). A sim-
ple machine called a decoder can perform this conversion. Figure 6-4 shows a
digital logic circuit for a 3-bit decoder.
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Figure 6-4: A 3-bit decoder

Each input is first copied and inverted. Then a set of AND gates are con-
nected to either the uninverted or inverted versions of each input bit in con-
nection patterns that model the patterns of binary number codings.

An encoder performs the inverse operation: it takes a 1-of-N representa-
tion as an input and transforms it into a binary number encoding.
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Multiplexers and Demultiplexers
We’ve seen that the Analytical Engine consisted of many subcomponents
that were dynamically connected and disconnected as needed to perform
computations. Making and breaking these connections in the Analytical
Engine was done mechanically. For example, when we wanted to do some
adding, the mechanisms physically brought the gears into contact between
a register and the arithmetic logic unit (ALU). Or when we loaded data
from RAM, a mechanism physically connected the desired RAM location
to the bus. The digital logic version of this idea is multiplexing and demulti-
plexing.

A multiplexer enables us to select which one of multiple possible sources
we wish to connect to a single output. For example, we might have eight reg-
isters and want to select one of them to connect to an ALU input. Figure 6-5
shows an eight-source multiplexer. It consists of a decoder together with
eight data inputs, D0 through D7, and additional AND and OR gates.
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Figure 6-5: A multiplexer

If we wish to connect a particular source, such as D3, to the output wire,
we place its code, 0112 for 310, onto the decoder inputs C0 to C2. The de-
coder sets the third line only to true, which is AND gated together with D3
as a switch. The OR gates then copy D3 onto the output wire, as all their
other inputs are false.

A demultiplexer performs the opposite function to a multiplexer. It takes
a single input wire and a code n, and sends a copy of the input signal to the
nth of multiple output wires.

Multiplexers and demultiplexers are often used together, so we can
choose which one of several possible sources to connect to which one of sev-
eral possible destinations. In these cases, the shared wire is known as a bus.
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Adders
You saw in Chapter 2 how to represent integers in binary. We can construct
simple machines that use this representation to perform arithmetic opera-
tions, such as adders for performing addition.

Here’s an example of adding two binary numbers, 001100 and 011010:

0 0 1 1 0 0
+ 0 1 1 0 1 0

1 0 0 1 1 0
1 1

You can perform this addition by hand using the same algorithm as
taught to children for decimal addition: starting from the rightmost col-
umn, compute the column sum by adding the digits from the input numbers
for that column, writing the result underneath as the output sum for that
column. If this creates a carry, for example from 1 + 1 = 10, write the lower-
power column of the result (the 0 of 10) as the sum and carry the higher-
power column of the result (the 1 of 10) to the next column, where it needs
to be added as a third input. In the example, the first three columns (count-
ing from the right) don’t produce carries, but the fourth and fifth columns
do. (The carries are shown below the final sum.)

If you look back at the truth tables for AND and XOR in Figures 5-1
and 5-4 and compare them to the work done during binary addition, you’ll
see that as long as there’s no input carry (as is the case for the first four
columns in the example), the results of XOR are identical to column-wise
addition, while the results of AND are identical to the carry operation. We
could thus use one XOR and one AND to form the simple machine known
as a half adder, shown in Figure 6-6, to compute the sums for columns when
there’s no carry coming in.

C

S

Y

X

Figure 6-6: A half adder

By itself, the half adder isn’t very useful, as we don’t usually know if an
input carry will also be present. However, if we combine two half adders to-
gether with an OR gate, as in Figure 6-7, we obtain a more useful network
called a full adder.
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Figure 6-7: A full adder made from two half adders and an OR gate

The truth table for a full adder is shown in Table 6-1.

Table 6-1: Full Adder Truth Table
X Y Cin Sum Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

The full adder performs two single-bit additions in a row, the first for
the main inputs (X and Y) and the second for the sum of the main inputs
plus the incoming carry (Cin). The net result is a single-column sum, as
shown here:

Cin
+ X
+ Y

Cout S

This is the full process needed to correctly find the binary digit sum for
each column of binary addition. As well as adding the two binary digits from
that column of the two input numbers, it also adds an incoming carried digit
whenever it’s present. The full adder’s two outputs are the sum for the col-
umn (S) and the carry out for the column (Cout).
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The full adder network is often represented by the single symbol shown
in Figure 6-8.

X

Y

C
in

C
out

S

Figure 6-8: The adder symbol

A full adder performs addition of a single column, but to actually add
integers together we need to add many columns. One way to do this is to
create one full adder for each column and connect the carry out from each
column to the carry in of the next. This is known as a ripple-carry adder.
Figure 6-9 shows a 3-bit example that calculates Z = X + Y.

Y
1

Y
0

Y
2

Overflow

0

Z
0

Z
1

Z
2

X
0

X
2

X
1

Figure 6-9: A ripple-carry adder computing
the 3 bits of Z = X + Y

The subscripts say which power of 2 the column represents; for exam-
ple, here X0 is ones (as 20 = 1), X1 is twos (as 21 = 2), and X2 is fours (as
22 = 4). There’s an additional output from the final carry to indicate if an
overflow has occurred. In some cases this would be interpreted as an error.
In others it might be connected to further systems that together are able to
handle larger numbers.

The adder symbol of Figure 6-8 can also be used to denote a multi-
bit adder such as a ripple-carry adder, where the input and output lines
are assumed to denote groups of wires rather than single wires.
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RIPPLE-CARRY VS. CARRY-SAVE ADDERS

When you’re taught to do addition at school, you’re taught a serial adding
algorithm, starting at the right side and moving across, with carry digits moving
to the next step. The ripple-carry adder is a straight base 2 translation of this
idea into digital logic.

Think about the efficiency of this process; assuming that both of the inputs are n
digits long, we see that this method of addition will scale linearly with n as the
length of digits increases the addition runs in roughly O(n) time.

But addition doesn’t have to be done or taught like this. Imagine that instead of
teaching kids to add numbers together individually, they’re taught to work from
the start as a team, each performing a smaller part of the addition. How would
you get the numbers added together as quickly as possible in parallel? You’d
probably give each kid one pair of column digits from the addition, have them
each do their addition at the same time, then have them send their carry along
to the person on their left. Then they each take the carry from their right and
add it into their result to update it if needed, and sometimes update their carry
output and pass it again to their left, until everyone is happy. This is called a
carry-save adder.

Estimating the number of carry steps that need to be done in this kind of parallel
addition is quite a challenge. Naively, around one-quarter of initial additions
will produce a carry. But then you need to think about the probability of a
second or third subsequent carry step as you later receive incoming carries.

To do this properly as a probabilistic estimate, you should take into account the
distribution of digits involved in the addition. Most natural quantities have a
lower probability of higher-value digits (5+ in decimal; 1 in binary) than low-
value digits (up to 4 in decimal; 0 in binary). This is found both in physical and
pure mathematics quantities (for example, digits of Planck’s constant, π, and e),
though the reason why is quite complex.

Carry-save adders can do addition in O(log n) time. They’re still doing the
same O(n) amount of total work as the ripple-carry adder, but performing more
of the work in parallel, using more silicon. More silicon consumes more space
and money, but in this case delivers faster performance. Again, trading silicon
for time is a common architectural dilemma.

Carry-save adders are found in modern ALUs. They aren’t a new idea and in
fact were featured in one of the Analytical Engine designs. This is one of the
main reasons the machine was never built: Babbage kept going back to im-
prove the efficiency of the carry mechanism, to the point of obsession. Had he
stuck to one design, it may have been completed.

Negators and Subtractors
If we use two’s complement data representation for integers, then negating
a number (that is, multiplying it by –1) can be performed by flipping its bits
and then adding 1 to the result. A machine that performs this operation is
called a negator. Figure 6-10 shows a 3-bit negator.
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x3

1 2 3

Figure 6-10: A 3-bit negator

The thick wires in this figure are standard notation for bundles of mul-
tiple individual wires, in this case bundles of three wires. (Another common
notation for bundles is to draw a diagonal slash through and write the num-
ber of wires next to it.) The switches in the bottom-left specify the input
number, with the least significant bit first. The number 1 to add is encoded
by power and ground inputs, again with the least significant bit first. The
adder symbol here indicates not just a full adder but a 3-bit adder, such as a
ripple-carry adder.

Figure 6-11: The
subtractor symbol

Once we have a negator, we can make a sub-
tractor, a machine that subtracts one number from
another. Single- and multi-bit subtractors are indi-
cated with the symbol in Figure 6-11.

We could make a two’s complement subtractor
to calculate c = a – b by passing b through a negator
and then using an adder to add the result to a.

From Combinatorial to Sequential Logic
The combinatorial circuits we’ve seen so far may be viewed as computing
instantly. Each circuit corresponds exactly to a Boolean logic expression,
which has a definite, mathematical truth value that corresponds to the out-
put of the circuit. This output depends only on the input values, and the
input-output pairs can be listed in a truth table.

We’ve seen that Shannon’s combinatorial logic circuits can be used to
build many simple machines, like multiplexers and adders. Shannon pro-
posed his logic gate theory in 1936, the same year as Church’s and Turing’s
definitions of computation, and you might want to view Shannon’s logic
gates as an additional competing model of computation from this year, if
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you’re happy for a “program” to be a set of instructions for how to physi-
cally connect a bunch of logic gates, in a similar manner to programming
the pre–virtual machine ENIAC.

However, Church computers need to be able to simulate any other ma-
chine (given enough memory), and we know that some other machines have
memory for data storage. There’s no concept of memory in combinatorial
logic circuits because memory means storage over time, and there’s no con-
cept of time because these circuits can be viewed as acting instantly. Church
computers need to have time and memory and be able to compute outputs
that are functions not only of their current input but also of their state as
derived from previous inputs.

We can extend Shannon’s logic gates with these additional concepts if
we allow logic gate networks whose outputs are fed back into their inputs.
Such networks weren’t allowed in Shannon’s original combinatorial logic, as
they would have resulted in paradoxical Boolean expressions. For example,
the circuit in Figure 6-12 appears to instantiate the Boolean statement X =
NOT X. This Boolean statement says that if X is true, then X is false, but if X
is false then X is true. What do you think this circuit would do in practice if
you connected it? Perhaps it would oscillate or explode?

Figure 6-12: A
paradoxical circuit

In computer science, feedback is often thought
of as evil or paradoxical, something to be avoided:
many of the theorems in logic and computability
theory are about how to destroy programs, proofs,
and machines by feeding their output or descrip-
tions of themselves into their inputs. But feedback
is a big idea in computer science in general, and
learning to control it and use it for good has been a major part of our suc-
cess and our culture. Creating memory is one such positive and controlled
use of feedback.

Let’s illustrate this idea using the example of a guitarist. Guitarists have
a more practical worry about feedback, as their guitar strings can vibrate in
sympathy with the sounds coming from their amplifiers. These vibrations,
in turn, are amplified, and so on, leading to a terrible (or beautiful, depend-
ing on your musical point of view) single-frequency screeching sound. Con-
sider exactly when this happens. It’s possible to put the same guitar in ex-
actly the same place in front of the amp, and yet have the system remain
completely silent if there’s no initial sound. The feedback emerges only
if there’s some sound—even a small one—to make it begin. We could thus
use this guitar-amp system to store 1 bit of information. We bring the gui-
tar next to the amp very carefully so no sound is made and the system stays
silent, representing a 0. If we later want to store a 1, we stroke the strings to
begin the feedback, which continues forever, representing the 1. To change
it back to 0, we could turn the amp off and on again.

The circuit in Figure 6-13 is an attempt to make a digital logic version
of the same idea. If we try to map it to Boolean logic, it seems less paradox-
ical than the circuit from Figure 6-12, appearing to instantiate the Boolean
statement Q = G OR Q. (G is for guitar, and Q is a traditional symbol for
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quiescence, or system state.) You can just about convince yourself that this is
stable for G = Q = 0 or for G = Q = 1.

QG

Figure 6-13: A guitar-like
feedback circuit

However, this still doesn’t give us the concepts of time or memory, be-
cause Boolean logic is inherently static. To fully capture these concepts, we
need to go beyond Boolean logic and Shannon gates, and consider a new
type of logic gate having different states at different times. We need to dis-
tinguish states at times using sequential logic, such as writing Qt ≠Qt-1 for
states at time t and just before time t. This would be foreign to Boole and
Shannon, and indeed it’s an extension of their theories. It can be used to
give meaning to digital logic circuits that their theories can’t handle, such
as mapping Figure 6-12 to Xt = NOT Xt-1 and Figure 6-13 to Qt = G OR Qt-1.
The latter is now an exact analog of the guitar feedback memory, with Q
able to sustain a value of 1 copied from G even if G is later lowered to 0.

This still isn’t a very useful memory, because once Q has been set high
there’s no way to reset it to low again. We need to add the equivalent of the
amplifier power switch, A, as in Figure 6-14.

QA

G

Figure 6-14: A guitar-and-amp-like feedback
circuit

The SR flip-flop of Figure 6-15 is a variation on this idea made from two
NAND gates, the most common universal gate.

Q

Q´

R

S

Figure 6-15: An SR flip-flop
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S and R stand for set and reset. When S is high, it sets the output Q to 1.
When R is high, it resets the output Q to 0. (This also has the advantage of
making NOT Q available on the Q′ output as a free by-product, which is
sometimes useful.)

Clocked Logic
Sequential logic behavior can be unpredictable if we don’t have a clearly de-
fined, discrete signal telling us when t has changed to t + 1. This can be done
with a clock signal, traditionally called clk, that steadily oscillates between 0
and 1, as discussed in Chapter 4.

By tradition, the instant of the rising edge of clk is used as the instant
that t increases by one; this is called a tick. We then design the temporal
parts of our circuits to update their state at each tick. Copies of clk can be
wired into many points across the system to make them all update simultane-
ously on each tick.

As with the combinatorial logic section, we’ll now walk through a series
of clocked logic machines.

Clocked Flip-Flops
Most sequential simple machines can be converted to clocked form by adding
gates that AND their inputs with a clock signal. Figure 6-16 shows how to ex-
tend an SR flip-flop in this way.

R

S

clk

Q

Q´

Figure 6-16: A clocked SR flip-flop

Only a single tick of high signal is needed in S or R to flip the state of
the memory, which is then retained over time until a new S or R signal is
received. Changes occur only during a clock tick, as the AND gates on the
clock act to disable the S and R inputs at other times.

Clocked versions of simple machines are drawn with the clock input
marked with a triangle, as in Figure 6-17.

S

R

Q

Figure 6-17: The symbol
for a clocked SR flip-flop
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SR is the simplest type of flip-flop to understand, and for that reason
it’s generally used to introduce the concept, but SR flip-flops aren’t typically
used in practice. This is because they have undesirable, undefined behavior
in cases where both inputs are 1. The D-type flip-flop has a modified design
that fixes this issue; it’s widely used in practice. Unlike SR, it uses an inher-
ently clock-based approach.

A D-type flip-flop (D for data) has only one data input and a clock input.
At one point of the clock cycle, such as the rising edge, it captures the data
on the D input. For the rest of the clock cycle, it outputs that value on its
output Q. This stores the data for only one clock cycle—if you want to keep
it for longer, you need to arrange external connections so that Dt+1 = Qt.
One of many possible implementations of a D-type flip-flop is shown in
Figure 6-18.

clk

D

Q

Q´

Figure 6-18: A D-type flip-flop

The standard D-type flip-flop symbol is shown in Figure 6-19.

D Q

Figure 6-19: The D-type
flip-flop symbol

Here, the standard triangle symbol is used for the clock input, and
the negated output is shown by a circle, as used in NAND and NOR gate
symbols.

Counters
A counter is a digital logic version of Pascal’s calculator. We use a D-type flip-
flop to store the value in each column, and wire its output to both its own
data input (to refresh the storage) and also to the clock input of the next col-
umn’s flip-flop as a carry. This is shown in Figure 6-20.
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D Q D Q D Q D Q

x0 x1 x2 x3

clk

Figure 6-20: A 4-bit binary counter

If the input to the first column is a clock, then the counter will count the
number of ticks that have taken place. If you take an output wire from one
of the columns of the counter, you get a clock divider, which drops the clock
frequency by a power of two. This is useful when you have a fast clock and
want to create a slower clock from it, for example to use as a clock for slower
pieces of hardware.

Alternatively, the input to the first column can be any arbitrary signal,
such as a wire from a manual-controlled switch or some other event in a dig-
ital circuit, in which case the counter will count the number of these events
that have taken place.

Sequencers
A sequencer is a device that triggers a bunch of other devices at particular
times. For example, a traffic light sequencer will turn on and off the dif-
ferent colored lights in a particular, repeating order. A sequencer can be
made from a counter and a decoder, as in Figure 6-21, which simply uses
the counter’s output as an input to the decoder.

D Q D Q D Q
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7

X
1

A
6

X
2
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5

A
4

clk

A
3

A
2

A
1

A
0

Figure 6-21: An eight-state sequencer using a 3-bit counter and decoder
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Random-Access Memory
Random-access memory (RAM) is memory that consists of addresses, each con-
taining a group of bits of data known as a word, and in which any address can
be read and written at equal time cost. Babbage’s Analytical Engine features
a mechanical RAM; let’s see how to build the same structure from digital
logic as a simple machine.

Basic RAM has three groups of wires as its interface. First, N address
wires carry a binary natural number representation specifying which of 2N

addresses is of interest. Each address stores a word of length M so, second, a
group of M data wires carry copies of words to or from the specified address
of the RAM. Finally, a single control wire, called write, carries a single bit
that controls whether the specified address is to be read or written.

Figure 6-22 shows a (toy-sized) RAM with N = 2 and M = 2. The address
wires are labeled A0 and A1, and the data wires D0 and D1.

A1

clk

write

D0

D1

A0

D0_out

D1_out

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

Figure 6-22: A simple RAM, with addressed words implemented as flip-flops. This toy example has a 2-bit
address space of 2-bit words.

Each of the 22 = 4 addresses stores a 2-bit word. Each bit of each word is
stored by a D-type flip-flop. The selection of address from the address wires
is performed using a decoder.

HARDWARE DESCRIPTION LANGUAGES

The tools used in this book are focused on LogiSim and simulation. Large-scale
architecture is, however, usually done via a stack of text-based languages such
as netlists, Verilog, and Chisel. Let’s take a brief look at these formats in case
you max out LogiSim and want to explore larger and more complex designs in
your own projects.
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Mask Files

Mask files are the very lowest level of chip description, containing the physical
locations, sizes, and shapes of components such as transistors and wires. These
are used to produce the masks needed for fabrication.

Netlist Files

Netlist files contain descriptions of connectivity between physical components
and wires, but as abstract connectivity rather than a physical layout. You use a
layout engine program to place and route the connections—that is, to transform
a netlist file into a mask file. (This is an NP-hard problem, so layout programs
use complex heuristics that were until recently closely guarded commercial
secrets.)

Verilog and VHDL Files

Verilog and VHDL are text-based hardware description languages for design-
ing electronic systems. In their most basic forms, they have a similar function to
LogiSim, allowing you to instantiate and connect various electronic components.
But instead of using a GUI, they use text files with a syntax similar to software
programming languages. Unlike a language like C, however, which is impera-
tive, Verilog and VHDL fundamentally describe static objects and relationships
between them. In this sense, their structure is more like XML or a database, con-
taining lists of facts rather than instructions to do things. For example, here’s a
Verilog module representing a full adder:

module FullAdder( input io_a,
input io_b,
input io_cin,
output io_sum,
output io_cout

);

assign io_sum = io_a ^ io_b ^ io_cin;
assign io_cout = io_a & io_b | io_a & io_cin | io_b & io_cin;

endmodule

Once you write a Verilog or VHDL description, a compiler turns it into a netlist.
This compilation process is called synthesis because the logic expressed in the
source code is synthesized from gates. Software simulators also exist that can
be used to test Verilog or VHDL hardware designs without actually manufac-
turing the hardware.

While some people still write Verilog or VHDL by hand to design digital logic,
it’s becoming more common to use higher-level tools such as LogiSim or Chisel
(discussed next) that compile into Verilog or VHDL. Verilog also adds higher-
level language constructions that enable some C-like imperative programming
and get compiled to digital logic structures. LogiSim Evolution is able to export
your designs as Verilog or VHDL, which enables you to compile them to netlists
and use them to make real chips.

(continued)

Simple Machines 151



Chisel

Chisel is a high-level hardware language that was developed for general archi-
tecture design use. Chisel describes classes of hardware with object orientation;
for example, you could create a FullAdder class to represent the class of full
adders, which could be abstracted and inherited in the usual high-level object-
oriented ways:

class FullAdder extends Module {
val io = IO(new Bundle {
val a = Input(UInt(2.W))
val b = Input(UInt(2.W))
val cin = Input(UInt(2.W))
val sum = Output(UInt(2.W))
val cout = Output(UInt(2.W))

})
// Generate the sum
val a_xor_b = io.a ^ io.b
io.sum := a_xor_b ^ io.cin
// Generate the carry
val a_and_b = io.a & io.b
val b_and_cin = io.b & io.cin
val a_and_cin = io.a & io.cin
io.cout := a_and_b | b_and_cin | a_and_cin

}

Chisel classes may have parameters for numbers of input and output wires, for
example, to enable loops to generate N full adders to make a ripple adder.

Chisel is a hardware language, but it’s based closely on the very high-level
Scala software language. Scala, in turn, is influenced heavily by lambda
calculus, functional programming, and Java; these kinds of languages are not
usually associated with hardware design, so bringing them in has enabled
Chisel to operate at much higher levels than the old days of having to do hard-
ware design in Verilog. You may benefit from taking regular Scala tutorials
before attempting to work with Chisel.

Summary
Logic gates can be combined into networks to perform more complex func-
tions. Simple machines are certain well-known types of networks that tend
to appear again and again in architecture. Combinatorial logic machines—
including shifters, encoders, multiplexers, and adders—use Shannon’s origi-
nal theory, without relying on feedback or time. When feedback and clocks
are also allowed, additional sequential and clocked logic simple machines
can be created as well. These are able to retain data in memory over time.
Flip-flops are simple machines storing 1 bit of memory. They can function
as subcomponents of counters, sequencers, and RAM.

Now that we have a collection of simple machines, we can combine them
in the next chapter to build a digital logic CPU.
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Exercises
Building Simple Machines in LogiSim Evolution
As you work on the following exercises, keep in mind that you can create hi-
erarchies of subcircuits in LogiSim. You might do this, for example, so that
your shifter becomes available as a single component to use in higher-level
networks. To create a subcircuit, click the + button. Then, to use the new
component, go back to the main circuit and add it like any other compo-
nent. Use pins for input and output inside the subcircuit if you want them
to show in the external interface in the main circuit.

1. Build the left-shifter (Figure 6-3), decoder (Figure 6-4), and multi-
plexer (Figure 6-5) shown earlier in this chapter.

2. Design and build a right-shifter, encoder, and demultiplexer. These
perform the inverse functions of the left-shifter, decoder, and multi-
plexer, respectively.

3. Build and test an 8-bit ripple-carry adder. Use it to perform subtrac-
tion and addition, using two’s complement.

4. Build and test unclocked and clocked SR flip-flops, and a D-type
flip-flop.

5. Build and test a counter, using a clock as its input.

6. Build a traffic light sequencer from a 2-bit counter and decoder.
Use it to light red, amber, and green bulbs in the UK’s standard
sequence, which goes: (1) red (stop); (2) red and amber together
(get ready to go); (3) green (go); (4) amber (get ready to stop). This
is roughly how the control unit of a CPU works.

Prebuilt LogiSim Modules
LogiSim has prebuilt modules for many simple machines. For example,
there’s a prebuilt RAM module found under Memory in the menu, as in
Figure 6-23.

A

M2 [Output enable]

M3 [Write enable]

RAM 8×2

0

2

0

7

C1

x2

0

0

0

1

Figure 6-23: An eight-address, 2-bit word RAM
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This version has two control inputs, one for write enable and one for
read enable. A NOT gate is used in the figure to create both from a single
control line.

1. Explore LogiSim’s prebuilt modules that correspond to the ma-
chines you implemented in the previous exercises. Check that they
give the same results as your own implementations.

2. Explore the RAM module shown in Figure 6-23. Use the module
options to specify the RAM’s word and address lengths. You can
manually edit the RAM’s contents with a built-in hex editor by right-
clicking and then clicking Edit Contents. A splitter, found in the
Wiring menu, is used to bundle and unbundle groups of wires for
data and address. A probe or LEDs can be used for output; con-
stants, DIP switches, or pins can be used for input.

Challenging
1. Design and build a natural number multiplier in LogiSim. This can

be done by following the usual multiplication algorithm that you
were taught at school, but in binary. You can use shifters to multi-
ply one of the inputs by all the different powers of two, then adders
to add together those powers that are present in the second num-
ber. Use AND gates to enable and disable the relevant powers. As is
often the case in architecture, you can choose whether to use mul-
tiple silicon copies of the required structures, or use a single copy
plus timing logic to run it many times.

2. Extend your multiplier to work with negative integers, using two’s
complement data representation.

More Challenging
Design, build, and test an 8-bit carry-save adder in LogiSim. How much
more efficient is it than a ripple-carry adder?

Further Reading
For full details on how to use LogiSim, including advanced features, see
George Self, LogiSim Evolution Lab Manual (July 2019), https://www.icochise
.com/docs/logisim.pdf.
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7
DIG ITAL CPU DES IGN

We’ve been building up larger and larger
components of digital electronic comput-

ers, from transistors, to logic gates, to simple
machines such as decoders and adders. Now

it’s time to put everything together at the top level to
make a digital electronic CPU. At least until very re-
cently, the CPU has been the heart of digital electronic
computers.

The aim of this chapter is to overcome your fear of digital electronic
CPUs. Modern CPUs are probably the second most complex device known
to humanity, after the human brain. If you look at a CPU circuit under a
microscope and see all the wiring without first preparing your mind, you’ll
likely go crazy. As with driving, you don’t study a modern, state-of-the-art
machine immediately; you start with a bicycle, then an old beat-up car, and
then, as you get a feel for the systems, you progress to more powerful and
modern machines. Likewise, we’ll use one of the first and simplest digital
electronic CPU systems as our example for this chapter: the Manchester
Baby. Contemporary CPUs are much more complicated and may vary or
break many or all of the design principles covered here, but they’re still
based on classical ideas. Seeing how they play out in a historical machine
like the Baby will help us understand the basics.



We’ve already seen and understood the basic structure of a CPU from
Babbage’s Analytical Engine, so here we’ll focus on the digital electronic im-
plementations of the same overall design. As with Babbage, we’ll play a bit
fast and loose with the actual details and history of the Manchester Baby;
the point is to use it to get a flavor of digital CPUs in general. The original
Baby’s digital electronics were built from vacuum tubes rather than transis-
tors, and didn’t necessarily use the same structures that we’d use today to
re-implement its functionality. Nonetheless, the simple machines that we’ve
studied can be used to build a modernized implementation of the Baby.
We’ll build such an implementation here, capable of running real programs,
using LogiSim. But first, we’ll learn what the Baby needs to be capable of by
programming it as a user.

The Baby’s Programmer Interface
Unlike the Analytical Engine, von Neumann architectures such as the Baby
store their instructions and data in the same RAM space. A program is thus
a list of lines that are all copied into RAM. Each line has a number, and it
gets copied to the RAM address of that same number. Like the Analytical
Engine, a program is made up of binary machine code corresponding to a
series of instructions from its instruction set.

Here’s the Baby’s complete instruction set. We’ll discuss each instruc-
tion in more detail in the following sections.

HLT Halt the Baby and light the stop lamp

LDN Load the negated content of the specified address

STO Store the latest result to the specified address

SUB Subtract the content of the specified address from the result

JMP Jump to the line number stored in the given address

JRP Jump forward by the number of lines stored in the given address

SKN Compare the result: if less than 0, skip the next instruction

NO T E The Baby’s designers really wanted to have a regular load instruction, as in the
Analytical Engine and most modern computers, to load a copy of the data stored at
the address. But due to technical limitations of the time, they were forced to replace
this with LDN, “load negated,” which also inverts each of the bits from the data as they
are loaded. This is a famous quirk of the Baby that gives its programming a distinc-
tive problem-solving flavor.

Halting
The HLT instruction stops the machine. This prevents execution of any fur-
ther instructions and turns on a light bulb to tell the user that the work has
finished, so they know when to inspect the results. The simplest Baby pro-
gram is thus:

156 Chapter 7



01: HLT

The line number 01 on the left of the instruction is also the RAM ad-
dress where the instruction will be stored. When this program is loaded into
the Baby’s RAM, address 1 of RAM will contain the binary machine code for
HLT. After loading the program, it can be run. The Baby begins execution
from address 1 (not address 0, because the program counter is incremented
just before each fetch) so the HLT will be executed, causing the Baby to halt.

Constants
Lines with NUM aren’t true instructions but are used to place data at their ad-
dress when the code is first loaded into RAM. For example, consider the
following:

01: HLT

02: NUM 10

03: NUM 5

04: NUM 0

When this is loaded into RAM, the constants 10, 5, and 0 will be placed into
addresses 2, 3, and 4, respectively, as well as the HLT instruction being placed
into address 1.

If you actually run the program it will begin at line 1, execute the HLT in-
struction, and immediately halt. The HLT instruction here is very important;
the CPU tries to read and execute the instructions in order, starting from
address 1, but the values that we’ve placed into addresses 2, 3, and 4 are in-
tended to be used as data, not instructions. The HLT instruction stops the
CPU from getting to address 2 and beyond, preventing the data values from
being treated as instructions.

This method of writing the program and data together, and storing
them in the same RAM together, is the defining characteristic of von Neu-
mann architectures. When programming von Neumann machines, it’s very
important that we only ever execute instruction lines, and that we don’t try
to execute data lines. It’s a programming error—that is, a bug—to write code
that ends up trying to execute data as if it were part of the program.

NO T E Execution of data can have unpredictable and dangerous behavior. That’s why it’s
often used as a security attack technique: if you want to break into someone else’s
program and have it execute your own code, you can sometimes do this by entering
your code as data to that program, then somehow trick the program into executing it.

Load and Store
The constants in the above code never enter the CPU; rather, the whole
code is loaded into the RAM locations given as the line numbers by some
other mechanism before the CPU is even turned on. To make use of data
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from RAM in actual computations, we need to execute load and store in-
structions, which copy data from RAM into the CPU, and from the CPU
to RAM.

For example, the following Baby program loads the (negation of the)
number in address 20, then stores a copy of it into address 21:

01: LDN 20

02: STO 21

03: HLT

20: NUM -10

21: NUM 0

In this example, the number –10 is initially placed at address 20, but
it gets loaded into the CPU as +10, its inverse, due to the Baby’s automatic
negation of loaded data. This number 10 is then stored to address 21, over-
writing the 0 initially placed there. Note that the executable program is
stored in addresses 01 through 03, and is terminated with HLT; higher ad-
dresses are used for data storage to avoid the risk of executing data.

Arithmetic
The Baby has one arithmetic instruction: subtraction. It works like Pascal’s
calculator: you first load one number into the CPU with a load instruction,
then you give a SUB instruction that subtracts a second number from it. For
example, the following program computes 10 – 3 = 7:

01: LDN 20

02: SUB 21

03: STO 22

04: LDN 22

05: HLT

20: NUM -10

21: NUM 3

22: NUM 0

The integers –10 and 3 are placed in addresses 20 and 21 by lines 20 and
21 when the whole program is first loaded into memory. Line 1 loads the
(negated) integer from address 20 into the CPU. Line 2 subtracts the integer
from address 21 from it. Line 3 stores the result in address 22, overwriting
the 0 initially placed there.

Jumps
The JMP instruction makes program execution jump to the line whose ad-
dress is one plus the number stored at the address given in the instruction.
This operation is called an indirect jump, as opposed to a direct jump, which
would encode the target address itself as part of the instruction, instead of,
as in this case, the location of the target address. For example, consider the
following program:
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01: LDN 20

02: SUB 21

03: SUB 22

04: STO 20

05: JMP 23

06: HLT

20: NUM 0

21: NUM 0

22: NUM -1

23: NUM 0

Here, the JMP 23 instruction at line 05 will cause a jump to line 01, be-
cause the integer 0 is stored at address 23, and 1 is the number after 0. This
program loops and runs forever as a result of the JMP instruction.

Branches
Branching in the Baby is performed by the SKN instruction (skip next), which
has no operand. SKN tests whether the current result is negative. If so, it skips
the next instruction, moving to the one after it. SKN is usually paired with a
jump (JMP) in the next instruction to create something similar to an if state-
ment. If the result is negative, then SKN skips over the JMP instruction in the
next line, and the program continues running from the line after it. If the
result is positive, the jump is made and we continue running somewhere else
in the program. For example, consider the following Baby program:

01: LDN 20

02: STO 23

03: SKN

04: JMP 21

05: LDN 22

06: SUB 23

07: STO 23

08: HLT

20: NUM -10

21: NUM 6

22: NUM 0

23: NUM 0

This program computes the absolute value of an integer input from ad-
dress 20 and stores the result in address 23. That is, if the input is either –10
or 10, then the output will be 10; any negative sign is removed. Lines 03 and
04 are the SKN-JMP pair.

Assemblers
The programs we’ve been looking at for the Baby—and those seen previ-
ously for the Analytical Engine—are written using human-readable ASCII
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symbols spelling out mnemonics such as LDN for “load negated,” and deci-
mal or hex numerals. Such notations are known as assembly languages or just
assembly. CPUs don’t understand such symbols; they require binary encod-
ings of them, the machine code.

For the Analytical Engine, machine code takes the form of punches on
punch cards, and the human programmer needs to manually translate their
human-readable mnemonics into these binary punches before running their
program. Similarly, for von Neumann machines such as the Baby, programs
need to be translated into binary machine code and then placed into RAM
before the CPU can execute them. The original Baby programmers had to
do this by hand, using a pencil to work out the machine code, then a system
of electronic switches to copy the machine code into RAM before turning on
the CPU.

If you’re programming a modern implementation of the Baby—or
any other computer—in assembly today, you don’t need to do the transla-
tion manually; there are other programs, called assemblers, that automate the
process, translating human-readable assembly programs into machine code
for you. A file of 0s and 1s corresponding to machine code is called an ex-
ecutable, as it can be executed directly by the CPU once copied into RAM.
Multiple assembly languages are possible for the same target machine. For
example, they could use different mnemonics for the instructions (as we
have in this book compared to other implementations of the Baby).

The Baby’s machine code uses one 32-bit word per instruction. The low-
est 13 bits are called the operand and encode the numerical value used by the
instruction (or are ignored for instructions that don’t come with a number).
The next 3 bits are known as the opcode and encode the type of instruction,
obtained by direct translation of the assembler mnemonics, as in Table 7-1.
The remaining 16 bits are ignored.

Table 7-1: The Manchester
Baby Opcodes
Opcode Mnemonic
0 JMP
1 JRP
2 LDN
3 STO
4 SUB
5 SUB
6 SKN
7 HLT

The following listing is an assembler for the Baby written in Python. If
you know Python, you’ll see how a dictionary is used to translate the instruc-
tions to opcodes, and how conversions between decimal, hex, and binary are
used on the operands.

import re

f = open("TuringLongDivision.asm")
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for_logisim = False #change to True to output hex for logisim RAM

dct_inst = dict()

dct_inst['JMP'] = 0

dct_inst['JRP'] = 1

dct_inst['LDN'] = 2

dct_inst['STO'] = 3

dct_inst['SUB'] = 4

dct_inst['SKN'] = 6

dct_inst['HLT'] = 7

loc = 0

if for_logisim:

print("v2.0 raw") #header for logisim RAM image format

def sext(num, width):

if num < 0:

return bin((1 << (width + 1)) + num)[3:]

return bin(num)[2:].zfill(width)

def out(binary):

if for_logisim:

print(hex(int(binary,2))[2:].zfill(8))

else:

print(binary[::-1]) #Baby convention: show bit 0 on the left

for line in f:

asm = re.split('\s*--\s*', line.strip())[0]

parts = asm.split()

thisloc = int(parts[0][:-1])

if parts[1] == 'NUM': #data line

code2 = sext(int(parts[2], 10), 32)

else: #instruction line

inst2 = bin(dct_inst[parts[1]]).zfill(3)[2:]

if len(parts) < 3:

parts.append('0')

operand2 = sext(int(parts[2], 10), 13)

code2 = (inst2 + operand2).zfill(32)

for addr in range(loc, thisloc):

out('0'.zfill(32)) #fill in zeros where lines not given

out(code2)

loc = thisloc + 1

The following is a Baby program for long division, written by Alan Tur-
ing during his work testing and documenting the Baby at Manchester:

00: NUM 19 -- jump address

01: LDN 31 -- Accumulator := -A

02: STO 31 -- Store as -A

03: LDN 31 -- Accumulator := -(-A) i.e., +A

04: SUB 30 -- Subtract B*2^n ; Accumulator = A - B*2^n

05: SKN -- Skip if (A-B*2^n) is Negative

06: JMP 0 -- otherwise go to line 20 ( A-B*2^n >= 0 )
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07: LDN 31 -- Accumulator := -(-A)

08: STO 31 -- Store as +A

09: LDN 28 -- Accumulator := -Quotient

10: SUB 28 -- Accumulator := -Quotient - Quotient (up-shift)

11: STO 28 -- Store -2*Quotient as Quotient (up-shifted)

12: LDN 31 -- Accumulator := -A

13: SUB 31 -- Accumulator := -A-A (up-shift A)

14: STO 31 -- Store -2*A (up-shifted A)

15: LDN 28 -- Accumulator := -Quotient

16: STO 28 -- Store as +Quotient (restore shifted Quotient)

17: SKN -- Skip if MSB of Quotient is 1 (at end)

18: JMP 26 -- otherwise go to line 3 (repeat)

19: HLT -- Stop ; Quotient in line 28

20: STO 31 -- From line 6 - Store A-B*2^n as A

21: LDN 29 -- Routine to set bit d of Quotient

22: SUB 28 -- and up-shift

23: SUB 28 -- Quotient

24: STO 28 -- Store -(2*Quotient)-1 as Quotient

25: JMP 27 -- Go to line 12

26: NUM 2 -- jump address

27: NUM 11 -- jump address

28: NUM 0 -- (Answer appears here, shifted up by d bits)

29: NUM 536870912 -- 2^d where d=31-n, see line 30 for n

30: NUM 20 -- B (Divisor*2^n) (example: 5*2^2=20)

31: NUM 36 -- A (initial Dividend) (example: 36/5=7)

The following shows the machine code for Turing’s program, as gener-
ated by the Python assembler:

11001000000000000000000000000000

11111000000000100000000000000000

11111000000001100000000000000000

11111000000000100000000000000000

01111000000000010000000000000000

00000000000000110000000000000000

00000000000000000000000000000000

11111000000000100000000000000000

11111000000001100000000000000000

00111000000000100000000000000000

00111000000000010000000000000000

00111000000001100000000000000000

11111000000000100000000000000000

11111000000000010000000000000000

11111000000001100000000000000000

00111000000000100000000000000000

00111000000001100000000000000000

00000000000000110000000000000000

01011000000000000000000000000000
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00000000000001110000000000000000

11111000000001100000000000000000

10111000000000100000000000000000

00111000000000010000000000000000

00111000000000010000000000000000

00111000000001100000000000000000

11011000000000000000000000000000

01000000000000000000000000000000

11010000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000100

00101000000000000000000000000000

00100100000000000000000000000000

In this display of the binary machine code, the bit positions are printed
with the zeroth bit on the left (contrary to modern convention), so the op-
codes appear in the three bits just to the left of the middle of each word,
with the operands to their left. This was the format used by the historical
Baby, so our machine code could be entered using this convention.

The test program and the machine code each have 32 lines so that they
exactly and unambiguously fill the Baby’s 32 addresses of memory. The pro-
grammer needs to put something in all 32 addresses so those that aren’t
in use are explicitly filled with zeros. Note that the line numbers aren’t en-
coded in the machine code; rather, they specify which address the machine
code will be placed at. Also note that the data lines are translated as single
32-bit numbers, as NUM isn’t an instruction but rather just a comment to tell
the assembler that the line contains raw data. The Baby uses two’s comple-
ment, so hex values such as ffff0000 represent negative integers.

NO T E Until the mid-1990s, many large applications and games were written by human
programmers in assembly language, including Street Fighter II and the RISC OS
operating system. Most modern programming isn’t done in assembly language, but
rather in a higher-level language such as C, C++, or Python. Programs written in
these languages are first converted to assembly code by a compiler, before being assem-
bled by an assembler.

The Baby’s Internal Structures
Now we’ll turn to the Baby’s internal structures. As we did for the Analyti-
cal Engine, we’ll first introduce the subcomponents within the digital CPU,
and then consider the dynamics of how they behave and interact to execute
programs. The main digital CPU substructures are exactly the same as for
the Analytical Engine: registers, an arithmetic logic unit (ALU), and a con-
trol unit (CU). They have the same functions as in the Analytical Engine but
are built from the digital logic simple machines we studied in the previous
chapter, rather than from Babbage’s mechanical simple machines.

We won’t follow the exact implementation of the original Manchester
Baby here; rather, I’ll show general digital logic implementations that could
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be used to implement the Baby’s programmer interface in a more modern
style. These implementations are built from simple machines of digital logic,
which in turn are built from logic gates that could be implemented equally
well using modern transistors or the Baby’s original vacuum tubes.

Registers
Registers are fast word-length memory, usually made today as arrays of
D-type flip-flops, which live inside the CPU and are readable and writable
by the CU and ALU. Most CPUs include several types of register used for
different purposes.

The sizes of the registers in a CPU are usually taken to define the CPU’s
word length; for example, an 8-bit machine uses 8-bit words that are stored
in 8-bit registers, and a 32-bit machine uses 32-bit words that are stored in
32-bit registers. The Baby is a 32-bit machine in this sense. The words use
the data representations seen in Chapter 2, which require an array of bits to
store numbers, text, and other data.

Like the individual flip-flops that compose them, registers must be timed
to enable correct synchronization of reads and writes. An update signal can
be sent to the clock inputs of all the flip-flops making up the register. Usu-
ally writes to the register are performed on the rising edge of this signal.
Each register also continually outputs its latest stored value for reading as
a set of parallel wires, regardless of the updates. The register structure is
shown in Figure 7-1. The write is triggered when you press the button.

D Q

D Q

1
2

3

D Q
x3

Update

Input
Output

Figure 7-1: A 3-bit register made from flip-flops

Registers can also be notated using a single symbol suggesting a pile of
flip-flops, as in Figure 7-2.
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D Q

WE

1
2

3
4

Figure 7-2: A 4-bit register as a single symbol,
connected to input switches, write update button,
and output LEDs

Here, the D input and Q output are each groups of wires, shown as thick
lines, then split into single wires.

User Registers
User registers are usually the only registers that are visible to the assembly lan-
guage programmer, who can give instructions to act on their contents.

An accumulator is a user register that functions both as an input and to
store the results of calculations in the same place. As we’ve seen, Pascal’s
calculator is one big accumulator because it stores both one of the inputs
to an addition and also its result, destroying the original representation of
the input in the process. Your desktop calculator is also an accumulator: it
only ever stores one number, the current result seen on the screen, which
you can add to or multiply by, and which is updated to store the result. For
example, if you enter 2, this is stored in the accumulator. If you then enter
+3 the accumulator stores and shows the result 5. The original value 2 and
the operation +3 are lost, and only the accumulated result is available.

Accumulator architectures are those that have only a single user register
that acts as an accumulator. The Baby uses this simple style of architecture.
This forces all computation to be done in the accumulator style because
there are no other registers in which to keep inputs separate from outputs.
By contrast, more complex CPUs may have other user registers, in addition
to or instead of an accumulator.

Internal Registers
In addition to the user registers, most CPUs require further registers for
their own internal operations. These internal registersmay be invisible to
the user, so you can’t write assembly programs that access or modify them.
Rather, they’re used to make the CPU itself work, and to enable it to read
and execute user programs. Let’s look at the two most important internal
registers.
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A CPU needs to keep track of where it currently is in the execution of
its program. In the Analytical Engine, the current line of the program was
stored using the mechanical state of the program card reader. Like type-
writer paper, the program was mechanically fast-forwarded and rewound
so that the current line was positioned on the reader. In an electronic CPU,
there is no mechanically moving state, so we must instead keep track of
where we are in the program by storing the current line number in a reg-
ister, called the program counter (PC in the listings in this chapter). As we’ve
seen, von Neumann architectures—such as the Baby and most modern
computers—store the program in main memory, along with other data, so
these “line numbers” are actually memory addresses that store the instruc-
tions of the program.

The instruction register (IR) stores a copy of the current instruction,
copied in from its address (as kept in the program counter) in memory.

Arithmetic Logic Unit
Just like the Analytical Engine’s ALU, a digital logic–based ALU consists of
a collection of simple machines, each performing one kind of arithmetic op-
eration. Due to a quirk in its hardware, the original Baby had only a subtrac-
tor, but here we’ll build a more general and powerful ALU that also includes
addition, multiplication, and division. Figure 7-3 shows a 32-bit ALU with
these operations.

00000000

x32 r

x1 f

x2c

x32a

x32b

00000000

00000000

00000000

00000000

Decd

MUX

MUX

MUX

>
=
<

MUX

Figure 7-3: A 32-bit, four-operation ALU

Here there are two data inputs, a and b, each containing a 32-bit,
two’s complement integer. They’re both sent to all four simple arithme-
tic machines, a subtractor, adder, multiplier, and divider, each of which
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calculates an output. Just one of these outputs is then selected and passed
to the ALU’s output, r. To choose which arithmetic operation you want to
do, place its 2-bit code on the c input. The decoder then activates one of
the four 32-bit multiplexers, enabling the desired operation’s output to be
passed to and through the 32-bit OR gate array. A copy of the final output
from the OR gate array is passed into a comparator, which tests if the number
is zero and outputs a single status flag with this Boolean.

The comparator can be implemented simply by NOR gating together
all of the bits in the number. More advanced ALUs often test for other in-
teresting properties of the result, such as being positive or negative, having
created an overflow (which can be seen on the carry out lines of the simple
machines), or division by zero; they then output a set of flags rather than
just this zero test.

Note that we could build this ALU with less silicon by using a single
multiplexer with 2-bit input to select directly between the four arithmetic
machines. Duplication of digital logic could be reduced by sharing struc-
tures between operations—for example, using two’s complement enables
adders to be reused as subtractors. You might also be concerned about the
waste of energy from running all of the arithmetic options on each set of in-
puts but throwing all but one result away. You could find ways to redesign
the network to reduce this energy usage. However, I’ve chosen the present
structure for educational reasons, as it will help you to more easily under-
stand CUs in the next section.

Control Unit
Digital logic CUs implement the same concept as Babbage’s timing barrel,
acting like a musical conductor to trigger all of the other CPU components
at the right times. There are many ways to do this, so CUs vary far more
than registers and ALUs. They’re usually considered to be the hardest and
most central part of CPU design. We’ll choose a particular style here for
ease of understanding rather than for computational or energy efficiency.

This style is based on two structures: first, a counter that, like Babbage’s
barrel, rotates regularly, and whose value is used to time the required events;
second, a switching mechanism that determines the type of event to be trig-
gered and makes temporary connections between components—such as reg-
isters, the ALU, and RAM—in response. In Babbage’s machine, these con-
nections were made and broken using mechanical levers. For our digital
logic version, we’ll use multiplexers, as we did in the ALU. These multiplex-
ers have two data inputs, each of word length—32 bits for the Baby. One is
hardwired to zeros and the other is from the temporary input source. They
have a single-bit switch that switches between relaying the temporary input
onto the output and sending all zeros to the output. Figure 7-4 shows how
this works.

Digital CPU Design 167



x32

00000000

x1s

x32MUX

Figure 7-4: A multiplexer used to enable or
disable a connection of 32 wires

As in the ALU, where multiple sources can potentially connect to a des-
tination, they each get their own multiplexer. Then an OR array combines
the multiplexer outputs, allowing the non-zero output to pass through.

We’ll create a sequence of temporary connections between components.
Some of these connections can be triggered simply by the time shown on
the counter. This can be done with a decoder, taking the time as input and
activating a particular trigger wire as output. Other connections need to be
triggered by a combination of a time and some other value, such as the iden-
tity of the current instruction. These can be done by AND gating the ap-
propriate trigger wire to signals representing the other required conditions.
Figure 7-5 shows an example of this structure.
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x32

x32
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MUXD Q D Q D Q

1 2

Figure 7-5: A minimal CU based on a 3-bit counter, a decoder, and multiplexer switches

The 3-bit counter and decoder on the left form the sequencer. Using
3 bits gives us 23 = 8 times, from 0 to 7, looping back to 0 after each 7. The
figure shows triggers only at ticks 0, 1, and 7. The triggers at ticks 0 and 1
(the upper two outputs from the decoder) depend only on the time and
make connections between 32-bit wire groups. At tick 7, there are two pos-
sible triggers, which depend on conditions cond1 and cond2 being met,
respectively, represented by the two switches near the bottom-left of the
figure. Note that either, neither, or both of these conditions (and thus
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triggers) could be active at this time. The OR symbol here represents an
array of 32 OR gates. It allows two different inputs to be connected to the
same shared output (SO) on different triggers. (Triggers from times 2
through 6 inclusive are omitted in this figure, but you can imagine those
wires from the decoder connecting to similar triggers.)

Let’s introduce a little extra notation at this point to help make our
diagrams more readable. Figure 7-6 shows exactly the same minimal CU,
but introduces tunnels, which are named points (t0 to t7 and c0 to c1) tak-
ing the place of wires. All tunnels having the same name are assumed to be
connected to one another. For example, the t0 tunnel coming out of the de-
coder connects to the t0 tunnel going into the multiplexer near the top right
of the figure.
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x32
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Figure 7-6: The same minimal CU as in Figure 7-5, redrawn using tunnel notation
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This tunnel notation avoids the need to draw the rat’s nest of wires
formed as the CU sends its triggers all over the rest of the CPU. We’ve also
encapsulated the 3-bit counter into a single block, CTR3, as provided off-the-
shelf by LogiSim. (This block has some additional inputs and features that
we don’t use here.)

Putting It All Together
Now that we’ve seen each of the basic ingredients of a Baby implementation,
let’s put them all together—along with suitably timed CU dynamics—to build
a complete, functioning Baby. We’ll do this by considering the three main
stages of operation—fetch, decode, and execution—in turn, just as we did
when we discussed the Analytical Engine in Chapter 3.

Fetch
The aim of the fetch stage is to bring a copy of the next instruction from
RAM into the IR in the CPU. Fetching assumes that the address of the next
instruction is already in the program counter. When the CPU is first turned
on, the program counter—like all registers—is initialized to 0, but is immedi-
ately incremented to 1, so the first instruction must be stored at address 1
and will be fetched.

To perform a fetch, the program counter is temporarily connected to
the address lines of RAM, on tick 1. The data out lines of RAM can be
permanently connected to the IR data in, but the IR takes only a copy of
the word from these lines when write-enabled and clocked at tick 2. The
network in Figure 7-7 is set to perform fetch for the Baby’s 32×32 RAM
(32 = 25 addresses, each containing one 32-bit word) by making these con-
nections on ticks 1 and 2 of its eight-count control cycle, and breaking them
on the other steps. In our Baby, the program counter is a 5-bit register and
the IR is a 32-bit register.
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clk
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RAM 32×32
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Figure 7-7: A fetch, triggered on ticks 1 and 2
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We can write the fetch sequence as:

t1: RAM_A <- PC

t2: IR <- RAM_Dout

This style of notation is a form of register transfer language (RTL). The sym-
bols before the colon on each line are the triggers, which in this case are
ticks 1 and 2. The arrows denote that a temporary connection from a source
to a destination is made only when the trigger is active. The arrows thus cor-
respond to the multiplexers used in our implementation style, with the trig-
gers corresponding to the switching inputs of these multiplexers.

NO T E RTL is not assembly language or machine code. It’s a lower-level description of how
the CPU works, whose function is ultimately to execute the machine code program
written by the user and stored in RAM.

Decode
We now have a copy of the next instruction sitting in the IR. It consists of a
word of machine code, with some bits specifying the opcode and the other
bits possibly containing zero, one, or more operands. In the Baby, bits 13 to
15 are the opcode, bits 0 to 12 are a single operand for some instructions,
and the remaining 16 bits aren’t used. This encoding now needs to be de-
coded. We need to split up the opcode and operand, then convert the op-
code into an activation signal. Figure 7-8 shows our implementation.
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Figure 7-8: Decoding, triggered at tick 2

The IR output is first split into three sets of wires, for the first 13, next
3, and remaining 16 bits. The middle 3 bits, containing the opcode, are
connected to a 3-bit decoder. The decoder activates one of its 23 = 8 out-
put lines, which is connected to a tunnel and will be used as a condition to
trigger multiplexers in other steps. These tunnels are named as their corre-
sponding assembly mnemonics. The 13 operand bits of the IR are further
split into the 5 lower-order bits, which are used for address selection and will
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have wires connected to them later, and the 8 higher-order bits, which have
nothing to address and are ignored.

There’s no sequential logic used here, so decoding happens roughly in-
stantaneously once the IR content is updated on tick 2.

Execute
Unlike fetching and decoding, what happens during the execute stage de-
pends on the instruction that has been fetched and decoded. Different in-
structions specify the activation of different structures that do different
things: load, store, arithmetic, and program flow control. We’ll look at how
to execute each of these possible actions in turn.

Load
To execute a load, we temporarily connect the operand to the RAM’s ad-
dress input at tick 3, and then temporarily connect the RAM’s data output
to the accumulator (Acc) at tick 4. These tick numbers are chosen to take
place after the previous fetch and decode. We can write this in RTL style as:

t3, LDN: RAM_A <- IR[operand]

t4, LDN: Acc <- -RAM_Dout

Note that the triggers before the colon now include both a tick and
the LDN condition. The square brackets in IR[operand] indicate that only the
operand bits of IR are to be used, rather than the entire register content.

Figure 7-9 shows the digital logic for our Baby implementation’s load.
(As the Baby’s load operation also negates the loaded values, we pass the
RAM data out through a negator on its way to the accumulator. This would
not usually be done on a modern machine.)

In an accumulator architecture such as the Baby, the load always places
the data from RAM into the accumulator register. In more complex archi-
tectures with more user registers, an additional operand is needed to specify
the target, and more digital logic is needed to connect the right register to
the data line.

Store
Storing a value from the CPU into memory is similar but opposite to load-
ing. In the Baby, the value to be stored is always taken from the accumulator.

At tick 3, we temporarily connect the STO instruction’s operand (the ad-
dress to store at) to the RAM’s address lines. The accumulator output can
be permanently connected to the RAM data input, but only write-enabled at
tick 3. The RTL for this is:

t3, STO: RAM_A <- IR[operand]

t3, STO: RAM_Din <- Acc

Figure 7-10 shows the digital logic implementing this for our Baby.
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Figure 7-9: Executing a load, triggered at ticks 3 and 4
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Figure 7-10: Executing a store, triggered at tick 3

In architectures with more user registers, another operand can be
used to specify which register’s contents are to be stored, and more switch-
ing logic is then needed to connect the right register to the data line.

Arithmetic
To execute an ALU operation, the CU makes temporary connections to the
ALU’s inputs from CPU registers, and creates and sends an ALU command
to the ALU’s command inputs. The ALU output is then temporarily con-
nected to a destination register.

The Baby’s ALU is especially simple, as it contains only a subtractor.
The SUB instruction triggers a read from RAM, similar to a load instruction,
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but the RAM data is sent to the subtractor rather than to the accumulator.
The subtractor takes its other input from the accumulator and writes its out-
put back to the accumulator.

Figure 7-11 shows our Baby ALU implementation. The RAM read is
triggered on tick 3, and the accumulator update on tick 4. The subtractor
is on the far left of the figure.
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00000000
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Figure 7-11: Executing an ALU operation, triggered at ticks 3 and 4

This can also be described in RTL as:

t3, SUB: RAM_A <- IR[operand]

t4, SUB: Acc <- Acc - RAM_Dout

More complex architectures having more arithmetic operations than
just subtraction would package them up into a single ALU structure, with se-
lect lines to specify which to activate, as you saw in Figure 7-3. The decoder
would then need to recognize multiple different arithmetic opcodes, and
route each one through some logic to activate the corresponding selection.
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Flow Control
At the start of each instruction, the Baby moves to the next address (line) of
the program. This can be done by incrementing (adding 1 to) the program
counter at tick 0.

If the current instruction is a flow control instruction—that is, a jump or
branch—then its execution step also needs to update the program counter to
get it ready for the next instruction.

Modern (direct) jump instructions contain the line number to jump to
in their operand, so they can be implemented by copying the operand di-
rectly into the program counter. As we’ve seen, however, the Baby uses an
indirect jump instruction, JMP, in which the operand contains the address that
in turn contains the actual jump target. To implement this indirect jump we
thus first attach the operand to the RAM address lines at tick 4, then attach
the RAM data lines to the program counter at tick 5.

The Baby also has a relative jump, JRP, which works similarly to JMP ex-
cept that the address in the operand contains a number of lines to advance
the program counter, rather than an absolute address.

For the branch instruction, SKN, we check its condition and behave as
normal if it’s false, or increment the program counter an extra time if it’s
true, to skip over one line of code. (Usually the skipped line will be chosen
by the programmer to be a jump to another part of the code.) To implement
this, we send the output of the accumulator to a comparator that tests if it’s
less than zero. The truth or falsehood of this condition is then used (thanks
to Boole) as an integer 0 or 1, which is added to the program counter at
tick 5 when the branch instruction is active.

If the current instruction isn’t a control flow instruction (that is, if it’s
SUB, LDN, or STO), then no further changes are made to the program counter.
This is implemented simply by wiring the program counter’s output directly
to its input at tick 5.

Figure 7-12 shows our Baby implementation of flow control. In RTL
notation, this corresponds to:

t0: PC <- PC + 1

t4, JMP: RAM_A <- IR[operand]

t4, JRP: RAM_A <- IR[operand]

t5, SKN, (Acc<0): PC <- PC + 1

t5, JMP: PC <- RAM_Dout

t5, JRP: PC <- PC + RAM_Dout
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Once the program counter has been updated by any of the means de-
scribed here, the fetch-decode-execute cycle is complete, and everything is
set up for the next cycle to begin.

00000000

4
-0

3
1

-5

SUB

LDN

STO

0

01

0

4-1

JMP

t5

SKN

t5

JRP

t5

t5

00

t0

00

00

00

00

t0

t5

clk

MUX

MUX

MUX

MUX

MUX

>
=
<

Q

Acc

D Q

WE

PC

D

WE

>

D

WE

>

00

t1 clk

1
MUX

D D

A

OE

WE

RAM 32×32

t4

00

JMP

JRP

MUX

1
5

-1
3

1
2

-0

3
1
-1

6

4-0

12-5

Q

IR

Figure 7-12: Program flow control, triggered at ticks 0, 4, and 5

Complete Baby Implementation
Figure 7-13 shows our complete, working Baby CPU, with all of the above
systems shown together. In the lower-left it adds a register and lamp that
activate when the halt instruction is executed, preventing any further execu-
tion. If you get tired of manually triggering the clock, it also adds a switch
connecting the clock signal to an oscillator.
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Figure 7-13: A complete, working Baby implementation, including sequencer, fetch,
decode, execute, and control flow logic. The RAM contents are now shown in full.
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In RTL notation, our complete, working Baby can be written as:

t0: PC <- PC + 1

t1: RAM_A <- PC

t2: IR <- RAM_Dout

t3, LDN: RAM_A <- IR[operand]

t3, STO: RAM_A <- IR[operand]

t3, STO: RAM_Din <- Acc

t3, SUB: RAM_A <- IR[operand]

t4, SUB: Acc <- Acc - RAM_Dout

t4, LDN: Acc <- -RAM_Dout

t4, JMP: RAM_A <- IR[operand]

t4, JRP: RAM_A <- IR[operand]

t5, SKN, (Acc<0): PC <- PC + 1

t5, JMP: PC <- RAM_Dout

t5, JRP: PC <- PC + RAM_Dout

We now have a complete computer in digital logic, able to execute ma-
chine code programs in RAM.

Summary
The purpose of a digital logic CPU is to execute machine code programs,
which can be assembled from human-readable assembly language. These
programs need to be placed into memory before the CPU starts its work.
They consist of a series of instructions that are in turn read into the CPU
and executed.

CPUs can initially scare those trying to understand them. Even a mini-
mal example such as our Baby might take thousands of transistors; modern
CPU chips can contain billions. But you’ve seen in this chapter that the basic
structure isn’t so complex if you think hierarchically, like an architect. From
this perspective, you already saw how to build a variety of simple machines
that each perform a basic task; a basic CPU then just connects a small num-
ber of these simple machines.

The CU can be built from a sequencer, which triggers the fetch, decode,
and execute stages. The execute stage is the hardest one to implement, as
it involves different actions depending on what instruction was decoded.
The sub-steps of the execute stage therefore need some additional logic to
activate the different options.

This chapter has shown roughly how the Manchester Baby was and can
be put together. The architecture we built still forms the basic plan for many
modern CPUs. Pressures from Moore’s law have complicated this plan, how-
ever. They prevent modern machines from simply being clocked faster, but
they allow them to use many more transistors. In the next chapter you’ll see
some of the more complex uses that modern CPUs can make of these extra
transistors.
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Exercises
Build a Baby

1. Build the Baby design from Figure 7-13 in LogiSim Evolution.

2. Once you start working at this level of complexity with sequential
logic, it’s very easy and common to create hardware bugs around
trigger timing. Working architects spend a lot of their time debug-
ging timing issues. The hardware equivalent of a debugger is a
chronogram (Figure 7-14), a diagram that plots the state of several
wires in the system over time. LogiSim Evolution has a built-in tool
for generating these (Simulate ▸ Timing diagram). Find out how to
use it to test some of the sequential subcircuits from the Baby. Re-
call that sequential logic—write enables for RAM and registers, and
RAM read addresses—is usually triggered at the instant the clock sig-
nal rises from 0 to 1, while combinatorial logic is active at all times.
There are also hardware logic analyzers that will capture and display
similar data from breadboards, either standalone or sending the
data to your PC for analysis.

Figure 7-14: A LogiSim chronogram

Programming the Baby
1. Assemble the test programs—including Turing’s division program—

discussed in this chapter, and run them in your LogiSim Baby. Use
the Python assembler provided, with the for_logisim flag on line 3
set to True. Save the output in a text file and load it as a RAM image
in LogiSim by right-clicking the RAM and selecting Load Image.
You can step through CPU cycles manually by clicking the clock, or
by setting it to tick automatically with Simulate ▸ Auto-tick in the
menu bar. Turing’s program divides 36 by 5, to give result 7 (1112),
which gets stored—padded with zeros—in address 28, so it appears as
E00000016. Try editing lines 29 to 31 to perform different divisions.

2. Can you explain how Turing’s code works? Remember that the
Baby’s two main quirks are that it negates values when loading them,
and it has only a subtractor rather than an adder. These lead to a
few programming idioms.
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Challenging
We’ve used several layers of notational abstraction in our CPU designs: pack-
aging up transistors, gates, and simple machines into boxes. Estimate how
many logic gates, then how many transistors are used in our final design.
How does the number of transistors compare with those used in the actual
historical designs in Chapter 1? How could these be reduced if we preferred
an implementation using less silicon rather than an educationally easy-to-
understand design?

More Challenging
The Baby is a very small, simple computer, but it’s possible to extend it into
a fairly serious modern machine by modifying our design. Try doing this
using the following steps.

1. Increase the RAM size. To do this, you’ll need to increase the size of
the addresses throughout the design.

2. Replace the Baby’s LDN with a more normal LOAD instruction, which
just loads without negation. Or retain LDN and create a new LOAD in
addition to it, if you want to retain back-compatibility with old code.
This will lead to more complexity and silicon, but will keep existing
users happy, so is representative of a typical dilemma architects face.

3. Replace the single subtraction module with a full two’s complement
integer ALU, including add, subtract, multiply, and divide. Create
extra instructions to trigger these operations.

4. Look at the later Manchester Mark I and Ferranti Mark I machines
to see how the original Baby was actually extended to commercial-
ization. Try to emulate them in LogiSim.

Further Reading
• For the nearest we have to an official modern manual for the

Manchester Baby, see the University of Manchester’s current web
page, http://curation.cs.manchester.ac.uk/computer50/www.computer50
.org/mark1/prog98/ssemref.html.

• For the original publication describing the real Baby, see F.C.
Williams, T. Kilburn, and G.C. Tootill, “Universal High-Speed
Digital Computers: A Small-Scale Experimental Machine,” Proceed-
ings of the IEE Part II: Power Engineering 98, no. 61 (1951): 13–28.

• For details of the later Manchester Mark I, see R.B.E. Napper, “The
Manchester Mark 1 Computers,” in The First Computers: History and
Architectures, ed. Raúl Rojas and Ulf Hashagen (Cambridge, MA:
MIT Press, 2000), 365–377.
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8
ADVANCED CPU DES IGN

The previous chapter presented a mini-
mal CPU design in digital logic. In this

chapter, we’ll look at extending that basic
design to increase performance. These exten-

sions include using more registers, using stack archi-
tectures that improve subroutine capabilities and
speed, adding interrupt requests to enable I/O and
operating systems, floating-point hardware, and pipe-
lining and out-of-order execution to enable “super-
scalar” execution of more than one instruction per
clock cycle. At this level of complexity we won’t give
full details on how to implement the extensions your-
self with digital logic, but you’re welcome to try!

Number of User Registers

As we’ve discussed, the Baby is an example of an accumulator architecture,
meaning it has only a single user-accessible register: the accumulator. All



loads go to the accumulator, all stores are taken from it, and when we do
two-element arithmetic, such as subtraction, the first element comes from
the accumulator and the second directly from RAM, as in a load.

Accumulator architectures are relatively simple to implement, and they
give rise to simple instruction sets. The load, store, and arithmetic instruc-
tions each need only a single operand. For example, to add the numbers
stored at addresses 50A316 and 463F16, we load the content of the first ad-
dress into the accumulator, then have an “accumulative add” (AADD) instruc-
tion that adds the content of the second address into the accumulator:

LOAD $50A3

AADD $463F

Once these instructions execute, the accumulator contains the result of the
addition.

On the other hand, accumulator architectures require any data being
used to be moved in and out of the CPU every time the data is needed. This
can slow the system down, as RAM is typically slower than the CPU. To avoid
this slowdown, it can be helpful to provide additional user registers inside
the CPU. These extra registers allow more than one datum to be brought
into the CPU at a time, so that multiple calculations can be performed with-
out the need for further RAM access. The 8-bit machines of the 1980s typ-
ically had a small number of additional user registers, while modern ma-
chines might have tens or even hundreds of user registers.

Especially in scientific numerical computing, the ideal for assembly pro-
grammers is often to load all relevant data into multiple registers at the start
of a computation; this allows huge amounts of heavy number crunching
within the CPU without requiring any further memory access. In some ways,
having more registers makes assembly programming easier, and it allows
faster-running programs to be written.

There’s always a trade-off around how many user registers a CPU should
have, however, as the additional registers come at a cost: they use up a lot of
extra silicon, which adds to the costs of design and manufacturing. They’re
also bigger and use more energy. Then there’s the increasing complexity of
the instruction set, which in turn requires more silicon in the control unit
(CU), with similar additional costs. Likewise, the increasing complexity of
the instruction set makes life more complicated for the assembly program-
mer, whether a human or a compiler. Load, store, and arithmetic instruc-
tions now need to have additional operands to say which register or registers
are to be used, such as:

LOAD X, $50A3 // load into register X from address 50A3

STORE $463F, Y // store to address 463F from register Y

ADD Z, $463F, Y // add register Y to data from 463F, store in register Z

Some architectures let us have it both ways: they provide a dedicated
accumulator register and accumulative arithmetic instructions, as well as
a set of regular user registers. This allows assembly programmers to take
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advantage of possibly simpler and faster instructions on the accumulator
while retaining the flexibility to work with the other registers as well.

Number of Instructions
The set of available instructions for a CPU, known as its instruction set
architecture (ISA), defines the interface between what the programmer
can see and use, and what needs to be implemented by the CPU designer.
As with any interface, designing an ISA always involves trade-offs. In this
case, there’s a trade-off between making the assembly language program-
mer’s (or more likely today, the compiler writer’s) life easy and pleasant,
versus making the digital logic implementer’s life easy and bug-free. An ISA
that contains instructions in the shapes of human thinking is easier to pro-
gram and to write compilers for, but it may be hard to implement in digital
logic. An ISA that reflects what’s easiest to make in digital logic is easy to
build and test, but it may not be easy to program or compile to. Then there
are also trade-offs between making human assembly programmers happy
versus making compiler writers happy.

CISC and RISC are the two historically opposing philosophies of archi-
tecture. Most systems actually blur elements of both in various ways, but
the CISC versus RISC distinction is still useful to structure our thinking
and to consider what aspects of practical designs are more “CISCy” or more
“RISCy.”

CISC, pronounced “sisc,” stands for complex instruction set computing.
CISC emphasizes the creation of lots of instructions in ISAs. These can
include adding many variations on basic instructions that each act as new
instructions. For example, loading, storing, and adding can be done in dif-
ferent ways by different instructions. CISC style might also create new in-
structions that perform more complex arithmetic than we’ve seen so far,
such as the kinds of instructions found in scientific calculators, and even
dedicated instructions for particular operations used in signal processing or
cryptography.

On the opposing side of the debate is reduced instruction set computing,
or RISC, which says hardware is nasty, expensive to develop, and difficult to
debug, so we should make the processor as lean and mean as we can, then
do all of the more error-prone work in software, as software is much nicer
and cheaper to create and debug. RISC style is to keep the instruction set as
small as possible, then focus on making it run as fast as possible. Single com-
plex instructions found in CISC can be performed in RISC using longer se-
quences of more basic instructions, which you try to make go as fast together
as the single CISC instruction due to their simplicity.

Duration of Instructions
In our Baby implementation, our CU is based on a regularly repeating
counter cycle that runs independently of any of the events it triggers.
Once you start the counter running, its actions follow a fixed sequence
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that’s completely predestined and blind to what the rest of the CPU is do-
ing. This is known as an open-loop architecture, as there’s no feedback to the
counter about the rest of the CPU’s state. Open-loop architectures are rel-
atively easy to design and to debug because of this independence, which
is why we used this style for our Baby. The Analytical Engine also uses this
style, via its regularly rotating barrel CU.

In a closed-loop architecture, by contrast, the timing of triggers isn’t set
by a central counter. Instead, each stage of work is responsible for trigger-
ing the next stage when it’s ready to do so. For example, rather than trig-
gering the decode stage from a central counter, it can be triggered by a wire
that the fetch stage activates when its own work is done.

The advantage of the closed-loop approach is that some instructions
may be simpler than others, requiring fewer ticks to complete. These can
use only the ticks that are necessary, then trigger the next instruction as
soon as possible, rather than sitting around doing nothing. For example,
in our Baby implementation some instructions (SUB, LDN) need to do work on
tick 4, while others (such as JMP) do nothing during that tick.

Open-loop style is usually associated with RISC, due to RISC’s emphasis
on making all instructions simple and fast. Closed-loop is associated with
CISC, as CISC may want to include single instructions that perform a lot of
complex work and take many ticks to complete, as well as short, fast ones.

Different Addressing Modes
RISC and CISC present different ideas about how much work should be
done by a single instruction, and how many different versions of each in-
struction should be provided. In particular, multiple variant instructions can
be created that combine memory access with arithmetic.

RISC aims to reduce the size of the instruction set by maintaining a
clean separation between memory access instructions and arithmetic in-
structions. For example, a program to add two numbers together would use
two instructions to load each of the two numbers into registers, a third in-
struction to add them and put the result in another register, then a fourth to
store the result in memory, such as:

LOAD R1 $50A3 // load to register R1 the value from address 50A3

LOAD R2 $463F // load to register R2 the value from address 463F

ADD R3 R1 R2 // put into register R3 the result of adding R1 and R2

STORE $A4B5 R3 // store to address A4B5 the result in register R3

This separation is often taken as the main defining feature of RISC.
CISC, in contrast, aims to provide multiple variations of the ADD instruc-

tion to make the programmer’s life easier. In addition to ADD, which adds the
contents of two registers, we could create another instruction such as ADDM
for “add from memory” that would enable the four-line RISC-style addition
program to be written with a single instruction:

ADDM $A4B5 $50A3 $463F
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We can interpret this as “add the values stored in memory addresses 50A316
and 463F16 and store the result in A4B516.” This makes the assembly pro-
grammer’s life easier, but makes the architect’s life harder, as they now need
to build extra digital logic in the decoder to decode this extra instruction,
as well as additional digital logic in the CU to arrange the sequence of load,
arithmetic, and store operations, which were coded explicitly in the RISC
version. This design is often taken as the defining feature of CISC.

A CISC-style ISA might also include further variations, such as an in-
struction to add the content of one memory location (50A316) to the con-
tent of one register (R1) and then store the result in a register (R3). For
example:

ADDRMR R3 $50A3 R1

It likewise might include an instruction to add the contents of one memory
location (50A316) to the contents of one register (R1) and then store the
result in a memory location (A4B516):

ADDRMR $A4B5 $50A3 R1

Another common variant is to add instructions that use indirect address-
ing, meaning the operand of the instruction contains the address of the address
to be used. For example:

ADDI $A4B5 $50A3 $463F

This means “add the value stored at the address 50A316 to the value stored
at the address 463F16 and store the result at A4B516.” This is a quite com-
plex instruction that requires the contents of 50A316 and 463F16 to be loaded
into registers, but then these values themselves to be interpreted as addresses,
and the values at those addresses loaded into registers before performing the
addition and store. This sounds like a fairly obscure thing to want to do, but
it is very common and useful when compiling high-level languages, such as
C, that have pointers. The indirection operations allow for a fast and efficient
hardware implementation of pointer commands.

Of course, there are also variations on this indirect form of instruction,
such as an instruction to perform indirection on just one argument and add
the result to a register’s contents:

ADDIR $A4B5 $50A3 R1

We could dream up further variations, such as using the contents of regis-
ters as memory addresses for the indirection, performing more than two
layers of indirection, and so on.

Offset addressing (aka index addressing) modes are another popular ISA in-
clusion. The idea here is that assembly programmers often need to make re-
peated use of many variables that they tend to store close together in mem-
ory. Their life can be made easier if they can first use a new instruction to
specify the address of this general region of variable storage, such as A7B216,
then refer to each individual variable by the difference between its address
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and this region’s address, such as 016, 116, 216, 316, and so on, to pick each
of the variables in order. Here we’d use new offset instructions such as:

SETOFFSET $A7B2

ADDOOO $2 $0 $1

This adds the contents of addresses A7B216 and A7B316 and stores the re-
sult in A7B416.

Offset addressing was especially nice for assembly programmers in the
1980s, working on machines with 8-bit words but with 16-bit address spaces.
This was because they would otherwise need to use two words and two regis-
ters every time they wanted to represent a 16-bit address. Using offsets, they
could instead divide memory into 256 pages of 256 addresses each. They
could then choose to work on a single page at a time, using the page’s start
address as the offset. Then they would need only a single word to specify an
address within the page. For example, A7B416 would be considered to be
location B416 on page A716.

To implement offset addressing, an additional register is usually added
to the CPU design and used to store the offset. Its value can then be joined
onto new operands to form complete addresses when needed by later
instructions.

It is easy to see how the size of an instruction set can get very large once
all these variations come into play. We’ve only considered variants of a sin-
gle instruction, ADD. To be consistent, an ISA must typically create the same
chosen variations for every type of arithmetic instruction, which can lead to
hundreds of new instructions in total.

Subroutines
The word subroutine is one of many names—subprograms, procedures, func-
tions, methods—for a very similar concept: a piece of code sitting some-
where in memory that will do something when your main program calls
it, and will return to the same line in the main program after it was called.
This last bit distinguishes a subroutine from a simple jump like the goto state-
ment, which forgets where it was called from. The invention of the subrou-
tine is generally credited to Maurice Wilkes and his team around 1950.

In early high-level languages, only one level of subroutine calling was
allowed at a time. You had a main program that could call subroutines,
but subroutines could not then call other subroutines. More modern
high-level languages rely on the ability for subroutines to hierarchically
call other subroutines—including themselves, as in recursion—to encapsulate
complexity.

The term subroutine is generally used at the level of architecture and as-
sembly language. The other names are used in higher-level languages and
have historically had somewhat different meanings that have never been for-
mally defined or used consistently across most languages. The following list
is an attempt at definitions that capture what the words would mean if they
were ever used consistently by language designers:
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Function This is the easiest to define formally, as it’s a concept used
in the most heavily formalized functional programming languages. A
function is (ideally) a mathematical object that takes arguments as in-
puts and returns a value computed only from these inputs and not from
anything else beyond them. The function shouldn’t have any other side
effects, meaning it shouldn’t affect anything else.

Procedures This is a name for subroutines in some languages that may
or may not take inputs and don’t usually return an output, so they act
only via side effects. Some older languages allow only one level of call-
ing, meaning procedures can’t call other procedures.

Method This is a concept that comes up in object-oriented pro-
gramming to name a subroutine associated with an object. A method
may both return a value, like a function, and have side effects, like a
procedure.

All of these names are heavily abused and confused by practical pro-
gramming languages; for example, it’s common for languages to have “func-
tions” that produce side effects and don’t return values. Functional pro-
gramming languages are more likely to enforce the mathematical concept,
but even some functional programming languages allow side effects.

Now let’s look at how to implement subroutines.

Stackless Architectures
It’s possible to implement subroutines purely in software, without any addi-
tional hardware or instructions. You could do this by writing programs with
jump instructions and then having some convention to keep track of the re-
turn address. However, this is hard work for the programmer and slow for
the computer.

Early subroutine-capable architectures such as ENIAC added dedicated
CPU instructions to call and return, and simple hardware in the CPU to exe-
cute them. One approach used a single return address location in hardware.
A special dedicated internal register can be easily built into a CPU to store
a return address. This allows the main program to call and return from one
subroutine at a time; once you’re inside the subroutine, you can’t call and
return from another subroutine, because this would overwrite the single re-
turn address.

To enable subroutines to call one another (including recursively calling
themselves), architectures can add a hardware stack.

Stack Architectures
A stack is a simple data structure with two operations, push and pop. It be-
haves like a physical stack of papers on your desk. You can push a new doc-
ument to the top of the stack when it arrives, and you can pop only the top
document on the stack by picking it off and removing it. You can’t take doc-
uments from lower down in the stack.
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Using a stack, you can create a full trail of addresses to return through
in the case of nested subroutines. Each time a subroutine is called, its return
address is pushed to the stack. When the subroutine returns, this address is
popped off the stack and used to set the program counter.

Keeping track of subroutines this way can be especially useful in cases
of recursion. The stack typically grows very large during recursive execution
and (hopefully) is reduced as the program completes and data is read and
removed from the top of the stack. A stack overflow error is a failure condi-
tion where we run out of stack space; if you use a specific chunk of memory
to hold your stack, and you run out of space, the program will create a stack
overflow error as you try to write outside the stack boundaries. This usu-
ally happens because of something that’s gone wrong in an infinite loop of
functions calling themselves or each other. In modern computers, stacks are
much less resource-expensive to implement than they used to be, so they’re
the standard way to store return addresses.

Hardware stacks are found in most modern machines from the 8-bit era
onward. They use hardware digital logic implementations of the stack con-
cept in their CUs to enable arbitrary subroutine calling with enhanced speed
and security. These stack architectures have an extra, dedicated stack pointer
register, an internal register that contains a pointer to the top of the stack.
The stack itself may be stored in some area of RAM, with access to this part
of RAM often restricted at the hardware level. For example, a stack architec-
ture might have dedicated digital logic to test all load and store instructions
from the user, to make sure they aren’t trying to access the stack’s portion of
RAM. This prevents malicious programmers from interfering with the stack.

Some stack architectures hide their internal workings from the user, and
provide only new call- and return-style instructions in the instruction set.
When executed, the call instructions will activate digital logic that automati-
cally pushes the program counter to the stack, increments the stack pointer,
and jumps to the subroutine. Likewise, the return instructions will pop the
program counter, decrement the stack pointer, and jump back to the calling
function.

Other stack architectures allow full user access to the contents of the
stack in addition to or instead of call and return. For example, some de-
signs provide instructions such as PHA, for PusH Accumulator, and POPA, for
POP Accumulator. The former pushes whatever is in the accumulator onto
the stack and increments the stack pointer, and the latter pops the stack to
the accumulator and decrements the stack pointer. This design provides a
method to pass arguments to subroutines by storing them on the stack along
with the return addresses.
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CALLING CONVENTIONS

Whatever stack or stackless architecture is used to enable subroutines, it will
rely on the programmer to maintain a consistent calling convention so the
different parts of the program can correctly understand one another as they
pass and receive arguments. This is especially important when subroutines
are written by a different author from the caller code, as is the case when a
general-use library of subroutines is provided. A calling convention includes
the following:

• Where arguments, return values, and return addresses are placed:
in registers, on the call stack, a mix of both, or in other memory
structures

• The order and format in which arguments are passed
• How a return value is delivered from the callee back to the caller: in a

register, on the stack, or elsewhere in RAM
• How the task of setting up for and cleaning up after a function call is

divided between the caller and the callee
• Whether and how metadata describing the arguments is passed

Calling conventions aren’t part of CPU architecture. Rather, they’re social
agreements between programmers. A given architecture can often be used
with any one of many different possible calling conventions. In some cases,
CPU architects will suggest a convention to try to discourage fragmentation
between their users. In other (or sometimes, the same!) cases, programmers
create their own conventions and standards wars break out when they need
to interface their programs.

Calling conventions also define additional features for compatibility between
modern high-level languages and compilers. For example, compiled execut-
able code from two languages, such as C and C++, can link to and call one
another’s subroutines as long as they obey the same calling convention.

Floating-Point Units
We saw in Chapter 2 how floating-point numbers are represented with a
sign, an exponent, and a mantissa. Floating-point registers are specialized
user registers designed to store floating-point data representations for use
in floating-point computations.

Performing arithmetic on these representations is more complicated
than the arithmetic logic unit (ALU) operations on integers seen so far. To
multiply two floating points, for example, we need to multiply their mantis-
sas, add their exponents, and multiply their signs. To add two floating-point
numbers, we need to shift one of them by the difference in their exponents,
then add them, and possibly shift again and update the exponent. Dividing
can be error-prone when a large number is divided by a small one, and can
also result in special cases defined to yield infinity or NaN (not a number)
representations.
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This can all be done by combining simple ALU-style operations together
and using new components of digital logic. The resulting structure is called
a floating-point unit (FPU). FPUs are complex pieces of digital logic and ex-
pensive to design; they also take up lots of silicon and are prone to bugs. In
1994, Intel made an error implementing the FPU in their Pentium chip that
cost them half a billion dollars in recalls and reputational damage.

FPUs appeared in the 1980s, not inside the CPU but as optional ad-
ditional chips. For example, the Intel 8086 CPU could be paired with an
optional extra FPU chip, the lesser-known 8087. Nowadays, FPUs have all
moved onto the CPU and behave similarly to their ALU counterparts.

If you want to see what the dedicated registers and instructions on a
modern FPU look like, they take up most of a full book, volume 3 of the
amd64 reference manuals, which you’ll meet in Chapter 13.

Pipelining
Everything we’ve looked at so far involves writing a program in assembly lan-
guage, compiling that into machine code, and executing the machine code
from top to bottom, with some branching and looping. Fundamentally, the
instructions are brought in one at a time, and each individual instruction is
executed before the next is brought in. Most modern CPUs don’t work like
this. Instead, they work on parts of multiple instructions in parallel. We’ll
look at many more forms of parallelism in Chapter 15, but those that oper-
ate at this CPU level are known as instruction-level parallelism, and we’ll study
them here.

Pipelining is a form of instruction-level parallelism that appeared in the
32-bit era. A pipeline is like a production line, where there are multiple
workers doing tasks at the same time, as in Henry Ford’s 1913 car factory,
shown in Figure 8-1.

Figure 8-1: Ford’s 1913 production line
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Ford assigned one specialized task to each worker and positioned them
at fixed locations along a conveyor belt. Car parts moved along the con-
veyor, with each worker in turn doing their work on each car part.

Now replace Ford’s car parts with instructions from your machine code
program, and imagine them being run down this production line. Instead of
human workers, you have parts of the CPU performing tasks such as fetch,
decode, and execute. Suppose you’ve written 20 lines of code, and assume
there’s no jumping or branching. In the CPU designs we’ve seen so far, a
single instruction is placed on the production line and passes by the fetch,
decode, and execute workers in turn. Once it gets to the end of the produc-
tion line, the next instruction is placed at the start of the line. Most of the
workers thus end up standing around doing nothing for most of the time
when it isn’t their turn to work.

We could extract much higher efficiency from our workers by keeping
the whole conveyor belt full of instructions the whole time, rather than wait-
ing for one to finish before starting the next one. One worker could be exe-
cuting one instruction at the same time that a second worker is decoding the
next instruction and a third worker is fetching the instruction after that.

There are many different ways of dividing up the work of a CPU into
such stages, depending on the architecture type. The classic split considers
fetch, decode, and execute stages. Our LogiSim Baby used a cycle of five
ticks. Modern CPUs can have many more subdivisions—there are around
37 stages in a modern Intel processor’s pipeline!

At the digital logic level, pipelines can be implemented by having the
CU trigger multiple components at the same time rather than one at a time.
It’s common to show pipelines as diagrams like Figure 8-2.

Waiting
instructions

Stage 1: Fetch

Stage 2: Decode

Stage 3: Execute

Stage 4: Write-back

Pi
p
el
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Completed
instructions

0 1 2 3 4 5 6 7 8
Clock cycle

Figure 8-2: A diagram showing how instructions are handled
in a basic pipeline

In Figure 8-2, clock cycles go across from left to right, and four instruc-
tions (represented by squares) are shown passing through the pipeline. This
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is a four-stage pipeline, so it can work on up to four instructions at once (as
shown on clock cycle 4), each at a different stage of processing.

Pipelining is simpler and more efficient for open-loop, RISC architec-
tures, in which all instructions have equal durations so they can progress
evenly along the pipeline. It can quickly become complex and less efficient
for closed-loop, CISC architectures, where different durations for differ-
ent instructions must be taken into account, and where some parts of the
pipeline get left empty as shorter instructions execute alongside longer ones.

Hazards
There are several well-known scenarios, called hazards, in which problems
occur in pipeline execution. Let’s take a look at the main types of hazards.
Then we’ll consider how to fix them.

Branching Hazards
A branching hazard occurs when, somewhere down the pipeline, an if state-
ment is found and the other, earlier stages were working to complete one
outcome of the branch, but you need to go to the other outcome instead.
When a conditional branch is reached, you don’t know which condition will
be followed until the branch gets executed.

Data Hazards
If two of the workers are trying to hit on the same memory location—to fetch
and output to, for example—bad things are going to happen. We can split
these data hazards into three main categories:

Read after write This is where you have two instructions, the first try-
ing to write to memory and the second trying to read from the same
address. The logic of the program is supposed to be that the value that
gets read should be equal to what has just been written. But when pipe-
lining is in play, it may be possible for the RAM access of the read to oc-
cur before RAM has been changed by the write.

Write after read This is the other way around: here two instructions
are supposed to first read the old RAM value and then update it with a
write. But when they are interleaved by pipelining, it may be possible for
the part of the write instruction that actually changes the RAM value to
occur before the part of the read that accesses it.

Write after write This is where two write instructions interfere with
one another when trying to write to the same address. The program
logic is supposed to be that the first one writes, then the second one,
leaving the address containing the second one. But again, pipelining
may interleave stages of their executions, in some cases performing the
intended first write after the second.
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Structural Hazards
The third type of hazard, a structural hazard, is where multiple stages are
fighting for resources at the same time. In the production line example, the
factory might contain one physical calculator on a shelf behind the workers,
for their shared use. There may come a time when two of the workers both
want to use this calculator at once. For example, one might need to check if
something equals zero, while the other needs to execute an addition oper-
ation. The digital CPU analog of this would be two regions of digital logic
computing two pipeline states both needing to access the ALU or memory
at the same time.

Hazard Correction
Pipelining tends to work well for all types of signal processing—including
audio, video, and radio processing—because there isn’t much branching to
handle. The same kind of data is expected to flow through the pipeline in
real time and always be processed in the same way. For example, the codecs
in your digital TV or laptop used to decode and display movies will reliably
chug through frame after frame of incoming video and audio, doing the
same operations to decode and display each one, in the same order. They
don’t usually have to look at the content of the signals and change their be-
havior in response to this content.

Hazards become more problematic when you’re doing computations
that are continually checking the results and changing their flow based on
this state. As soon as you have programs with branches—and to a lesser ex-
tent jumps and subroutines—you have to think about how to address haz-
ards. Let’s go through a few general strategies.

Programming to Avoid Hazards
Skilled assembly programmers can write assembly code to avoid many haz-
ards, if they understand the architecture. This often involves considering
groups of neighboring instructions and thinking about how they could af-
fect one another in the pipeline, and changing the order of some instruc-
tions to make them further apart and less likely to affect one another.

Nowadays, most programming is done in compiled languages, so some
of the tricks that end-user programmers once employed have moved into
compilers. A good compiler can inspect the assembly code it’s produced
and look for places likely to lead to hazards. It can tweak this code as a hu-
man programmer would to reduce the likelihood of the hazard. For exam-
ple, the order of instructions that don’t affect each other can be swapped to
make two accesses of the same data occur further apart in the execution. Of
course, there’s still a human behind these sorts of optimizations: the authors
of the compiler, who have likely taken a strong interest in hazards and how
to avoid them.

Some ISAs provide a null operation (NOP) as an extra instruction that
means “do nothing.” NOP instructions still go through the pipeline, taking
up time slots, so a human programmer or compiler can insert them between
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hazard-causing instructions to spread them out and avert the hazard. This
typically requires less intelligence than reordering instructions, but will slow
down execution as the NOPs are processed through the pipeline.

Stalling
Stalling (sometimes known as bubbling) simply means putting the result of
the pipeline on hold to allow some stage to complete its work. For example,
if there’s a structural hazard and two stages want to use the ALU at the same
time, we just let one of them use it and tell everyone else to do nothing until
the ALU is free. In the production line analogy, this is like the system used
in factories where if a worker gets into trouble they can hit a button to stop
the conveyor belt to give them time to fix the problem.

To allow for stalling, additional digital logic can be added to the CPU
to detect the upcoming potential occurrence of hazards—for example, tem-
porally ceasing to trigger stages for the next instructions as soon as a jump
or branch is seen to be coming in. This is a heavyweight solution that has a
large time cost if it’s used frequently. As with NOPs, the whole pipelining
system is effectively disabled around hazards, so if we have to do this all the
time then we might as well just use a non-pipelined CPU. But stalling is rela-
tively simple and cheap in terms of silicon and design time to implement.

Redoing Work
Redoing work means that as a potential hazard instruction is being processed,
we allow the following instruction to begin its cycle as normal, with the hope
that the hazard won’t actually occur. If we later complete execution of the
potential hazard instruction and find that a hazard has actually occurred,
then we throw away the work that’s been done on the next instruction and
do it again.

For example, when a branch instruction arrives, we assume that it won’t
be taken, and begin fetching and decoding the following instructions at the
same time as testing the branch’s condition. If we then find the branch is
not to be taken, the work already done on the next instructions is useful
and is kept, progressing to execution. But if we find that the branch is to be
taken, we discard the work on the subsequent instructions and start fetching
and decoding different ones from the branch target address.

This strategy is more efficient than stalling, where a performance hit
is taken at every potential hazard, even the ones that don’t end up actually
occurring. Say there are 100 branches in your program, only half of which
are taken; stalling would delay all 100 of them, whereas redoing work delays
only 50.

Eager Execution
Eager execution means executing both possible branches at the same time for a
short period, and then killing the one not taken later on, once we figure out
which it should be. For example, a typical use of eager execution occurs in
instruction sequences such as (using Baby assembly):
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1: SKN 3

2: LDN 10

3: LDN 11

This sequence first asks if a condition is true; depending on the result,
it loads from either address 10 or address 11. In eager execution, we be-
gin fetching, decoding, and executing both lines 2 and 3 while we are still
executing line 1. Only later, once the result of the line 1 comparison is
known, do we decide which of line 2 or 3 is wanted. We keep the work that’s
been done on the desired line and throw away the work done on the un-
wanted one.

Implementing eager execution requires doubling up our physical digital
logic to perform twice as much computation in parallel during the period of
uncertainty. This could involve having two physical copies of the ALU, reg-
isters, and execution logic. This can be a good use for the additional silicon
that the transistor density form of Moore’s law currently provides, while not
allowing faster clocks.

Branch Prediction
Branch prediction is where we try to predict whether a branch will be taken
before actually executing it. Such prediction may initially sound impossible
(surely the very meaning of execution is to find out what the branch will do),
but we can often make use of prior knowledge to give us at least a better-
than-random guess.

For branch hazards, the redoing work approach can be viewed as
always predicting that branches won’t be taken. It begins to fetch and de-
code the instruction from the next numerical address while working on ex-
ecution of the branch instruction. Branch prediction generalizes redoing
work by trying to make a more accurate prediction about whether a branch
will be taken. Fetch and decode can then begin for whichever branch is pre-
dicted, and work redone only in cases where the prediction turns out to be
incorrect.

Branch prediction remains an active area of research, with several
strategies under investigation. One is to assume that all branches are taken—
essentially the opposite assumption of the redoing work approach. If users
wrote only programs whose branches originated from if statements, then
these branches would have a 50/50 chance of being taken, in the absence of
any other information. However, many or most of the branches that appear
in practical machine code originate from loops rather than if statements,
and the usual purpose of a loop is to repeat many, rather than zero or one,
times. Therefore, when branches originate from loops, they usually are taken
because the user wants to loop a few times.

Large-scale statistical studies of real-world machine code found in the
wild have confirmed this: their estimates range from 50 to 90 percent of
branches being taken.

In some cases, another strategy is for the human programmer or com-
piler to provide hints about which branches will be taken. This could include
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human programmers adding special comments to their assembly or high-
level code, or compilers using code analysis to create their own predictions
and annotations. For some compilation tasks, this is easy to do—for example,
if a user program says “repeat 100 times,” then we can make a good predic-
tion. Predictions are harder—in some cases uncomputable—to make in the
case of while loops.

A third, state-of-the-art approach is to use dynamic runtime branch pre-
diction, which involves building statistical or machine learning classifiers
into CPU digital logic and using them to make on-the-fly predictions. As
with all prediction systems, this requires choosing some features of pro-
grams that may be informative about temporally and spatially nearby branch
behaviors.

Simpler cases include keeping a log of observed frequencies of branch-
taking at each branch instruction during execution of the user program,
and using these frequencies as probabilistic prediction for which way the
branches will go if the same instructions are executed again.

More advanced cases now include linear regression and even neural net-
work classifiers built from digital logic and pretrained on large collections
of machine code gathered from real-world programs in the wild. These may
be trained on all kinds of features of the machine code, such as values of op-
codes and operands in many lines before and after a branch instruction.

Operand Forwarding
Operand forwarding is a technique for avoiding data hazards by adding digital
logic to directly route the result of an instruction to become an input to a
next or nearby instruction. For example, consider this program:

1: ADD R3 R1 R2

2: ADD R4 R3 R1

This computes R3 = R1 + R2, then R4 = R3 + R1, where all the operands
are registers. Here, instruction 2 requires the result of instruction 1 to be
placed in R3 before instruction 2 can execute. This will result in a data haz-
ard for most pipelines. However, the value destined for R3 may in fact be
available on the output lines of the ALU during execution of instruction 1,
but before it appears in its destination register. By connecting a physical
wire directly from the ALU output to where the data is required (such as an
ALU input), we can bypass the wait for the result to be deposited and reread,
and instead start using it immediately.

Out-of-Order Execution
Out-of-order execution (OOOE) is a more advanced form of instruction-level
parallelism than pipelining. It involves actually swapping around the order
of instructions as they come into the CPU, so they’re executed in a differ-
ent order than they appear in the program. OOOE architectures were first
enabled in theory in 1966 by Tomasulo’s algorithm, and appeared commer-
cially in the 1990s.
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The key to OOOE is recognizing that instructions in serial programs can
often be swapped without changing their results. For example, if we have
some variables being assigned values, we can make those assignments at any
time before the variables are next used without affecting the result; we’ll end
up with the same state overall. This gives us freedom to swap instructions
around to prevent pipeline hazards from occurring and to maximize effi-
ciency. Whether we have single or multiple hardware copies of CPU sub-
structures available, we can choose orderings that try to make the best use of
these resources, keeping them all as busy as possible.

To see how OOOE works, consider the following program:

1: DIV R1 R4 R7

2: ADD R8 R1 R2

3: ADD R5 R5 R9

4: SUB R6 R6 R3

5: ADD R4 R5 R6

6: MUL R7 R8 R4

There are six instructions here. Instruction 1, for example, sets regis-
ter R1’s contents to the result of dividing the contents of register R4 by the
contents of register R7. We’ll assume we have simple machines available for
division and multiplication, but that they’re slower than those for addition
and subtraction. The left of Figure 8-3 graphs the dependencies between the
instructions.

1 3 4

2 5

6

R1 R5
R6

R8
R4

1

3 5 2 6

4

Figure 8-3: A dataflow graph (left) and a schedule (right) for the
sample program, allowing for OOOE

As an example of a dependency, consider that instruction 2 can’t begin
execution until instruction 1 is complete, because instruction 1 writes to reg-
ister 1, which is needed as an input to instruction 2. The dependency graph
shows that we don’t need to execute the instructions exactly in their origi-
nal order. As long as any instruction is executed after all of its parents in the
graph, the result will be the same. We can reorder the sequence of instruc-
tions and/or execute them in parallel as long as the arrows in the graph are
respected.

The right of Figure 8-3 shows one possible ordering for execution of the
instructions. Here, instructions 1, 3, and 4 are executed in parallel to start.
Instruction 5 comes after 3 and 4, but can still occur in parallel with 1 (which
takes longer, being a more complex division operation). Instruction 2 can
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occur once 1 has finished, and 6 (another longer instruction, as a multiply)
must come last, since it needs the results of both 2 and 5. Depending on
how many ALUs we have available, we could execute this or similar sched-
ules much faster than a single series or even a pipeline of the original
program.

OOOE is usually performed by digital logic in the CPU, in real time
during program execution. Usually only a short window—such as 10 or 20
instructions—around the current instruction in the program is considered
for reordering.

NO T E If you extend the idea of OOOE into reordering and parallelizing entire programs,
you’ll arrive at GPU dataflows, which you’ll meet in Chapter 15.

Hyperthreading
In a basic CPU, only the fetching hardware is active during the fetch stage,
only the decoder is active during the decode stage, and only the ALU or CU
is active during the execute stage. Pipelining and OOOE are two ways to
make better use of the CPU hardware resources that are otherwise idle dur-
ing the fetch-decode-execute cycle, by having them work on parts of multiple
instructions at the same time.

Hyperthreading is another way to make use of CPU resources when they
would otherwise be sitting idle during the cycle. Rather than work on con-
secutive instructions from one program, we put them all together to form a
second virtual CPU core that operates on a separate set of instructions. Each
component of this virtual core runs out of phase with its use in the main
CPU core, when it would otherwise be idle. By collecting all the components
together, all out of phase, we create a whole extra CPU, keeping all the sili-
con in constant use at all times.

Hyperthreading was conceived in the 1970s and became widespread in
commercial CPUs during the 2000s. It effectively doubles the number of
apparent cores over the number of physical cores in a device, which is why
you often see your computer report having twice the number of cores that
were advertised on the hardware you bought.

Hyperthreading has the advantage over pipelining that you no longer
have to worry about hazards because the two cores can operate completely
independently of one other. On the other hand, it doesn’t increase the
speed of any one program. It also requires additional digital logic to read,
store, and write the states of the two virtual CPUs at the right times, and
duplication of some hardware components, so that one doesn’t affect the
other. In practice, pipelining and hyperthreading may be used together,
especially when pipelines are broken down into many smaller stages. Fig-
uring out how to balance them is advanced work that’s beyond the scope of
this book.
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Summary
Beyond a minimal CPU such as the Baby, architects are faced with many de-
cisions about what trade-offs to make between speed, usability, silicon size,
and energy costs. Adding more features to a CPU, such as more registers,
ALU and floating-point simple machines, stacks, and different addressing
modes, can make life easier and faster for the user programmer or compiler,
but at the cost of silicon and energy. Likewise, adding more instructions
can make life easier for some programmers and compilers who may ask for
them, but harder for others who have to keep up with the extra complexity.
Giving all instructions the same fixed duration makes life easier for pipeline
and OOOE designers and CPU debuggers, but may be less efficient if a few
complex instructions that require long execution times are in use.

RISC is a style that generally aims to keep instructions and instruction
sets small and simple, while making use of extra silicon to speed up the in-
structions via more registers, pipelines, and OOOE. CISC is the opposite
style: it prefers to make use of extra silicon to add more complex instruc-
tions and create larger instruction sets. The two styles tend to fit different
applications, as we’ll see in Chapters 13 and 14.

Even with the most advanced CPU design, your computing experience
would be very limited without input, output, and memory, and the next two
chapters will look at how to add these to your computer.

Exercises
Confusing a Pipeline
Design the simplest assembly program needed to confuse a basic pipeline,
making it run as slowly as a non-pipelined system. Try to extend this pro-
gram to further confuse each of the hazard-handling strategies as much as
possible. How likely are such programs to occur in practice, and what might
be done to avoid them?

Challenging
Try to build an FPU in LogiSim, based on the floating-point data representa-
tion seen in Chapter 2. Consider how previously seen simple machines can
be combined in each of the arithmetic operations of addition, subtraction,
multiplication, and division. For example, when two floats are multiplied,
their exponents are added.

More Challenging
Try to extend the previous LogiSim Baby design with some minimal pipe-
lining. For example, you could try to increment the program counter and
start performing the next fetch while the current instruction is executing.
The hard part is dealing with branching hazards. You may want to assume
initially that the branch will be taken, then add logic to clear things out and
start again if this turns out to be incorrect.
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Further Reading
• For the origin of the controversially named “von Neumann”

architecture, see John von Neumann, “First Draft of a Report
on the EDVAC,” June 30, 1945, https://history-computer.com/Library/
edvac.pdf.

• For the invention of subroutines, see Maurice Wilkes, David Wheeler,
and Stanley Gill, The Preparation of Programs for an Electronic Digital
Computer: With Special Reference to the EDSAC and the Use of a Library
of Subroutines (Cambridge, MA: Addison-Wesley, 1951).

• Human Resource Machine, Shenzen I/O, and TIS-100 are educational
video games that present CPU-like environments with different in-
struction sets and goals for you to explore.
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9
INPUT/OUTPUT

You’ve seen how to build a basic CPU and
RAM, which together can run programs.

CPU and RAM are great for performing cal-
culations, but to bring a computer to life with

graphics, sound, joysticks, and other interactions with
the real world, we also need input and output, known
together as I/O. In this chapter, you’ll see how to add
I/O capabilities using buses, I/O modules, devices,
and peripherals.

Basic I/O Concepts

To discuss I/O in detail, let’s first define a few terms. I/O modules are digital
electronics that—like RAM—are assigned and connected to addresses in the
computer’s address space, the range of possible addresses that the CPU can
access. I/O modules are also connected to devices, which are electronic sys-
tems, including digital and analog electronics, that aren’t connected directly
to the computer’s address space but that can communicate with it via the at-
tached I/O modules. Devices may be physically inside the computer, such



as an analog circuit that controls the scanning beam of a CRT monitor, or
outside it, such as the electronic circuits inside a printer.

Peripherals are the most obvious elements of I/O for most computer
users: they’re the physical objects that connect to the computer from the
outside, such as mice, joysticks, monitors, and printers. Peripherals are en-
cased in their own plastic and connect to the computer’s box via a wire that
the end user can easily plug and unplug. Some peripherals, such as printers,
physically contain their devices. Others, such as monitors, rely on a device
inside the computer box (CRT controllers, in the case of a monitor).

In the 8-bit era, computer design meant building a complete computer
by buying and connecting together CPU, memory, devices, and logic chips,
and perhaps custom-designing I/O modules. For example, the Commodore
64 mainboard shown in Figure 9-1 shows that a large part of the machine is
devoted to I/O.

I/O ROM CPU

Devices

RAM

Figure 9-1: A C64 mainboard, showing CPU, memory (RAM and ROM), I/O modules,
and devices

The I/O section in the top-left of the figure includes two Complex Inter-
face Adapter (CIA) chips, each of which contain multiple I/O modules. The
devices section in the bottom-right includes graphics and sound chips.

Nowadays, something like the entire mainboard of the Commodore 64
is shrunk down to a single system-on-chip (SoC) in your phone, but the struc-
ture was easier to understand and learn from when the parts were in phys-
ically separate integrated circuit (IC) packages. Keep this image in mind as
we move through this chapter.

To the CPU, I/O modules appear exactly like part of RAM. They have
addresses that can be read and written to, using the same load and store in-
structions as reading and writing to RAM. Now that we have both RAM and
I/O modules connecting to the same CPU address and data lines, we need a
way for them to share these resources. This can be done using the bus archi-
tecture seen in the next section. After discussing buses, we’ll look inside the
I/O modules and see how to communicate with them in more detail.
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Buses
A bus architecture is a specific type of network architecture in which every
device involved in communication has equal access to a shared wire or set
of wires, called the bus. Like the public transportation vehicle of the same
name, a computer bus is so-called because it is a public place (it abbreviates
the Latin omnibus, meaning “for all”). To illustrate the public quality of a bus
architecture, consider the example of a prison water pipe tapping system:
all the prisoners in a prison have plumbing connected to the same pipes, so
tapping on one pipe to transmit a plan for a prison breakout in Morse code
inevitably broadcasts the message to anyone and everyone who is listening
to the pipes. There’s no privacy in a bus architecture (unless encryption is
used), which may have interesting security implications if untrusted devices
are allowed to access it.

A bus is the simplest form of network, lacking the complexity of the in-
ternet’s packets, error handling, and routing. For example, it’s possible that
two prisoners will try to tap the pipe at the same time, creating a collision
that destroys both of their messages.

In general, a bus is composed of several nodes (things that want to talk to
each other) and communication lines (wires) between them. Modern buses
usually have many lines used in parallel, though there are also buses with
only one. We may divide these lines into control, address, and data lines.

A protocol is needed to ensure that signals don’t collide with the sig-
nals being sent by other nodes, so for a node to send a message to another
it must first announce whom the message is for—the address, on the address
lines—and announce what type of message it is—the control, on the control
lines. It then broadcasts the data on the data lines. Either you can have one
of the nodes in charge of the bus, enforcing the protocol by only allowing
nodes to write when it gives them permission, or you can trust the nodes to
implement the protocol themselves and play nicely with each other.

THE VICTORIAN INTERNET

The telegraph system of Babbage’s and Boole’s time has been called the “Vic-
torian Internet.” It was a bus architecture connecting sites in Britain, America,
and the British Empire. Human operators at a local station would tap out Morse
code text messages (telegrams) for customers, and listen for messages ad-
dressed to their station from elsewhere. All of the messages were transmitted
onto the same wire, which could be written to and read from by all operators.
These operators spent thousands of hours listening and writing to the wire,
becoming fluent in Morse code and developing their own Morse “speaking”
styles that could be used to recognize who was talking. They would also chat
with one another when not sending messages for customers, engaging in typi-
cal modern chat-room behaviors such as using abbreviated slang (textspeak),
falling in love, and even getting married to operators on other continents with-
out having met them in person.
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An advantage of a bus architecture is that it’s easy to add new devices
to the bus, as the same set of shared wires connect all the components. The
shared wires also make buses cheap to implement. On the other hand, the
bus can be a bottleneck, limiting the performance of the system. This is par-
ticularly annoying if you’re optimizing your CPU or memory to go very fast,
only to then have the data hit a bus and slow down. Bus performance can
also be limited by physical factors such as wire length and the number of
connections.

Bus Lines
The lines on the bus are the same as the wires we’ve previously connected
point-to-point between CPU (or its cache) and RAM. There are three differ-
ent kinds:

Address lines These are used to designate the source or destination
of data on the data bus. The width of the address bus determines the
maximum possible memory capacity (that is, the amount of memory a
system can address). For example, a system with a 32-bit address bus can
address 232 (4,294,967,296) memory locations. If each memory location
held an 8-bit word (byte), the addressable memory space is 4 GiB. For a
64-bit address space of 64-bit words, exactly 1 zebibit (26 × 264 = 270) of
memory can be used, which is enough to allow all of the data in a search
engine–sized data center to have its own RAM address.

Data lines These provide the path for the actual transfer of data among
nodes. A key performance factor is the width of the data bus (that is, the
number of data lines). A typical data bus consists of 32, 64, 128, or even
more separate lines. To send messages that are longer than the data line
width, you need to split them up and send them over several cycles. For
example, if a data bus is 32 bits wide and each instruction is 64 bits long,
then the CPU must access the memory module twice during each in-
struction cycle.

Control lines These are used to control access to and use of the data
and address lines. For example, the write-enable wire used previously
in Figure 7-10 when we discussed the Baby’s store operation is a simple
control line. More generally, as the data and address lines are shared by
many components, there must be a means of controlling their use such
that multiple components don’t attempt to write to those lines at the
same time. Further control lines can be used to request and negotiate
for this access.

The CPU-Bus Interface
Most CPUs are designed to connect to an external bus, printed onto the
mainboard, via pins on the CPU chip connecting to sockets on the main-
board. Where the bus wires physically connect to the CPU, the connection is
known as the front side bus (FSB). The vast majority of a CPU’s pins are taken
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up by the FSB, as can be seen in the Commodore 64’s 8-bit 6502 CPU chip
pinout and the 1990s 32-bit Intel Socket2 pinout in Figure 9-2.

Socket2

Figure 9-2: Pinout diagrams for an 8-bit 6502 (left) and 32-bit Socket2 chip (center),
plus a pin photo of a 64-bit LGA1155 socket CPU (right)

The 6502 here uses 16-bit addresses and 8-bit words, so it has 16 ad-
dress (A) pins and 8 data (D) pins. The R/W pin is for the read/write con-
trol line. In all, more than half of the chip’s 40 pins are devoted to the bus.
The Socket2 was used with 32-bit address spaces and 32-bit data words, so it
has 32 each of A and D pins (colored white and black in the diagram, respec-
tively). Meanwhile, 64-bit CPU chips and sockets need twice as many of each,
requiring them to be smaller and more fragile.

The CPU needs to communicate with the bus, but the bus is usually
slower than the CPU. Hence, CPU designers prefer to use registers to stage
data going in and out of the CPU (as in the Analytical Engine’s ingress/
egress axes, connecting the CPU to its mechanical rack bus). The bus is a
scarce resource, so we don’t want to use it for any longer than needed; if
data is staged, it can be put on and off the bus at whatever time the bus be-
comes available. Typically, these staging mechanisms include a memory ad-
dress register (MAR), which stores the address from which we want to read or
write, and a memory buffer register (MBR), which stores a copy of the data be-
ing written to or read from that address, as shown in Figure 9-3.

D Q

MBR

D Q

MARc

CPU

c

A

D

RAM1

c

A

D

IO1

c

A

D

IO2

A

D

Figure 9-3: A bus architecture, including a CPU, a RAM module, and two I/O modules
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To execute a load instruction, the operand containing the address to be
loaded is temporarily connected from its instruction register (IR) bits to the
MAR, creating a copy in the MAR. When this copy is completed, the MAR
is temporarily connected to memory as a read request, and the data from
memory is temporarily connected to the MBR, which takes a copy of this
data. Then the control unit (CU) can temporarily connect the MBR to the
accumulator or other user register. In register transfer language (RTL) style,
this can be written as:

t2, LOAD: MAR <- IR[operand]

t3, LOAD: BUS_A <- MAR

t4, LOAD: MBR <- BUS_D

t5, LOAD: ACC <- MBR

The same MAR and MBR registers can be used to execute a store in-
struction as well. The CU temporarily connects the MAR to the operand
bits in the IR containing the address to be written to; the MAR takes a copy
of the address. Then, the CU temporarily connects the MBR to the regis-
ter containing the value to be written; the MBR takes a copy of the value.
The MAR and MBR now contain all the required information describing the
store. Finally, the CU temporarily connects the MAR to the RAM’s address
lines and the MBR to the RAM’s data lines, and sets its command line to
store, which performs the store in RAM. In RTL this can be written as:

t2, STORE: MAR <- IR[operand]

t3, STORE: MBR <- ACC

t4, STORE: BUS_A <- MAR

t4, STORE: BUS_D <- MBR

t4, STORE: BUS_C <- True

Having the MAR and MBR also simplifies the design of CPUs that have
multiple user registers rather than just an accumulator. They make it easy
to separate out the logic and timing for selecting which register is to be con-
nected to the bus from the logic and timing of transferring the data to and
from the bus.

I/O Modules
Devices usually attach to a computer via an I/O module. This is a chip that
sits on the bus and at some addresses; it looks just like RAM to the CPU.
If you learn only one thing from this chapter, it should be this: I/O mod-
ules appear to the CPU and assembly programmer as an area of readable,
writable memory, just like main RAM. Unlike RAM, an I/O module also
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has wires coming out of the other side that go to the device. The module
presents a standardized interface to the CPU, and translates requests from
the CPU to specific signals on the wires to the particular device. Hence, we
can buy any device, such as a sound chip, on eBay and install it in a particu-
lar type of computer, as long as we make an I/O module that provides a suit-
able address space for the computer and sends whatever signals the sound
chip is expecting.

Storing to these addresses might transmit commands to the device; it
might write assembly-like instructions specific to the module for further
translation into device commands (used in modern graphics cards, for ex-
ample), or it might send data to the device (such as what audio to play).
Loading from these addresses might read data from the device, such as a
keyboard key press or a microphone sound wave, or read status informa-
tion from the device, such as whether there’s a printer jam. It’s up to the
designer of an I/O module how they want to interpret these load and store
commands.

Some I/O addresses may be implemented by actual RAM inside the
module (distinct from regular RAM chips, because this specialized RAM has
extra connections to the rest of the I/O circuitry); other times, it may just
be immediate digital logic with no RAM. Both methods present the same
interface to the CPU, which doesn’t know if there’s real memory there or
something else.

In addition to device communication, the I/O module will also usu-
ally handle control and timing, data buffering, and device errors. Let’s turn
there now.

Control and Timing
An I/O module must be able to coordinate the flow of data between the in-
ternal resources and external devices. The latter may be slow, so the module
manages them independently of the CPU. This allows the CPU to go and do
other things while it’s waiting. This is a form of non–CPU level parallelism.

The I/O module achieves this independent management by using data
buffering to transfer data into and out of main memory or CPU. Buffer-
ing means using a dedicated area of memory, called a buffer, as a staging
area. Slow devices can take their time writing to or reading from a buffer,
independently of the CPU. The fast CPU can also read or write to the same
buffer, independently of the device.

Ring buffers are used in audio and similar real-time signal-processing
I/Os. Conceptually, a ring buffer is a region of data in which the data
items are organized in a circle, each with a previous and next neighbor,
as in Figure 9-4.
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Figure 9-4: A ring buffer.
Both pointers move clockwise.
The string 0123456789 has
been written, with the initial 01
now overwritten by 89. Of this,
01234 has been read.

Two pointers—which can be visualized as clock hands—keep track of the
read point and the write point. As new data arrives in real time, it’s written
to the write point, which is then incremented to point to the next slot. Even-
tually the write pointer makes it all the way around the ring, at which point
it starts overwriting old data. The user program can request to read the next
available items at any time. When this happens, the data at the read pointer
is copied out and the read pointer is incremented until the number of items
requested is met or the read pointer hits the write pointer, meaning there’s
no further new data available.

Double buffers are often used for graphics rendering. Here, two buffers
are maintained, each representing the layout of the screen, as in Figure 9-5.

Buffer

1

Buffer

2

Time

Figure 9-5: Double buffering

At any instant, one buffer stores a completely rendered image and is
connected (shown by the thick black outlines in the figure) to the graphics
display hardware, which works to physically display it. Meanwhile, the other
buffer is used to gradually build up the next image to be displayed—for ex-
ample, by drawing the background and then adding sprites and overlays to
it. Only when the new buffer is finished is the output line swapped over to
connect it to the display; then the original buffer is cleared and used to start
drawing the third image in the sequence. This approach means that only
completed images are ever shown on the screen, which avoids flickering im-
ages that show the parts of the images being built up in real time. (Triple
buffering is also used in some cases, allowing two future frames to be drawn
in parallel while the current frame is being displayed. This can achieve a
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higher frame rate, as long as it’s known far enough in advance what will be
wanted.)

Error Detection
Another major function of I/O modules is device error handling. What
should an I/O module do if the CPU asks it to do something, but then it
detects an error from its device? The error could be a mechanical or electri-
cal malfunction in the device (for example, a paper jam in a printer or a bad
disk track), or it could be the result of unintentional changes to bit patterns
as they’re transmitted between the device and the I/O module, often due to
noisy external cables.

Typically, a device shouldn’t report an error directly to the CPU, which
may be busy doing other things. Instead, it reports the error to the I/O
module, which can then pass it on to the CPU.

I/O Module Techniques
Transferring data from an external device to the CPU requires several steps.
First, the CPU writes to the bus, asking the I/O module to check the status
of the device. Next, the I/O module returns the device status in reply, also
writing to the bus. If the device is ready, the CPU requests transfer of data
with another bus write. The I/O module then obtains a unit of data from
the device. This data is finally transferred via the bus from the I/O module
to the CPU.

This process will be slow if it requires waiting for things in the real world.
If a gigahertz CPU asks to read 100 audio samples, and audio samples ar-
rive only at 44 kHz, it will need to spend most of its time doing nothing and
waiting around for each of these samples to arrive and be sent on the bus by
the I/O module. We would prefer the CPU to keep busy doing other things
while waiting for the requested I/O to take place. This can be accomplished
via three common techniques. We’ll discuss each in turn.

Polling
Suppose your boss needs you to get a report finished. One management
strategy they could use is polling, in which they repeatedly come back and
ask you, “Have you finished that job yet?” every hour, day, or month.

A CPU can similarly use polling to check whether and when an I/O re-
quest has completed. The CPU requests an action by the I/O module over
the bus. The I/O module starts to perform the requested action, setting ap-
propriate bits in an internal I/O module status register as it goes. The CPU
then periodically checks (or polls) the status of the I/O module by reading
this status register until it finds that the action is complete.

For example, the CPU could ask a webcam’s I/O module to grab a new
frame of video data. It could then poll until the status is reported complete,
then load the data from the module, knowing that it’s ready.
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Advantages of polling are that it’s simple to implement and the CPU has
direct control over I/O operation, requiring very little hardware support.
The disadvantage—as in the human boss case—is that the CPU must periodi-
cally poll the module to check its status. This ties up the CPU, creating long
periods where it does no useful work. The CPU is slowed to the speed of the
peripheral, which is inefficient. Just like for humans, it gets quite exhaust-
ing needing to remember to ask, every day, if you’ve done your job yet—and
to do the actual asking, too. It interferes with the mental workflow of other
tasks for the manager and the worker.

Interrupts
Most managers would prefer to ask you to tell them when you’ve done your
job, so they can forget about it until you take the initiative to tell them it’s
complete. This approach is an example of an interrupt architecture. It frees
the manager up to focus on other useful work.

In a computational interrupt architecture, the CPU is extended—for ex-
ample, by adding an extra register and an instruction to set its contents—to
enable the programmer to tell it the address of a special subroutine called
a handler. The CPU is also extended by adding an extra dedicated physical
pin called an interrupt request (IRQ) input, along with adding digital logic to
the CU to make use of the pin. A high voltage on the IRQ tells the CU to
alter the program flow by immediately calling the handler subroutine.

To use an interrupt architecture, the IRQ pin must be connected to a
dedicated output from the I/O module. The programmer creates a handler
subroutine intended to be executed once the I/O work is done, and tells the
CPU its address. The programmer then writes a main program that instructs
the I/O module to do actions. When an action command is sent to the I/O
module, the CPU forgets all about it and continues executing the main pro-
gram. The I/O module makes its device do its thing, which can take some
time. When the device is done, the I/O module interrupts the CPU by set-
ting the IRQ line to high. This calls the handler subroutine, which makes
use of the new data from the device or tells it what to do next. Like any sub-
routine, calling the handler includes storing and returning to the value of
the program counter for the instruction being interrupted, so the main pro-
gram resumes after the interruption has been handled.

An advantage of interrupts is that they’re fast and efficient, with no
need for the CPU to wait or to have to manage polling requests. A disadvan-
tage of interrupts is that they can be tricky to write, especially when multiple
I/O modules are in play, all sending interrupt signals at the same time. A
re-entrant architecture allows interrupt-handling subroutines to be themselves
interrupted by higher-priority IRQs, while a non-re-entrant architecturemight
ignore or delay these meta-interrupts. The code for a re-entrant architecture
needs to think very carefully about how to handle meta-interrupts correctly,
as a form of concurrent programming.
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CPUs have a finite number of physical IRQ pins—sometimes fewer pins
than there are devices that want to use them. Pins are a valuable, limited
“real-estate” resource for modern CPUs, as adding more pins would force an
increase in the physical package size of the chip.

IRQ HELL

Interrupts were a major bane in the lives of computer music creators in the
1990s, as they needed to use a lot of external devices, such as multiple sound
cards, MIDI cards, and input controller devices, all at the same time. You would
get several physical IRQ lines on your Intel CPU chip, each intended to repre-
sent one physical device connected to the computer. If you had more devices
than available IRQ pins, you needed a hack to get around this limitation. Hacks
included trying to convince hardware and drivers made by different manufac-
turers to share a single IRQ line, or disabling IRQs used by system hardware
to free them up for use by audio devices. Sometimes the latter had system-
destroying side effects.

Direct Memory Access
Both polling and interrupts are very slow for tasks that involve transferring
large amounts of data from a device (such as a hard drive) into RAM. For
example, if we request a 1Mb transfer, the I/O module will go off and do
this, leaving the CPU free and happy, but when the interrupt is made this
will create a big, slow job for the CPU to load every bit of that data into reg-
isters and then send it out to RAM. Direct memory access (DMA) is a technique
to avoid this problem.

DMA requires a dedicated hardware DMA controller (an I/O mod-
ule itself) to be placed on the system bus. So far, all our uses of the system
bus have involved the CPU talking to another node on the bus, which may
be RAM or an I/O module, but buses also allow non-CPU nodes to com-
municate directly with one another, independently of the CPU. Any node
can put a message to any other node on the bus, and this is done in DMA:
the CPU grants authority for the I/O module to communicate directly with
RAM over the bus, reading from or writing to memory without any CPU
involvement.

This frees the CPU to do other things; as with an IRQ, the CPU can “set
and forget.” DMA usually sends an interrupt when a task is complete, so the
CPU is involved only at the beginning and end of the transfer. This is espe-
cially useful for large data movements because the data doesn’t have to go
through the CPU.
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I/O Without Modules
I/O modules are the preferred architecture for I/O in most cases, but other
module-less I/O architectures also exist and have their places in the world.
We’ll consider some of them now.

CPU I/O Pins
Some older CPUs, as well as some modern embedded CPUs, forgo I/O
modules and bus-based I/O and have the CPU communicate directly with
a few specific devices via dedicated pins. This approach isn’t scalable, as
pins are a limited and valuable CPU resource (they determine the package’s
physical size). But it can reduce the complexity of the architecture in cases
where we know firmly in advance that only a couple of specific devices will
ever be attached. If the whole I/O system is designed this way, it can remove
the need for IRQ pins and control logic. It also frees up the bus for other
activities.

Memory Mapping
Rather than having an addressable I/O module, some architectures use
areas of regular RAM as the interface between CPU and device. In these
architectures, the RAM is readable and writable by both the CPU and the
device (so it needs some extra non-bus wires connecting the pins to devices
and to the bus). With this setup, the CPU writes directly to actual RAM as
usual, then the device (or a module-like chip interfacing between the device
and the RAM, but not on the bus itself) reads out of the RAM and translates
into device commands like an I/O module. To the programmer it might
be invisible whether the video RAM addresses they’re writing to are in fact
regular RAM used in this way, or whether they’re part of a hardware I/O
module.

Bus Hierarchies
In modern architectures we often have more than one bus, forming a hierar-
chy of buses, as shown in Figure 9-6.
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Figure 9-6: A bus hierarchy
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The upper level here shows the same bus as in Figure 9-3. However,
the I/O module IO2 is an interface to a lower-level bus, which hosts three
further lower-level components. This structure can improve usability and
speed. Traditionally, each I/O module was connected to a single device and
had to be mounted at particular addresses in address space when the com-
puter was turned on. It was hard to add or remove (“plug and play”) devices
while the computer was on. By introducing a single I/O module, such as a
USB hub at a fixed address, we can allow for multiple plug-and-play devices
to all connect to this same I/O module via a lower-level protocol, USB. This
arrangement also solves the IRQ hell problem, as the I/O module can use a
single, valuable IRQ line to alert the CPU to interrupts from any of these de-
vices. The lower-level bus can be built from slower and cheaper technology
than the system bus, as it only needs to run at the speed the data is actually
available (which may be limited, for example, by waiting for real-world audio
or spinning hard disks).

Summary
For a computer to interact with the outside world, such as through graph-
ics and sound, it needs input and output. This can be achieved through I/O
modules, which are digital logic components that to the CPU look and act
like RAM. Stores sent to their addresses are interpreted as commands to
control devices in the outside world, while reads from them are used to send
data that has been obtained from sensors in the outside world.

CPU, memory, and I/O all share the same address space and commu-
nicate using a shared, public bus of wires, which include address, data, and
control lines. CPUs interface to the bus via the staging registers MAR and
MBR.

CPU may also interface directly to a limited number of I/O modules via
interrupt lines, which the I/O module uses to request the CPU to jump to a
handler subroutine. I/O modules have also become increasingly indepen-
dent of the CPU and can use methods such as DMA to communicate with
one another and with RAM over the bus without involving the CPU.

An important use of the bus and of I/O is for managing real-world
memory, including multiple physical RAM and ROMmodules, and hard
disk and optical disc devices. We’ll study these in the next chapter.

Exercises
Challenging

1. Take your LogiSim Baby from Figure 7-13 and extend it so that stor-
ing to one of its addresses acts to turn a simulated LED on and off.

2. Extend it again so that loading from another address acts to read
the state of a simulated switch. You can do this by reducing the
size of the RAM by two addresses, then adding a new digital logic
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I/O module to the bus that listens for those addresses and acts
accordingly.

3. Extend it yet again so that the I/O module decodes multiple com-
mands sent as data inside the store instruction and uses them to
command the LED to do different things, such as flash at differ-
ent speeds. Here the LED and switch represent general devices that
could be controlled in this way.

Further Reading
See The Victorian Internet by Tom Standage (London: Weidenfeld & Nicol-
son, 1998) for a comparison of the 19th-century telegraph and the modern
internet.

214 Chapter 9



10
MEMORY

So far we’ve constructed registers and
a small, Baby-sized RAM to use as mem-

ory. We made these from flip-flops. Larger
memories can’t usually afford to use flip-flops,

however, so they’re typically made using other tech-
nologies, like DRAM and hard disks. These other
technologies are slower, creating a trade-off between
speed and size. In this chapter, we’ll look at the details
of larger memories. We’ll discuss primary memory,
caches, and secondary and offline memory, and begin
by looking at the memory hierarchy.

The Memory Hierarchy

At any point in time, usually only some of our data is important and in fre-
quent, current use. Other data is used occasionally, and some is out of use
entirely. We usually want to arrange our data so that the parts in working
use are kept in fast, easily available memory, while the other parts are kept in
slower, cheaper memories. This arrangement is known as a memory hierarchy.



Memory hierarchies played out in pre-digital life, too. For example, peo-
ple used to carry around shopping lists and important phone numbers writ-
ten on scraps of paper for immediate, regular use. On their desks would
be larger paper documents used only when at work. Beyond the desk were
shelves and cabinets containing books and files with data used less often.
Still further removed were storage boxes in attics, then local and national
libraries and archives that required increasing time to visit. Data could be
promoted and demoted between these different stores at different times.
For example, a book might sit in the library unused for years, then be pro-
moted to your desk for a few weeks when you needed it. Unused documents
on your desk could be demoted to a filing cabinet then to the attic.

The same concepts apply to computer memory. When fast and slow ver-
sions of the same technology are available, the fast one is better, so it can
command a higher price, meaning you can buy less of it compared to the
slower one. Given a budget, you can thus trade off speed for capacity. Since
most people want some data to be more readily accessible than other data,
it makes economic sense to buy and use a mixture of memory types, ranging
from small and fast for working data to large and slow for rarely used data.
Figure 10-1 shows the approximate speeds and capacities for each of the lev-
els of memory hierarchy that we’ll discuss in this chapter.
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Figure 10-1: The memory hierarchy

These levels can be defined as follows:

Registers Memory inside the CPU, as described in Chapter 7.

Cache Memory outside but close to the CPU, which contains fast copies
of primary memory.

Primary memory Memory stored in an address space that is directly
accessible by the CPU’s load and store instructions.

Secondary memory Memory not directly accessible to the CPU via its
registers and address space, but that can be moved into primary mem-
ory by I/O to enable such access.
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Tertiary memory Memory that isn’t directly connected to the address
space or to I/O, but that can be mechanically connected to I/O without
human intervention.

Offline memory Memory that can be connected only to the computer
with human intervention.

According to Church’s definition of a computer, any machine that
relies on fixed-length addresses—such as the Manchester Baby we built in
Chapter 7—isn’t quite a computer. A Church computer needs to be able to
simulate any other machine, and to do this it needs to be able to ask for and
get more storage as needed. Machines based on a CPU and bus with fixed-
sized addresses can’t easily extend their memory beyond that fixed size,
however. To get around this problem, and to allow for unlimited memory,
we need to use memory levels below primary memory, such as the secondary
and tertiary levels shown in Figure 10-1. These lower levels aren’t addressed
directly from the CPU, but instead are devices that connect to it through
I/O modules.

Primary Memory
Primary memory (aka system memory) is memory stored in an address space
that’s directly accessible by the CPU’s load and store instructions. This in-
cludes RAM and ROM. Most modern machines use von Neumann architec-
tures; remember, this means that the program and data are stored together
in the same primary memory.

In primary memory, each memory location is given a unique address.
For example a 16-bit address space has 216 = 65,53610 unique addresses,
numbered from 000016 to FFFF16. Each address stores a fixed-size array of
bits called a word. Often, but not always, the word length is chosen to be the
same as the address length, such as storing 64-bit words in a 64-bit address
space on a modern laptop. You saw a simple way to implement this structure
using flip-flops in Chapter 6; you saw how to attach it to a CPU directly in
Chapter 7 and indirectly via a bus in Chapter 9.

Bytes and Endianness
Related to the SI versus binary prefix debate is the question of whether to
measure memory in bits (b), bytes (B), or words (W). Bits are the most basic
unit, and they work well with SI units.

In modern use, a byte means 8 bits, and the term comes from the 8-bit
era, when what is now known as a word was by definition 8 bits. One byte
was what was stored at one memory address, and what was brought into one
register of the CPU for processing. The term byte is supposed to suggest the
CPU taking the smallest “bite” of memory to process. It was deliberately mis-
spelled to avoid confusion with the term bit. “Byte” originally meant any
such natural CPU size, ranging between 1 and 6 bits in early processors of
the 1950s. It only later came to be standardized to mean 8 bits.
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In the 8-bit era, it was very natural to measure primary memory in
bytes and what are now called kibibytes. You would compute the number
of addresses, such as 216 for addresses that are 16 bits long, then append
the word bytes to this number to get the total addressable memory size. For
example, a “64 kibibyte” machine such as the Commodore 64 had 216 ad-
dresses containing 1 byte each.

The byte really should have little or no relevance in the modern 64-bit
age, in which words are 64 bits rather than 8 bits. If we were to store 64-bit
words at each of 232 = 4 gibi addresses, we would talk about having primary
memory sizes such as “4 gibiwords.”

However, most actual current machines don’t address memory per word.
For historical reasons, they usually continue to address memory per byte,
just as they did in the 8-bit era. This is called byte addressing and it means that
a word on, say, a 32-bit architecture is stored across 4 bytes with separate ad-
dresses. Suppose we want to store a 32-bit word such as 12B4A85C16. We do
this using 4 bytes containing 1216, B416, A816, and 5C16.

A standards war raged for decades over the order in which these
bytes should be stored in memory addresses. The ordering is referred to
as endianness. Big endians believe the bytes should be stored in the order
(1216, B416, A816, 5C16) because this looks like the human-readable num-
ber 12B4A85C16. Big endians say this makes life easier and nicer for the
humans who see architecture, including architects themselves and assembly
programmers.

Little endians, on the other hand, believe the number should be stored as
(5C16, A816, B416, 1216). This initially seems crazy to most Western people.
In particular, if you string the bytes together in this order, you have the non-
sensical number 5CA8B41216 rather than the desired 12B4A85C16. How-
ever, little endians point out that such stringing is based on certain cultural
prejudices.

The West uses the Arabic decimal number system, which writes num-
bers with the highest power on the left and the lowest on the right. It im-
ported this system unchanged from the original Arabic. But Arabic text is
written and read from right to left, the opposite of Western text. In Arabic,
a number string such as “24” is written the same, and has the same value,
24, as in the West, but it’s read from right to left as “four and twenty.” The
zeroth column is the units, and the first column is the tens. This makes
sense when arithmetic is performed using the number, because almost all
arithmetic algorithms begin by operating on the zeroth column and move
progressively up the higher-numbered columns. The numbers of these col-
umns match the powers that the base is raised to—for example, the zeroth
column is the units, or zeroth power.

The little-endian system assigns numerical addresses so that the zeroth
byte is at zero offset from the address of the word, and the nth byte is at an
n byte offset. This can make arithmetic easier and faster for the machine in
some cases. For example, if the machine is adding two words of different
byte lengths (say, a short int plus a long int), it’s easy and quick to find the
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nth byte of each. Similar issues can also arise for words containing instruc-
tions of variable lengths: with little endianness, you can always be sure that
the opcode is at zero offset rather than having to look for it. Little endian-
ness is now dominant in commercial architectures, so it has effectively won
the war.

Memory Modules
RAM and ROM often come in discrete modules that can be added and
removed to change the amount of available memory. With a bus architec-
ture, these modules can easily be attached and detached. For example,
Figure 10-2 shows one ROMmodule and two RAM modules on the same
bus as a CPU.
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Figure 10-2: A bus architecture including a CPU, two RAM modules, and a ROM module

In general, there could be many modules of both RAM and ROM. All
the RAM modules can see the same signals passing along the bus, but each
module is configured with a different part of the address space, so only the
single module that hosts the specified address will actually respond.

All bus modules—including memory and I/O modules—are usually man-
ufactured to respond to some default address space, such as starting at ad-
dress 0. However, when they’re mounted onto a bus, these addresses need
to be remapped to be unique when compared to the other modules. This
remapping is done by digital logic components called memory controllers,
which listen to the bus for global addresses and route them to the appro-
priate module, converting to the module’s own local addresses.

Random-Access Memory
Random access means that any random location in memory can be chosen
and accessed quickly, without some regions being faster to access than oth-
ers. By contrast, something like a cassette tape or punch-card deck isn’t ran-
dom access because it’s faster to access data in sequence than to fast-forward
or rewind to a far-away location. While RAM stands for “random-access
memory,” it’s a historical misnomer that doesn’t paint a full picture. By
modern convention, RAM refers to memory that’s not only random access
but also both readable and writable, as well as volatile, meaning its data is
lost when the machine is powered off. Many ROMs are also random access,
but they aren’t considered RAM under the conventional use of the term be-
cause they don’t fit the other parts of the definition.

Memory 219



HISTORICAL RAMS

We’ve already discussed Babbage’s Analytical Engine RAM, which is still the
foundation for RAM architecture today, in Chapter 3. In the Analytical Engine,
each memory address corresponds to a stack of gears whose rotations rep-
resent a word. One address at a time can be physically connected to the bus.
Once connected, any rotation of the gears will be transferred first to the linear
motion of the bus, and then to rotation of a register in the CPU, and vice versa.
Now let’s consider a few other historical examples of RAM.

Acoustic Mercury Delay Line RAM

In “From Combinatorial to Sequential Logic” on page 144, we discussed how
the presence and absence of the audio feedback created by an electric guitar
and amplifier feedback loop could be used to store 1 bit of information. This
was, in fact, exactly how computer memory was implemented in the UNIVAC
era, using mercury delay lines, as shown in the following figure.

A delay line was literally a microphone and speaker placed some distance
apart and used to store a bit of information through feedback. By placing them
at two ends of a tube and filling the tube with mercury, the speed of sound is
delayed, so the tube can be made shorter than earlier versions using air.

In machines of this era, delay lines could be organized into an address space,
as in the Analytical Engine. When the CPU executed a load or store, this would
be implemented by making and breaking the electric circuits to connect the
required delay line to the bus, disconnecting the others and placing a copy of
the data onto the bus for transmission.
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Williams Tube RAM

The Manchester Baby was built to research a new type of RAM, known as the
Williams tube. The technology, shown below, was conceived in 1946, based
on the cathode ray tube (CRT), as found in old TV screens.

As with CRT screens, the Williams tube fires a stream of electrons in a beam,
and uses adjustable magnets to deflect the beam to land on one pixel at a time,
in a scanning pattern covering a screen. The screen is made from a fluorescent
material, meaning that each pixel glows when absorbing the electron beam.
Unlike CRT televisions and monitors, the Williams tube’s purpose was not as a
human-readable display but as actual RAM storage. Pixels retain their charge
and color for a short period of time after they’re hit by the beam. This means
they can be used in a feedback system: we write a screen-full of pixels using
the scanning beam, quickly read the screen’s state, and pass the data read
off the screen back to the scanning beam to be written to the screen again.
This refreshes the data on the screen, keeping it alive for as long as we like,
rather than allowing the pixels to fade away.

The original Williams tube’s screen contained 32 words of 32 bits each, with
each row of the screen being one word and each column of the screen being a
bit within a word. Thus, the whole system stored 32×32 = 1,024 bits. Phos-
phor was used as the fluorescent material, which glows green when stuck by
the electron beam.

Static RAM
The kind of RAM we saw previously in Figure 6-22, made from flip-flops, is
known as static RAM or SRAM (pronounced “es-ram”). Because SRAM is
made from flip-flops (the same structures that are used to make CPU regis-
ters), it’s fast and expensive. The flip-flops are typically built from around
four to six transistors each (depending on the flip-flop type and on how the
logic gates are implemented). They have stable memory states, meaning they
don’t have to be actively refreshed. They’re available for reading almost im-
mediately after being written to. What sets SRAM apart from CPU registers
is that SRAM is addressed, and CPU registers aren’t.
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Figure 10-3: An SRAM
chip

SRAM is typically used to implement caches,
as we’ll discuss later in the chapter. It isn’t usually
used for main memory, except in some specialized
and expensive machines, such as high-end routers,
where main memory access speed is critical.
Figure 10-3 shows an SRAM chip.

Cache chips like this may be placed between
the CPU and RAM. Alternatively, a similar SRAM
cache might be found on the same silicon as the CPU.

Dynamic RAM
Dynamic RAM (DRAM) is cheaper and more compact than SRAM, but
slower. Instead of being made from flip-flops, it’s made using cheaper and
slower capacitors. A capacitor is a component for storing electric charge. It
consists of two metal plates separated by an insulator. Current can’t flow
across the plates, but placing a current on them causes them to accumulate
charge until they’re full of it. Capacitors don’t usually appear in CPU de-
sign; they’re a different kind of electronic component. One bit of DRAM
storage is made from just one transistor plus one capacitor. Capacitors can
be manufactured on silicon using similar masking processes to transistor
manufacture.

As RAM, DRAM features the same addressing system as SRAM, and
its circuit diagram has the same overall structure as SRAM, based on words
stored at addresses. The difference is that the words are implemented with
capacitors instead of flip-flops (Figure 10-4).

DRAM is structured as a 2D array of words or bytes, with each located
at a “row” and “column.” The requested address is converted (by a mem-
ory controller chip) into two smaller addresses per row and per column,
which are AND gated together using a single transistor at the combined
address. This saves a huge amount of digital logic, but the work needed to
split the address into two parts makes DRAM addressing slower than SRAM
addressing.

Due to the nature of capacitors, reading the DRAM discharges it and
destroys the stored information (as in the Analytical Engine’s RAM). Read-
ing and writing the capacitor state is an analog process, which takes time to
complete. The charge can also leak away over time, as capacitors are analog
devices. To handle these related problems, DRAM must be periodically re-
freshed, for example, around every 64 milliseconds on a 2018 DRAM. (The
need to constantly refresh is the source of the “dynamic” in DRAM.) Like
mercury lines and Williams tubes, a refresh reads the current state and then
rewrites it a short time later. Refreshing must be timed carefully and may
sometimes conflict with and stall a CPU read or write, which then has to
wait until the refresh completes before trying again.
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Figure 10-4: A DRAM circuit, showing capacitors and addressing

DRAM benefits from pre-charging, roughly a way to “warm it up” just
before it’s used; this avoids recharging conflicts with access. Hence, mod-
ern CPUs and memory controllers work together to try to predict—several
instructions in advance—which memory should be “warmed up” before use.

Modern DRAM chips are usually packaged together on printed circuit
board modules of around eight chips, each sharing part of an address space,
as shown in Figure 10-5. These modules attach to a motherboard via a stan-
dard interface, as seen previously in the introduction (Figure 2). Extra mem-
ory can be added to a desktop PC by adding more DRAM modules to its
memory slots.

Figure 10-5: A DRAM module
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Single in-line memory modules (SIMMs) have a 32-bit bus width, and they
were standard in 1990s PCs. Double in-line memory modules (DIMMs) re-
placed SIMMs in the 2000s. They have a 64-bit bus width, and each stores
many gigabytes. Double data rate (DDR) DRAM doubled the speed of
DRAM through technology that enables data to transfer on both the rising
and falling edges of the clock. This doubles the bandwidth (as bandwidth =
bus width × clock speed × data rate). SIMMs and DIMMs have gone through
several improved standards that can be visually distinguished by the differ-
ent notch positions, designed so they can be inserted only into the right type
of sockets.

Error Correction Code RAM
RAM, like other chips, has become so miniaturized that the component size
is getting close to atomic scales. At these scales, quantum effects and particle
physics come into play. Quantum effects can include various types of inher-
ent noise and uncertainty about the location of particles used in memory.
Cosmic rays are random particles most commonly including electrons, alpha
particles, and muons, hurtling at high speed through space from either the
sun or elsewhere in the galaxy. If a cosmic ray collides with a sensitive com-
ponent of RAM, then it can corrupt it and flip its Boolean state.

Error correction code RAM (ECC-RAM) has extra chips on the DIMM that
store extra copies or checksums of the data and use them to automatically
correct such flips at the hardware level. ECC-RAM is primarily used in space
applications where computers are located outside the protection of Earth’s
atmosphere and so are more exposed to cosmic rays. As its price falls, it may
also be found in other high-value, safety-critical systems on the ground.

THE ROWHAMMER VULNERABILITIES

Rowhammer refers to a set of memory hardware vulnerabilities currently affect-
ing computer security. DRAM capacitors are now so small and tightly packed
that their electric fields may affect neighboring rows of memory. Security re-
searchers have begun to exploit this effect to read and write memory belonging
to target programs. The researchers write new programs and arrange for them
to be stored in a region of memory physically next to, for example, the ad-
dresses containing your online banking password, owned by the target pro-
gram. They then load and store data in their own program’s locations, in ways
that are likely to trigger physical interactions between the capacitors in their
own and the target’s memory. For example, this could include putting their
own addresses into states likely to cause cosmic ray–style errors in the target
memory. Or they might be able to infer the state of the target memory by
observing similar errors or small time delays in their own reads and writes
caused by the target’s capacitor states.

Research is currently ongoing into defenses against rowhammer attacks. Ap-
proaches include use of ECC-RAM to correct any maliciously induced cosmic
ray–style errors, use of higher memory refresh rates, and software-level solutions
such as operating system code to randomize the locations of programs in mem-
ory and prevent deliverable co-location of code next to targets.
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Read-Only Memory
Read-only memory (ROM) traditionally refers to memory chips that can only
be read from, not written to, and that are pre-programmed with permanent
collections of subroutines by their manufacturer, then mounted at fixed
addresses in primary memory. ROMs have since evolved to include other
types of memory that don’t fit this traditional definition or name very well
or at all.

First, the ROM versus RAM distinction has never been a true partition
because, as noted earlier, ROM chips are random access, just like RAM:
they’re mounted in the main address space and accessing any address within
them takes the same amount of time. The difference between ROM and
RAM is that RAM is readable and writable, while ROM is traditionally only
readable.

Second, ROMs have evolved over time to allow increasing ease of rewrit-
ing, with programs stored in ROM that are able to be rewritten in some way
now known as firmware. The following sections describe the main steps of
this evolution, as illustrated in Figure 10-6.

SD cardEEPROMEPROMPROMMROM

Figure 10-6: Evolution of ROMs: MROM, PROM, EPROM, EEPROM, and SD card–
mounted flash. Note that, unusually, the actual silicon is visible in the EPROM package,
through a transparent window, which is needed to expose it to light.

Let’s go through a few of these types of ROM.

Mask ROM
Mask ROM (MROM) is ROM whose contents are programmed using photo-
lithography by the manufacturer. It remains read-only forever and can’t
be overwritten. If you want to update an MROM chip, you have to remove
it, throw it away, and insert a brand new chip containing the new content.
Photolithography is very expensive, so MROMs are difficult to produce and
to upgrade.

Programmable ROM
Programmable ROM (PROM) was a great advance over MROM. Similar to
the programmable logic arrays (PLAs) discussed in Chapter 5, PROMs are
chips manufactured by photolithography to include a generic circuit with
many fuses. The programmer can then selectively blow the fuses to create
different structures. While PLAs enable arbitrary digital logic networks to
be burned in this way, PROMs instead contain a fixed structure of addresses
and words, and allow only the bits composing the words to be burned, to
make a ROM. Usually each bit contains 1 when its fuse is intact and changes
to 0 if its fuse is blown. Like PLAs, PROMs can never be erased once they’re
programmed.
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Erasable Programmable ROM
Erasable programmable ROM (EPROM) is like PROM, but the chip’s data can
be erased using ultraviolet light. Then new data can be burned on. This
cycle can be repeated many times. Although the erasing process was quite
complex, requiring that you take the chip out of the computer and put it in
a light box, it was still something you, a skilled end-user customer, could do
without needing the computer manufacturer.

Electrically Erasable Programmable ROM
Electrically erasable programmable ROM (EEPROM) is like EPROM in that you
can wipe the entire chip and rewrite it, but here you only need to use elec-
tricity to erase and reprogram. This removes the need to physically manip-
ulate the ROM; it can remain inside the computer. EEPROM is used today
in ROMs that allow their firmware to be upgraded. If you’ve ever done a
firmware update, you’ll have seen that it can be done entirely in software,
without having to physically touch anything. You wouldn’t want to be updat-
ing firmware every day, but maybe once per year or whenever a bug fix has
been found.

Flash Memory
Flash memory is EEPROM that can be erased and rewritten block-wise, mean-
ing you can selectively wipe and rewrite just one small part, or block, of the
memory at a time. This way you can leave most of the ROM intact, unlike
with regular EEPROM, where you have to wipe and rewrite an entire chip of
ROM at a time, as in a firmware update. Flash memory makes it much eas-
ier to rewrite portions of ROM frequently, while the chip is online, making
it more feasible for day-to-day storage, functioning almost like RAM in some
cases.

Caches
A cache is an extra layer in the memory pyramid between the fast registers
of the CPU and the slower RAM. It stores copies of the most heavily used
memory contents, making them available for quick retrieval. (Cache is an
archaic word for a store of items such as food, weapons, or pirate treasure.)
Without a cache, RAM would connect straight to the CPU, either directly, as
discussed in Chapter 7, or using a bus with control (C), address (A), and data
(D) lines, as discussed in Chapter 9 and summarized in Figure 10-7.
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Figure 10-7: A basic CPU, bus, and RAM architecture

The problem with this kind of cacheless architecture is that most pro-
grams need to access RAM frequently, but the capacitors that implement
DRAM are slower than the flip-flops that implement the CPU’s registers.

226 Chapter 10



RAM thus becomes a major bottleneck for system speed. It’s no use having
a fast, gigahertz CPU if the RAM is running orders of magnitude slower and
the CPU has to wait around for each load and store to complete. Adding
an SRAM-based cache made from flip-flops between the CPU and RAM, as
shown in Figure 10-8, helps avoid these bottlenecks.
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Figure 10-8: A basic CPU, bus, and RAM architecture with a cache in between

When the CPU needs to load some data, the cache checks if it has it,
and returns it quickly if so. If not, the cache refers to the next memory level
down (in Figure 10-8, RAM) and fetches the data from that level. Caching
can also occur at all levels of the memory hierarchy, from registers to hard
disks and jukeboxes (more on the latter in the “Tertiary Memory” section).
However, it’s most commonly considered at the primary memory level, as
we’re discussing here, between the registers and the main DRAM memory.

Initial designs began with a single cache, made from SRAM. More re-
cent machines have made use of Moore’s law for transistor density to fill sil-
icon with larger caches and more levels of cache. It’s common today to have
at least three cache levels, called L1, L2, and L3, as in Figure 10-9.
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Figure 10-9: A basic CPU, bus, and RAM architecture with L1, L2, and L3 caches

All these cache layers between CPU and DRAM memory are typically
made in SRAM, but they have different operations policies that trade off
size and speed in their different digital logic implementations. Historically,
caches lived on dedicated chips outside the CPU. While lower levels still do
this, a major trend is to move bigger and higher cache levels onto the CPU
silicon itself.

Understanding the caches of your machines helps you write faster pro-
grams. Typically, each level of cache is 10 times faster than the one below
it, so when you fill a level you’ll see a sudden slowdown in memory access.
If you know the cache sizes, you can redesign your code to keep data in use
within known cache-level limits to benefit from their speed.

Cache Concepts
Caches are based on the principle of locality, which states that only a small
amount of memory space is being accessed at any given time, and values
in that space are being accessed repeatedly. It’s therefore useful to copy
recently accessed values and their neighbors from larger, slower memory
to smaller, faster memory. There are several different ways to think about
“neighbors” and “locality.” Temporal locality is the property that values tend
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to be accessed repeatedly at nearby times. Sequential locality is the prop-
erty that some sequences tend to be re-accessed in the same order multiple
times. Spatial locality is the property that values nearby in memory tend to
be accessed together. These concepts apply to both instructions and data,
often arising due to loops and subroutines.

Cache memory is made of many cache lines. Each line contains a block
with copies of several contiguous words from memory, as well as a tag, an
address or other identifier describing which memory location has been
copied into the block. Each line also has a dirty bit that tracks whether the
CPU has changed the value in the cache, making it different from the equiv-
alent value in memory. Table 10-1 shows a few example cache lines.

Table 10-1: Cache Lines
Tag Block Dirty bit
$08F4 01101100 01101100 10011010 1
$2AD5 10010101 11100110 00110110 0

Each cache line shown in the table has a block of three 8-bit words, a
tag consisting of the full address from a 16-bit address space, and a dirty bit.
The 1 dirty bit for the first line indicates it’s been updated, while the 0 dirty
bit for the second line indicates it hasn’t.

We don’t cache individual addresses, but rather lines because it’s very
cheap to move around larger chunks of memory rather than individual words.
By bringing in whole lines around a target word, we exploit spatial locality—
data and programs in neighboring locations are likely to be used next. The
line prepares for this.

Some cache systems use “hash functions” to choose a location in the
cache for storing a piece of data, usually based on the data’s address in
lower-level memory. A hash function is a many-to-one function that maps a
big input number to a smaller output number, the hash value. It’s not usually
possible to recover the original value from the hash value. For example, a
function that takes the last two hex digits of a hex number is a simple hash
function: hash(9A8E16) = 8E16. The function that performs a Boolean AND
of all binary digits in a number is another hash function: hash(011010012)
= 0&1&1&0&1&0&0 = 0. A commonly used hash function for caches is to
compute the value of an address modulo the number of available lines in the
cache.

Finding an item in a cache is known as a hit. Not finding an item in a
cache is known as a miss. When a miss occurs, we have to go back to the un-
derlying memory and find the item there instead, usually making a new copy
in the cache for future use. The hit rate is the ratio of hits to attempts (hits
and misses together). This measures the proportion of cache lookups that
are successful. The miss rate is the ratio of misses to attempts. This measures
the proportion of cache lookups that are unsuccessful. The hit time is the
time required to access requested data if a hit has occurred, and the miss
penalty is the time required to process a miss.
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A cache has only a limited number of lines, and they quickly fill up as we
store cached copies of everything that we access from the underlying mem-
ory. Once the cache is full, we’ll continue to request new addresses. These
will initially miss, but temporal locality suggests that these new addresses
are more likely to be reused than the older ones in the cache. We should
therefore choose lines in the cache to overwrite, discarding their previously
cached addresses and replacing them with the new ones. The contents of
the overwritten lines are called victims.

Once we have a cache structure, we need algorithms, implemented in
fast digital logic, to manage it. We need to decide how to best make use of
the available lines, and how to create and look up tags. As with most digital
logic design, there will be trade-offs between methods that are simple and
methods that are fast. The latter tend to require more silicon, making them
more complex, error-prone, and expensive. Let’s take a look at a few options
for using caches.

Cache Read Policies
Reading from a cache is a simpler task than writing to it, so we’ll first study
some options for cache read algorithms.

Direct Mapped
Direct mapping is the simplest, easiest, and cheapest cache read policy to im-
plement and understand. It’s sketched out in Figure 10-10.
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Figure 10-10: A direct mapping cache read policy (showing lookup and caching)

In essence, the line where we store or look for a tag is addressed using
a fixed hash of the tag. A line with this tag will only ever be stored at a sin-
gle location. If multiple lines compete for the location, the new one will re-
place the older one. For example, suppose we load from address 67AB16.
We might compute hash(67AB16) = 416, which means that this address and
its contents will be cached in line 416, victimizing anything that was previ-
ously on this line.

The drawback is that direct mapping can’t keep multiple in-use addresses
in cache if they share the same hash. Suppose our program has a tight loop
that reads and writes the two alternating addresses 67AB16 and 12C916
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many times. The problem here is that hash(67AB16) = hash(12C016) = 416.
Both addresses will continually fight and victimize one another, overwriting
line 416, even if no other addresses or cache lines are being used in the loop
at all. In such a case, the cache will give no benefit at all, as every attempt
will miss.

Fully Associative
To fix the problem with direct mapping, we’d like to have addresses use dif-
ferent cache lines depending on how in-use our lines are, so that we victim-
ize lines that are the least used, as sketched out in the fully associative cache of
Figure 10-11.
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Figure 10-11: A fully associative cache sketch

Here, each line of cache RAM is given its own digital logic block, includ-
ing a comparator, multiplexer, and OR arrays. Only three such blocks are
shown for illustration purposes, but for a 256-line cache, for example, there
would be 256 such blocks, all running in parallel.

We want to be able to store a tag, block, and dirty bit on any available
line and be able to find it quickly. Caching is the easy part here: we just cre-
ate some digital logic to count how much use each line is getting and to pick
out the line with the lowest count.

The cache lookup is the harder part. In direct mapping, we just com-
puted the same hash function as we used for caching, to tell us at which line
to find a desired address. Now it could be anywhere in the cache, so we need
to add lots of extra digital logic to check each of the lines’ tags for a match
with the desired one and activate the matching line if it exists. Doing this in
parallel (which is the only realistic way to make this fast enough to be useful)
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requires N copies of this matching digital logic, one for each of the N lines of
cache, making it a much larger and more energy-consuming beast.

Set Associative
Set associative cache reading is an attempt to get the best of both of the above
methods. Here we partition the N-line cache into several smaller sets of
lines. We use hashing on addresses to hash to a set number, rather than a
line number. During caching we find the set number from this hash, similar
to the direct mapping approach, then choose as the victim the line within
this set that has the least usage, similar to the fully associative approach.
During lookup we again find the set number from the hash, then we use
parallel matching checks on all items in just the one set to quickly find the
matching line.

This approach means we only have to activate the comparators within a
single set, rather than the entire cache, but we still avoid the direct-mapped
problem of tight loops sharing hash values. In practice, this is often found to
be a nice balance.

Cache Write Policies
Caches become a bit more complicated when we do stores because a store
changes the state of the memory. Suppose we’ve recently loaded an integer
17 from address 540A16 and cached a copy during the load. We want to in-
crement this integer to 18 and store the result back at 540A16. Due to the
locality principles, it’s likely that we’ll continue to both load and store from
540A16 in the near future, so rather than store 18 directly in 540A16, it may
be faster to store it only in the cache line that’s currently caching 540A16.
This means that all the future loads and stores can just hit the cache and
don’t need to go to main memory.

The problem is that eventually this line will be victimized and we’ll lose
all the changes we’ve made to the value; the main memory still contains the
old value of 17. To avoid this, at some point we need to copy the modified
value back to main memory. The dirty bit shown earlier in Table 10-1 tracks
whether this needs doing. It’s set to 0 if the value in the line is the same
as the value in memory, or to 1 if the value in the line has been updated but
the value in memory hasn’t. Algorithms called cache write policies use this
dirty bit to manage the copying back to memory. Let’s look at two different
approaches: write-back and write-through.

Write-Back
Write-back is the simpler cache writing method: it copies the contents of the
cache block back to RAM only when the line is victimized. This is relatively
slow, however, because victimization occurs only when an instruction is in a
rush to get executed. We get told to start writing back only once the victim-
ization has been announced, and the victimizing instruction will now have to
wait for us to do a slow RAM access before it can overwrite our victim line.
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Write-Through
Write-through is a potentially faster alternative to write-back, although it uses
more resources. In write-through, we don’t wait until our line is victimized
to copy our line’s block back to RAM; rather, we do it multiple times, con-
tinually, in the background, using digital logic attached to the cache line and
bus. This logic acts similarly to an application like SyncThing or Dropbox,
continually looking out for any changes in the cached version and copying
them back to the main version in RAM. This doesn’t create extra work for
the CPU, as the extra digital logic is located on the cache itself. It does, how-
ever, lead to more traffic on the bus, as we’re sending these updates many
more times than with the write-back approach.

Advanced Cache Architectures
Consider how caches should interact with the advanced CPU developments
of Chapter 8. Pipelined CPUs need to care a lot about cache misses, as they
form another possible hazard. An efficient pipeline may be timed to assume
that memory accesses will be cached, and if there’s a miss they’ll need to stall
or otherwise handle this hazard.

You saw in Chapter 8 how branch prediction attempts to guess the
flow of a program to enable pipelines and out-of-order execution to go
more smoothly. This can be used in conjunction with caching to preemptively
fetch and store data—that is, before the actual load and store instructions
are reached. These instructions take much longer to execute than in-CPU
operations, so it’s useful to initiate them early. CPUs can look ahead in the
program to try to guess which parts of main memory are likely to be needed
many instructions down the line, and start caching them in advance so the
CPU fetches will be faster.

As mentioned, each layer of the cache—L1, L2, and L3—provides roughly
a tenfold speedup over the layer below it, so the potential gain from pre-
emptively moving data higher up in the memory hierarchy isn’t trivial. The
caches can always be rolled back and the CPU stalled if preemption gets
it wrong. It’s not the end of the world if we bring the wrong data into the
cache: the cache is a big place, and it’s okay to change what’s in it.

Due to the row-column structure of DRAM addressing, it’s faster to read
multiple items in a single DRAM row all at once rather than individually.
(Once a row is activated, it’s almost free to read many columns versus a sin-
gle one.) Hence, modern DRAM controllers will typically work in harmony
with the cache to move large DRAM rows into cache lines.

Cache writes can unnecessarily slow down a system if we know in ad-
vance that the data won’t need to be read again soon. In this case, writing
to the cache and then transferring to main memory can be slower than just
writing directly to main memory. Modern CPUs may provide special instruc-
tions for cacheless writing, which canny programmers and compiler writers
can use to make programs faster.

It’s been found empirically that L1 caches work more smoothly if they’re
split into two separate, parallel caches, one for instructions and one for data.
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This can occur in Harvard architectures, where instructions and data are
already separated in RAM, but also in von Neumann architectures, where in-
structions and data can be distinguished by which part of the CU is request-
ing them (instructions are requested during the fetch stage, while data is
requested during the execute stage). This separation occurs only at L1, with
lower cache levels sharing instructions and data, as in Figure 10-12.
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Figure 10-12: A basic CPU, bus, and RAM architecture with separate L1 caches for instructions and data, and
shared L2 and L3 caches

Separating the instructions and data at the L1 level appears to be effec-
tive because both data and programs exhibit spatial locality individually, but
with little locality between them. Also, instructions aren’t usually overwrit-
ten, while data often is, so separating out the instructions can simplify the
cache write process.

Secondary and Offline Memory
Secondary memory is memory that can quickly be brought into addressed
memory space via I/O. Data items in secondary memory don’t have ad-
dresses in the primary memory address space. Rather, they’re accessed via
I/O, usually via an I/O module that does sit in the primary address space
and relays requests to the secondary storage. Secondary storage is some-
times called online storage to emphasize that it’s powered, active, and avail-
able whenever the computer is on.

Offline memory is that which can’t automatically be loaded into primary
memory without manual human interventions. Often this includes second-
ary memory media that are physically ejectable and replaceable, such as
tapes, discs, and USB devices. These media are secondary memory when
connected to the computer, and offline memory when disconnected. Off-
line memory is typically used for backup and archival purposes, as well as for
transportation. The fastest way to move petabytes of data around the world
is still to put it on a truck as offline memory and drive it to its destination.

Secondary and offline memory should really nowadays be measured in
bits and SI units—for example, describing an “8.8 terabit hard disk” instead
of a “1 tebibyte hard disk.” This is because they aren’t part of primary mem-
ory address space and so aren’t addressed using primary memory’s word
or byte addresses. The concept of bytes is even less relevant here than in
modern primary memory. However, as primary memory is still often byte-
addressed and measured in bytes, most people still have a better feel for sizes

Memory 233



in bytes rather than bits, so they choose to measure secondary memory in
the same units.

Secondary (and offline) memory is usually characterized by requiring
some mechanical motion to look up data, rather than being random access.
This includes scrolling through tape or spinning discs made from various
materials. We’ll look at some details of these technologies next.

Tapes
Tapes are one-dimensional data stores that must be scrolled left or right to
locate a required datum. You can think of human-written paper scrolls, like
the Torah, as the original tapes. Tapes aren’t random access because a read-
ing device has a position at one point in the tape, and it takes longer to move
the tape (or the reader) to access a far-away location than a nearby location.
Fast algorithms using tape storage need to take this structure into account
and optimize memory access to reduce large address jumps.

Punch Cards
Punch cards are the original computational secondary storage, as used in the
Jacquard loom and Analytical Engine (seen in Figure 1-11). They continued
to be used in IBM Hollerith machines, and were used to store and read pro-
grams for early electronic machines of the 1960s. Occasional industrial use
continued even into the 1980s, and allegedly at least one UK council may
still be using them today. In punch cards, binary digits of data are repre-
sented by the presence or absence of holes punched or not punched at a
series of physical locations on a card or piece of paper. The holes are usually
about the size made by the desktop hole punchers you buy to file your paper
documents into ring binders.

Cards are 2D, having rows and columns. Typically each row stores one
word, with their row numbers acting as addresses (in a secondary address
space, not primary RAM addresses). Conceptually, and sometimes physi-
cally, decks of cards are chained together to make what is really a 2D tape.

Punched Tape
Punched tape is an alternative to punch cards. Such tapes were used by the
British Post Office, formed the inspiration for the Turing Machine, and
were also used in the Colossus, as seen in Figure 1-22. Depending on your
point of view, tape is conceptually simpler than cards because it’s just a sin-
gle 1D row of bits; or it’s more complex than cards because you have to worry
more about aligning and reading words, which on cards are easily presented
as rows.

Magnetic Tape
Magnetic tape was developed in the 1920s for analog audio recording in stu-
dios, commercialized for home use as 8-track systems in the 1960s, then
used widely in 4-track compact cassettes during the 1980s. Analog magnetic
tape was also widely used in the 1980s for home video recordings, following

234 Chapter 10



one of the first modern data standards wars between competing VHS and
Betamax formats.

In these systems, a magnetizable material such as iron oxide is formed
into a tape structure, and the level of magnetization at each point along the
tape is used to store data. Unlike punched paper, magnetic tape is easy to
remagnetize and can be rewritten many times.

The same magnetic tapes can be used to store digital information, in
various ways. For example, 0s and 1s can be encoded as single cycles of two
different audible frequencies—a method that’s resilient to the heavy noise
added by most tape devices. Algorithms developed for optimal access of
punched tape carried over directly to magnetic tapes, as in the 1980s ma-
chine of Figure 10-13.

Figure 10-13: A 1980s compact cassette and player/recorder,
used for both analog music and digital file storage

Magnetic tape is still in use today for offline storage, specifically
for weekly or daily backups of company systems. Tape is cheap and cost-
effective for large-scale storage, where access time is less important. Tapes
are thus useful for the daily backup task because you want to have lots of old
backups kept around for as long as possible. In particular, if someone at-
tacks your company in a more subtle way than just deleting everything—for
example, by making a series of small changes to your database—it’s useful
to have a long series of backups so you can recover the state of the system
from different days, weeks, months, years, and even decades. You can buy
a new tape for a few dollars every day to get this assurance. Having many
tapes around also means they can be kept at many more locations than can
hard drives—for example, with a different employee taking one tape home
each day so that even if half the staff’s houses burn down on the same day,
you still have many recent backups around.

The most popular current standard for magnetic tape storage is Linear
Tape Open (LTO), shown in Figure 10-14.
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Figure 10-14: An IBM Ultrium Linear Tape Open
cartridge and drive

LTO is an open source standard that, as of 2020, stored around 36TB
on about 1 km of tape in one cartridge that fits in your pocket and takes
around 12 hours to write. This is a good size and time for most small busi-
nesses; they can back up the whole system overnight onto a single cartridge.

Disks
Audio recording began in the 1870s with wax cylinders, as shown in
Figure 10-15.

Figure 10-15: A wax cylinder
audio storage device

Here, sound waves enter the acoustic horn and are concentrated to
vibrate a needle, etching the sound wave into a spiral around a hot wax cylin-
der as it rotates and is slowly moved left to right. When the wax cylinder is
cool it can then be spun past the needle again to make it vibrate in the same
ways, and have its motions amplified by the horn, replaying the sound.

Wax cylinders were used commercially until 1898, when they were re-
placed by gramophones with discs, rotating at 78 revolutions per minute
(Figure 10-16, left). These “78” disks used the same idea of etching the ana-
log sound wave directly into their spiral grooves, and their vinyl descendants—
now with electrical amplification—are still in use by DJs today (Figure 10-16,
right).
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Figure 10-16: A gramophone (left) and a modern
Technics SL-1200 turntable (right)

Unlike audio discs, which have a single track spiraling in from the edge
to the center, most data disks are truly 2D, as they have many independent
tracks, each at a fixed radius, as shown in Figure 10-17.
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Figure 10-17: The single track of an audio disc (left) and
the 2D track of a data disk (right). The latter shows a
track (A), sector (B), geometric sector (C), and cluster (D).

Tracks near the edge are larger than those in the center, so they store
more data. Tracks are divided into fixed-data-size sectors around their cir-
cumference. Each sector has an address composed of its track ID and loca-
tion within the track. In most systems, sectors store their own location in
some of their bits so that we can figure out which part of the disk we’re look-
ing at. They may also store redundant bits, which compensate for physical
damage to the disk, using Shannon’s theory of communication. Sectors may
be grouped into contiguous clusters, which are the smallest unit that can be
read or written together.

Data on disks can be accessed in an almost random-access manner: indi-
vidual sectors can be stored or retrieved in any order, not only sequentially,
but reads and writes to nearby sectors and tracks will be faster due to the
motion of the disk and head. It’s easy and fast to read from a series of sec-
tors in order around the same track as they spin past the head. If you want
data on the same track but at a different angle from the current sector, you
have to wait for the disk to spin around to bring that sector under your head.
If you want data from a different track, you have to move your head along
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the radius, which is very slow, as it’s a physical device. I/O modules control-
ling spinning disks thus need to consider the access time—the time it takes to
read or write one sector. Access time is composed of two main factors: seek
time is the time it takes for the arm to position itself over the track, and rota-
tional delay is the time it takes for the desired sector to position itself under
the head.

Floppy Disks
Magnetic disks use the same technology as magnetic tape to represent data,
but they arrange the magnetizable material into a 2D disk rather than a
1D tape. The disk is read and written by a magnetic head on an arm, like a
gramophone needle. Floppy disks (Figure 10-18) first appeared in the 1960s.
They’re so-called because they physically flex.

Figure 10-18: Three generations of floppy disks: 8 inch
(1970s), 5 1/4 inch (1980s), and 3 1/2 inch (1990s)

Floppy disks are vulnerable to damage, so they’re usually encased in a
plastic sheath, as in the figure.

Hard Disks
Hard disks are made of nonflexible materials. They can store higher infor-
mation densities and spin faster than floppies. These devices usually require
sealing the head into a package with the disk, as in Figure 10-19, rather than
allowing removable disks, as with floppies.

Figure 10-19: The inside of a magnetic hard drive
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Hard drives usually contain multiple hard disks packaged together, each
with its own head, with a single address space spanning all of them. This can
help reduce access times, because the heads can all read and write together.
The disks spin at speeds such as 90 to 250 Hz, which causes a layer of air to
lift the head off the surface, so the head doesn’t physically contact the plat-
ter. This means there’s no physical wear to the head or the disk. Designers
have invested heavily in technology to automatically and rapidly park the
head if the unit is in physical danger, such as being struck or pushed. With-
out this, the head would crash into the disk and destroy it during such an
incident.

Optical Discs
Optical discs are modern-day version of the Babylonian clay tablets seen
in Figure 1-5. Like those tablets, they’re solid objects with small cavities—
known as pits—made in them to represent data, as shown in Figure 10-20.
Like punch cards, they use binary encoding, so each location either con-
tains a pit or doesn’t contain a pit. The pits are read using a laser, and their
nanometer scales are comparable with the wavelengths of this laser light.

CD DVD HD DVD Blu-ray

I = 800 nm I = 400 nm I = 200 nm

λ = 405 nmλ = 405 nmλ = 650 nmλ = 780 nm

1.1 mm 0.6 mm 0.6 mm
0.1 mm

I = 150 nm

Figure 10-20: Four generations of optical storage

LaserDisc (1978) was the first optical disc, having a 12-inch diameter like
a vinyl album and marketed for home video. Compact discs, or CDs (1982),
used roughly 800 nm pits, read by a laser head, to store up to 700 MB of
audio data. CDs started seeing use for general rather than audio data stor-
age in 1988 with the CD-ROM specification. Like CDs, these became read-
only after initially creating the pits on their surfaces. CD-R was a version that
simplified the recording process, allowing home users to “burn” their own
CD-ROMs, again only once. These were used in the late 1990s for copying
audio music collections, first using CD audio representations and then using
bulk MP3 storage. They were usually blue on the burnable side and gold on
top. Their “burning” was a physical process involving lasers and heat; this is
the origin of modern slang “burning” now used for writing to other types of
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ROM, such as flash or FPGA. CD-RW was an improved CD-ROM that could
be rewritten several times.

Digital Versatile Disc (DVD) (1995), was an order of magnitude improve-
ment, reducing pit size to 400 nm to achieve disc capacity of up to 4.7GB
using the same size physical disc as CDs. DVDs were initially used for video
but soon also for general data. As with CDs, write-once DVD-R and rewrit-
able DVD-RW were also developed. Blu-ray (like its short-lived competitor,
HD-DVD) reduced the pit size again, this time to 150 nm, allowing storage
up to 25GB on the same size disc. As these pits are smaller, they require
shorter-wavelength blue rather than infrared or red laser light to read them,
hence the name.

Solid-State Drives
For secondary storage, most current computers have moved from hard
drives to solid-state drives (SSDs). These are manufactured to have the same
form factors and I/O interfaces, and similar capacities, as hard drives, but
with no moving parts. This makes them faster, more reliable, lower power,
quieter, smaller, and less prone to breakage when dropped. As there are no
moving parts, they can be truly random access. SSDs are flash memory, as
we’ve previously reviewed.

The same flash memory technology is also used as offline storage, where
SSD drives are easily removable, such as when connected to I/O via USB
(known as USB sticks) or SD (known as SD cards).

Tertiary Memory
Tertiary memory is a recently proposed level in the memory hierarchy. It lies
below secondary memory but above offline memory, and has been created
to describe memories that used to be offline—requiring humans to physically
load and eject media such as discs and tapes—but is now automated by me-
chanical processes. For example, automated Blu-ray and LTO tape jukeboxes
as in Figure 10-21 form tertiary memory.

Figure 10-21: A robotic tape jukebox in a data center

In the figure, a robot arm is used—as in 1950s vinyl record jukeboxes—
to pick up tapes and place them into the reader and storage containers.
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Similar robotic systems can be built around Blu-ray discs. Mobile robots
driving baskets of hard disks around can now also be considered tertiary
memory.

Data Centers
When you put thousands, or tens or hundreds of thousands, of secondary
and tertiary memories together in a warehouse-sized building, you get a
data center. Search engines, social networks, online retailers, media stream-
ers, and governments all now need to store and access data at this scale. A
typical data center will contain many different layers of the lower levels of
the memory hierarchy. For example, tapes take longer to fast-forward and
rewind than disks, so these are more likely to be found as long-term backup
systems than serving the latest social media posts. Once you access some-
thing from a slower backup system, it will then be cached somewhere higher
up the memory hierarchy, such as on an SSD drive, making for faster re-
trieval next time.

Data centers may be built with extreme security and resilience in mind.
For example, HSBC’s literal “data mine” is widely believed to store backups
of all its global financial data in a former UK coal mine. You can tell it’s a
data center because there are huge air ducts rising out of the ground to dis-
perse all the heat from the computers. The mine is thought to be robust to
nuclear, chemical, and biological attack. In the event of a nuclear war, the
rest of humanity may be bombed back to computing with Ishango bones,
but the bank will still be able to come after your mortgage repayments.

Summary
Memory architecture is driven by economics: you can buy big, slow, cheap
memory; small, fast, expensive memory; or some mixture of both. Empir-
ically, most programs show spatial, sequential, and temporal locality, in
which different small parts of memory tend to be in heavy, repeated use at
different times. Memory architectures are thus designed in hierarchies that
fit both the economics and usage patterns, including caches between layers
to promote currently in-use memory to higher levels. Primary memory is
that which is addressed directly by the CPU, using the bus, while secondary
memory is connected via I/O. Secondary memory often takes the form of
spinning disks, which can be disconnected and replaced, becoming offline
memory if humans are involved or tertiary memory if the process is auto-
mated by robotics.

Exercises
Your Computer’s Memory

1. Try to find the sizes and speeds for each type of memory in your
own computer, including caches, RAM, and secondary storage.
If you can open up your computer, look inside, locate them, and
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find their makes and model numbers, then look up their datasheets
online. Most operating systems have utilities that will display use-
ful information about their memory; for example, Linux will show
caches with lscpu or cat /proc/cpuinfo, RAM with free -h, and sec-
ondary memory with lsblk.

Building a Static RAM in LogiSim
1. Build the static random-access memory (SRAM) presented in

Figure 6-22 in LogiSim. It should be able to store and read 2-bit
words at the four memory locations.

2. Extend your LogiSim SRAM to have longer words and more
addresses.

Challenging
1. Make four copies of your SRAM, representing multiple RAM chips.

Each one will have the same address space, starting from address
zero. Design a memory controller module that converts addresses
from a larger global address space—having two extra bits—to sections
of particular RAM chips and these local addresses within them.

2. Try attaching this system to the Manchester Baby model in place of
its previous LogiSim RAM.

More Challenging
1. Design and build a direct-mapped cache in LogiSim and link it to

your LogiSim RAM from the previous task. (This won’t speed up
that RAM, as it’s already fast SRAM, but it could then enable that
SRAM to be replaced by a larger and cheaper, but slower, DRAM.)

2. Try to build the other types of cache too, if you’re feeling brave. Use
the sketches provided in this chapter as starting points.

Further Reading
For a definitive recent classic on memory, see U. Drepper, “What Every Pro-
grammer Should Know About Memory,” November 21, 2007, https://people
.freebsd.org/∼lstewart/articles/cpumemory.pdf. In fact, this resource contains far
more than any normal human should know about memory.
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11
RETRO ARCHITECTURES

Now that you’ve made it through the
theory, let’s have some fun. Part III will

consolidate your theoretical knowledge by
programming on a series of real, emulated ar-

chitectures. It’s possible to skip around these chapters
depending on your interests, but they present systems
roughly in order of their complexity and history, so
seeing and programming the earlier systems may help
you understand the later ones.

We previously studied the Analytical Engine and Manchester Baby, and
in this chapter we’ll progress to 1980s 8-bit and then 16-bit systems. Mod-
ern embedded systems are somewhat similar to these retro systems, so we’ll
work with them in the next chapter. We’ll then look at 1990s desktop PCs,
followed by modern smart and parallel architectures. At each step we’ll in-
troduce new features that have stuck around into modern designs.

The basic structure of the classical CPU didn’t change very much from
1836 to 1990. The design served us well, from the Analytical Engine through
what’s now known as the 1980s golden age of architectures. In this chap-
ter, we’ll look at two designs from this golden age: the famous 8-bit 6502,
as used in the Commodore 64, Nintendo Entertainment System (NES), and



BBC Micro; and the 16-bit 68000, which defined the 16-bit generation of
machines, including the Commodore Amiga and Sega Megadrive. We’ll
study these as relatively simple examples of classical CPUs, before things got
complicated. These examples should help you to consolidate what you’ve
learned in the previous chapters, so refer back to them if you need to look
anything up as you go.

Programming in the 1980s Golden Age
Programming in the 1980s was dominated by architecture. The 1980s hard-
ware market was highly heterogeneous, with many competing companies
designing and producing different, incompatible machines. Figure 11-1
shows just a few of the different machines that came out over the course of
the decade.

Instead of downloading apps, you could buy magazines full of printed
assembly code that you would type out to run simple games and applica-
tions. Without modern operating systems, this code could read and write
the machine’s entire memory space, so you could see exactly what was going
on in your machine and be at one with its architecture.

Computer design companies such as Commodore could produce their
own custom ROMs at much lower cost using programmable ROMS or PLAs
than if they had to do their own photolithography, and these technologies
were a major enabler of the multitude of home computer systems. In today’s
language, these ROMs were basic input-output systems (BIOSes), collections
of subroutines that, for example, print ASCII text to the screen; draw points,
lines, and triangles; and make sounds. The programmer could also perform
these tasks directly via I/O—that is, by loading and storing directly to I/O
module addresses—but subroutines were provided for convenience to auto-
mate the process. You would call a subroutine on a ROM chip by putting
the necessary arguments into CPU registers and then doing a jump to the
subroutine address in the ROM.

ROM and RAM were equally important, and they worked together.
RAM was a scarce resource for user data and user programs that made
many calls to the subroutines in ROM. In addition to knowing ROM sub-
routine addresses by heart, programmers and communities often had con-
ventions for favorite regions of RAM to use for different tasks, so they would
generally know their way around the memory map of their whole computer.

Because of these conventions, users had much more direct access to
their computers. The number of addresses was quite small: 32,768 (32 k2B)
or 65,536 (64 k2B), and this meant you could find where variables like the
number of lives in a game were stored, and then go inside the memory to
edit them. Directly overwriting memory like this was called a poke, and
successful pokes were collected onto cheat disks and passed around to
modify games.
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8-Bit Era
The early 1980s was the 8-bit era: this was the time of the Commodore 64
and Atari 2600, games consoles like the Sega Master System and Nintendo
NES, and the British machines BBC Micro and ZX Spectrum.

Some of these machines shared some subcomponents; for example,
the 6502 was used in both the Commodore 64 and BBC Micro, and the
Spectrum’s Z80 chip could be added to the BBC Micro as a second proces-
sor, so you could have friends sharing programs at this level. But the ma-
chines would have different graphics and sound chips containing differ-
ent functions at different addresses that weren’t compatible, and typically
each machine would have its own friends, user groups, and magazines form
around it.

Computer graphics and music of this era looked (see Figure 11-2) and
sounded like computers because they reflected their architecture, creating
a computer culture that has been lost today. You could actually feel the
8-bit-ness of an 8-bit game in a way that you don’t see 64-bit-ness in con-
temporary games.

Figure 11-2: An example of typical 8-bit game
graphics

Even just playing—rather than writing—games in the golden age could
be subliminally educational about architecture. Games were usually written
specifically to play with and explore the architecture, to push it to its limits,
and to show off programming skills. For example, the 8-bit architecture en-
couraged games to use certain sizes of sprites and certain layouts of levels.
You could animate Space Invaders easily by overwriting the area of memory
where the A character was defined, replacing it with an 8×8 pixel space in-
vader, then just print the A character on the screen to move it around, with-
out needing any graphics commands. (The downside of this was that when
you listed your program to debug it afterward, all the As had also changed
into space invaders.)
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16-Bit Era
The late 1980s introduced 16-bit machines and continued this style of assem-
bly programming, but with the extra bits and more advanced I/O modules
enabling a move to sampling of images and sounds rather than their pure
computer generation, as on 8-bit machines. These developments gave rise
to the distinctive 16-bit aesthetics of sprite-based games like Sonic and Mario
(Figure 11-3), and sample-based music by artists such as The Prodigy and the
soundtracks of games such as Streets of Rage 2.

Figure 11-3: An example of typical 16-bit game
graphics

Popular machines included the Commodore Amiga, Atari ST, Sega
Megadrive, and Nintendo SNES. High-performance programs such as games
and demos were still mostly written in assembly, with full access to memory,
but they would make heavier use of calls to additional graphics and sound
hardware.

Companies continued to produce 16-bit machines into the early 1990s,
including for many now-classic games. But by this time most programmers
had shifted to the C language, which could compile into assembly code for
multiple machines, making it easier to port software between them. Pro-
grammers came to rely more on heavyweight operating systems, also ac-
cessed primarily via C libraries. Together, C and operating systems acted to
wrap and hide architecture, presenting higher-level and more portable inter-
faces to the machines, but ending the 1980s golden age of architecture-based
programming.

Good times! Let’s relive them here by learning to program on two
classic systems from the period, the 8-bit 6502-based Commodore 64 (C64)
and the 16-bit 68000-based Commodore Amiga. For each system, we’ll first
study its CPU in isolation, then its wider computer design. In the exercises,
we’ll write assembly programs for a C64 animated text demo and a simple
Amiga game.
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Working with the MOS 6502 8-Bit CPU
MOS Technology’s MOS 6502 was an 8-bit processor, designed in 1975 by
Chuck Peddle. MOS stands for metal-oxide semiconductor, as in the MOS field-
effect transistors, or MOSFETs, used by the company. The 6502 was used
in many of the classic 8-bit micros of the 1980s: the Commodore 64, NES,
Atari 2600, Apple II, and BBC Micro; it was also used in first-generation
arcade machines such as Asteroids.

Here we’ll study the 6502 using the same steps as for the Analytical
Engine and Manchester Baby. We’ll first examine its structures, including
registers, the arithmetic logic unit (ALU), the decoder, and the control unit
(CU). We’ll then look at its instruction set, including instructions for mem-
ory access, arithmetic, and control flow.

Internal Subcomponents
The 6502 had 3,000 transistors and wires connecting them. The layout of
these components was designed and drawn by hand on transparent sheets,
with pens and masking tape, and then made directly into chips using pho-
tolithography.

NO T E The term taping out is still used to refer to the equivalent modern computerized
process of finalizing photolithography mask designs. For chip designers, a tape-out
marks the end of their work and handover to a fab plant. Like “shipping” for soft-
ware companies, taping out can be a reason to have a large party, lasting until the
chips arrive in the mail and fail to work.

Physically, the 6502 appears as a plastic-packaged integrated circuit (IC)
about 2 cm long, with 40 pins, as seen in Figure 9-2. Eight of these are data
pins, labeled D0 through D7. These pins read and write 8-bit words of data
to and from memory, and they define the CPU as an 8-bit machine. The
6502 uses a 16-bit address space accessed by writing 16-bit addresses on
the 16 address pins, A0 through A15. This enables up to 64 k2B to be ad-
dressed. The R/W is the control line that specifies whether we want to read
or write to the address. The package also has pins for ground and supply
voltage, a clock, and an IRQ (interrupt request) line. The clock sets the
speed of the CPU, usually to around 1 to 3 MHz.

The actual silicon chip is much smaller than the outer package, about
5 mm2. Figure 11-4 shows a photograph of the chip under a microscope
(known as a die shot).
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Figure 11-4: A 6502 chip microscope photograph

Details of this chip’s design were lost for several decades, but they were
recently fully reverse engineered at the transistor level in a heroic effort by
the Visual 6502 project (http://visual6502.org). The workers on this project
exposed the silicon by applying acid to dissolve some of the plastic casing.
They then took die shots of the chip to reverse engineer its circuit diagram.

The circuit contains only transistors and copper wires, but some very
skilled chip-reading people have learned to look at these and mentally chunk
them into logic gates. From there, they were chunked into well-known
simple machines. This painstaking process, guided by the surviving block
diagram shown in Figure 11-5, enabled the whole architecture to be reverse
engineered and reconstructed.
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Figure 11-5: The original 6502 block diagram

The circuit in Figure 11-5 shows some recognizable subcomponents that
are common to most classic-design chips. Each component is a digital logic
simple machine. We’ll examine each of the main subcomponents in turn.
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THE MONSTER 6502

As a result of the Visual 6502 project, the 6502 is now being manufactured
again for use as a cheap, embedded processor—for example, in Internet of
Things (IoT) devices—as well as for education, such as our present study. The
design was also used by Eric Schlaepfer and Evil Mad Scientist Laboratories to
create a fully functioning—but slower than the original—MOnSter 6502 rebuild
from big transistors rather than ICs, shown here.

User Registers
In Figure 11-4 the registers and ALU are the regular area in the lower half of
the chip. The 8 bits are stacked vertically, as in Babbage’s machines. There
are three 8-bit user registers: two general-purpose ones called X and Y, and
an accumulator called A.

The X and Y registers are intended to be usable together to represent
16-bit addresses, with the first 8 of the 16 bits stored in X and the second
8 bits stored in Y. It’s quite hard work to manipulate the two halves sepa-
rately, so the architecture often provides methods to manipulate the two
8-bit halves of 16-bit addresses together.

It’s common to imagine and visualize 8-bit memory as divided into
256 pages of 256 bytes each. For example, 8-bit hex editors may display
one page of memory on the screen at a time, like the pages of a book.
Viewed this way, one of the two bytes is the page number and the other
says what line on the page is used.

NO T E It’s common 6502 programming practice to use the 256 addresses in page 0 of mem-
ory as if they were additional registers. This is slower than using actual registers, so
A, X, and Y are preferred in the first instance.
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Internal Registers
Recall that the program counter keeps track of the current line number.
Here, the program counter stores a 2 byte address. It’s automatically
incremented by the CU after executing each instruction, unless it’s a flow
control instruction. It can be accessed as 2 individual bytes (PCH, PCL)
storing the high and low parts of the 16-bit address. On power-up, the 6502
copies the content of addresses FFFC and FFFD (usually ROM, and point-
ing to a ROM subroutine) into the program counter to tell it where to begin
executing.

Here, the stack pointer is a single byte, and it’s assumed to refer to lines
on page 1 of memory; note this is the second page, after page 0. In most
programming styles, the stack isn’t accessed directly by the programmer, but
rather is used internally by the subroutine instructions to push and pop the
address of the calling line. However, it can also be accessed directly using
instructions (PHA and PLA) that push and pop the contents of the accumulator
to and from the stack.

The instruction register holds a copy of the current instruction; in the
6502, opcodes are 8 bits long and may require 0, 1, or 2 bytes of operand.
Because the data bus is 8-bit, fetching instructions usually requires several
steps; the opcode and operand need to be copied in one byte at a time. This
is one of the reasons why 8-bit machines are slow: machines with larger word
lengths could fetch whole instructions, including opcodes and operands, as
single words.

The status register holds 8 bits of flags that can be tested and used by
control flow instructions. These are set in the ALU, which we’ll turn to next.

Arithmetic Logic Unit
In the 6502, the ALU is physically built around the registers so that the 8 bits
flow horizontally, as in Babbage’s machines. The registers-ALU area looks
a lot like Babbage’s Difference Engine, and contains a similar parallel prop-
agation of bits and carries. If you miniaturized Babbage’s metal machine
onto a chip, this is pretty much what it would look like; only the scale has
changed.

The ALU provides integer addition and subtraction simple machines,
activated by instructions (ADC, SBC), along with dedicated increment and dec-
rement (INC, DEC). There are bitshifts and bitwise Boolean instructions (ASL,
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ASR; AND, ORA, EOR). There are no multiplication or division instructions—these
must be constructed in software from what’s available. There is also no float-
ing point.

Figure 11-6 shows the ALU’s assigned meanings of the bits in the status
register, which are written as side effects of its operations.

7 6 5 4 3 2 1 0

N V 0 B D I Z C

C
a
rry

Z
e
ro

In
te

rru
p
t d

is
a
b
le

D
e
c
im

a
l

B
re

a
k
 c

o
m

m
a
n
d

(R
e
s
e
rv

e
d
)

O
v
e
rfl

o
w

N
e
g
a
tiv

e

Figure 11-6: The status register flags

The ALU’s operations include flagging if the result was zero (Z) or nega-
tive (N), if there was an overflow (V), and if there was a carry (C).

Decoder
In Figure 11-4, the decoder is visible in the upper one-fifth of the die shot as
a semi-regular binary structure. It looks like a load of binary numbers stored
in an array, which is pretty much what it is. Opcodes are 8 bits, meaning that
256 distinct instructions are possible. Each opcode is decoded and used to
activate a control line.

Control Unit
In Figure 11-4, the CU forms the middle region of the chip. It appears vi-
sually as a highly irregular region. This is because every operation is differ-
ent, so it’s implemented with entirely different circuitry. The 6502 CU often
needs to do more work than later 16-bit machines, because the 6502 oper-
ates with 16-bit address and sometimes 16- or 24-bit instructions, which the
CU has to break up into 8-bit chunks and marshal over the 8-bit bus.

Programmer Interface
Figure 11-7 shows the complete instruction set for the 6502.
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Low nibble

High 

nibble

0 1 2 3 4 5 6 7 8 9 0A 0B 0C 0D 0E 0F

0 BRK i ORA (zp,x)       ORA zp ASL zp   PHP i ORA # ASL A     ORA a ASL a  

10 BPL r ORA (zp),y       ORA zp,x ASL zp,x   CLC i ORA a,y       ORA a,x ASL a,x  

20 JSR a AND (zp,x)     BIT zp AND zp ROL zp   PLP i AND # ROL A   BIT a AND a ROL a  

30 BMI r AND (zp),y       AND zp,x ROL zp,x   SEC i AND a,y       AND a,x ROL a,x  

40 RTI i EOR (zp,x)       EOR zp LSR zp   PHA i EOR # LSR A   JMP a EOR a LSR a  

50 BVC r EOR (zp),y       EOR zp,x LSR zp,x   CLI i EOR a,y       EOR a,x LSR a,x  

60 RTS i ADC (zp,x)       ADC zp ROR zp   PLA i ADC # ROR A   JMP (a) ADC a ROR a  

70 BVS r ADC (zp),y       ADC zp,x ROR 

zp,x

  SEI i ADC a,y       ADC a,x ROR a,x  

80   STA (zp,x)     STY zp STA zp STX zp   DEY i   TXA i   STY a STA a STX a  

90 BCC r STA (zp),y     STY zp,x STA zp,x STX zp,y   TYA i STA a,y TXS i     STA a,x    

A0 LDY # LDA (zp,x) LDX #   LDY zp LDA zp LDX zp   TAY i LDA # TAX i   LDY a LDA a LDX a  

B0 BCS r LDA (zp),y     LDY zp,x LDA zp,x LDX zp,y   CLV i LDA a,y TSX i   LDY a,x LDA a,x LDX a,y  

C0 CPY # CMP (zp,x)     CPY zp CMP zp DEC zp   INY i CMP # DEX i   CPY a CMP a DEC a  

D0 BNE r CMP (zp),y       CMP zp,x DEC 

zp,x

  CLD i CMP a,y       CMP a,x DEC a,x  

E0 CPX # SBC (zp,x)     CPX zp SBC zp INC zp   INX i SBC # NOP i   CPX a SBC a INC a  

F0 BEQ r SBC (zp),y       SBC zp,x INC 

zp,x

  SED i SBC a,y       SBC a,x INC a,x  

Figure 11-7: The complete 6502 instruction set. For full definitions of these instructions, see https://en.wikibooks
.org/wiki/6502_Assembly.

Because opcodes are 8-bit, there’s space for 256 instructions; notice,
though, that the instruction set architecture contains a few less, so there are
some gaps in the table.

Load and Store
Loading (LD) to and storing (ST) from the three user registers (X, Y, and A) is
done using instructions such as:

LDA #$00 ; load to accumulator the constant 8-bit hex integer 00

STA $0200 ; store accumulator contents to 16-bit hex address 0200

LDX $0200 ; load contents of address 0200 to register X

STX $0201 ; store contents of X into address 0201

LDY #$03 ; load 8-bit constant hex 03 to register Y

STY $0202 ; store contents of Y to address 0202

Offset addressing enables the value of a user register to be used as an offset
to a given address. This is useful for iterating over arrays. For example:

LDX #$01

STA $0200,X ; store the value of A at memory location $0201

Indirect addressing allows us to specify an address that in turns holds an-
other address where we actually want to load or store:
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LDA ($c000) ; load to A from the address stored at address C000

Indirection and offsetting can be used together, such as:

LDA ($01),Y

Zero-paging is the 6502 convention that page 0 of memory is intended to
function similarly to 256 additional registers. This requires specifying and
moving around only 1 byte of address, as in:

LDA $12 ; single byte address assumed to be from page 0

This is faster than moving 2 bytes around individually.

Arithmetic
The ADC instruction means “add data with carry.” It adds the integer con-
tents of its address operand, and the carry bit from the status register, to the
accumulator. The following program should end with hex value 0A16 (deci-
mal 10) in the accumulator:

CLC ; clear content of carry flag in status register

LDA #$07 ; load constant 07 to accumulator

STA $0200 ; store content of accumulator to address 0200

LDA #$03 ; load constant 03 to accumulator

ADC $0200 ; add with carry the content of 0200 into accumulator

CLC clears the carry flag; it’s important to do this before any new addition,
unless you want the carry from a previous operation to get added in as well.

To add two 16-bit integers, we can make use of the carry status flag state,
instead of clearing it. Each ADC reads and writes it, so we can split a 16-bit
addition into a pair of two 8-bit additions with a carry. Here, the two inputs,
num1 and num2, and the output, result, are each split into low and high bytes:

CLC

LDA num1_low

ADC num2_low

STA result_low

LDA num1_high

ADC num2_high

STA result_high

Similarly, SBC is “subtract with carry,” so the following computes 7 – 3,
resulting in the value 4 in the accumulator:

SEC ; set carry flag to 1 (needed to init subtraction)

LDA #$03 ; load constant 3 to accumulator

STA $0200 ; store constant 3 to address 0200

LDA #$07 ; load constant 7 to accumulator

SBC $0200 ; subtract content of 0200 from accumulator
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We can increment (INC or IN) and decrement (DEC or DE) both address and
register contents with instructions such as:

LDX #$02

LDY #$04

INX

DEY

LDA #$07

STA $0200

INC $0200

DEC $0200

Here again, # denotes that the operand is a constant, with the other operands
being addresses.

Jump and Branches
JMP is the jump instruction. The following program continually increments
register X, which will overflow after FF16, going back to 0016:

LDX #$02

mylabel:

INX

JMP mylabel

Instead of specifying the line number to jump to—as a BASIC program-
mer of the era might—this notation first marks the destination line with a
label—in this case, mylabel—then specifies the name of this label in the jump
instruction. The label line doesn’t compile to machine code; it’s ignored
when first seen by the assembler. But when the assembler sees the label
again in the jump instruction, it replaces it with the address of the instruc-
tion following the label.

Conditional branching can be done in two stages. First, comparison
instructions check if some condition is true and store the result in the sta-
tus register. Then, branch instructions consult the status register to decide
when to branch. For example, the following uses register X to count down
from 5 to 2 then halt, by comparing X to 2 (CPX) and branching if the com-
parison isn’t equal (BNE):
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LDX #$05

mylabel:

DEX

CPX #$02

BNE mylabel

You can also branch (B) if the comparison was equal (BEQ), negative (on
minus, BMI), or positive (on plus, BPL). Or if the carry (C) or overflow (V) flag
is clear (C) or set (S): BCC, BVC, BCS, BVS, respectively.

Subroutines
JSR and RTS jump to and return from a subroutine, respectively. For example,
the following program uses a common convention of placing arguments for
a subroutine into addresses at the start of memory, which are then picked
up by the subroutine code. BRK is “break,” roughly the 6502’s halt instruction
(actually an interrupt). It’s needed to prevent the main program execution
overrunning into the code of the subroutine after it.

LDA #$5 ; load first argument to accumulator

STA $0001 ; put it in address 1 for sub to pick up

LDA #$4 ; load second argument to accumulator

STA $0002 ; put it in address 2 for sub to pick up

JSR mysub ; call the subroutine

STA $0200 ; use subroutine's result, is in accumulator

BRK ; halt

mysub:

LDA #$00 ; reset the accumulator

CLC ; reset the carry

ADC $0001 ; add in the first argument

ADC $0002 ; add in the second argument

RTS ; return from subroutine

In the exercises, you’ll see how to run the above and similar examples
on an emulated standalone 6502. A 6502 by itself isn’t very exciting, though.
We need a computer design to add memory and I/O to the CPU, so now
let’s zoom out from the 6502 and look at a complete computer design, the
Commodore 64, based upon it.
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8-Bit Computer Design with the Commodore 64
The 6502-based Commodore 64, or C64, was and still is the highest-selling
computer model of all time. Released in 1982, it defined the 8-bit home
computing market in most of the world by combining gaming features with
the potential for business and creative applications. Commodore was so
named because its founder, the colorful Holocaust survivor Jack Tramiel,
originally wanted “General Computers,” like “General Electric,” but “Gen-
eral” was taken. Commodore is a lower, second-choice rank below general.
The C64 board was shown previously in Figure 9-1. Its name comes from the
fact that it used the full 64 k2B of available memory from its 16-bit address
space with 8-bit words (216 addresses × 8 bits = 64 k2B), unlike some other
6502-based machines.

Understanding the Architecture
MOS produced several variants of the 6502 and assigned different model
numbers to each. As with 7400 logic chips, “6502” is thus ambiguous, some-
times used to mean the original, numbered CPU design, and other times re-
ferring to all members of the family, which each have related numbers. The
6502 family member used in the Commodore 64 is more precisely known as
the 6510.

In addition to a full 64 k2B of actual RAM, the C64 also added devices,
I/O modules, and their own ROMs containing libraries of subroutines for
talking to them (what we now call a BIOS). It’s this configuration that dif-
ferentiates the C64 from other 6502-based machines as a programming
platform.

The physical board layout is connected as in the block diagram of
Figure 11-8. The bus—consisting of 16-bit addressing and 8-bit data—
dominates this diagram and connects the CPU, RAM, ROM, and I/O.
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Figure 11-9 shows the memory map for the C64.
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Figure 11-9: A C64 memory map

In this memory map, the RAM, ROM, and I/O are each assigned ad-
dress ranges within the 16-bit address space. The I/O address space is bro-
ken down into ranges used by individual I/O modules and chips. (Because
address space was a scarce resource at this time, the C64 enables the pro-
grammer to temporarily disconnect the ROMs from it and mount additional
RAM in their place.)

PETSCII CHARACTERS

The Commodore 64 extended ASCII differently from Unicode, into a now dead
branch of evolution called PETSCII, by using the first digit as a “shift” character
and defining a second set of ASCII-like symbols. It also defined new visual
symbols in the unshifted sector in place of control codes, including the C64’s
iconic playing card symbols and bitmap graphic elements used for drawing
and shown here.
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Programming the C64
Programming the C64 is done in 6502 assembly as discussed in the “Pro-
grammer Interface” section on page 255, but with added interactions with
the particular ROMs and I/O modules mounted in the address space. The
ROMs contain libraries of Commodore’s own subroutines (known as “KER-
NAL,” with an A). I/O includes a memory-mapped screen display that can
be switched between character and pixel modes. Character mode allows
PETSCII characters to be drawn at screen locations by writing their codes
directly into this memory space. The state of the keyboard can be read by
reading its memory-mapped space, but ROM subroutines are provided to
simplify this process and decode its state to PETSCII character codes.

The following program illustrates these structures. It displays a scrolling
message on a colored screen, and exits when the A key is pressed.

screenbeg = $0400 ; const, beginning of screen memorymap

screenend = $07E7 ; const, end of screen memorymap

screenpos = $8000 ; variable, current position in screen

main:

LDA #$02 ; black color code

STA $D020 ; I/O border color

STA $D021 ; I/O background color

STA screenpos ; screen position

loop: ; main game loop, once per frame

JSR $E544 ; ROM routine, clears screen

JSR drawframe ; most of the work is done here

JSR check_keyboard

INC screenpos ; increment current screen position

JMP loop ; do the loop, forever

drawframe:

LDX #$00 ; regX tracks idx of char in the string

LDY screenpos ; regY keeps scrolling screen position

CPY #$20 ; compare Y with constant 20

BCS resetscreenpos ; branch if Y>20 (stored in carry bit)

drawmsgloop: ; drop through to here if not branching

LDA msg,X ; load the xth char of the message

BEQ return ; exit when zero char (end of string)

AND #$3F ; convert ASCII to PETSCII

STA screenbeg,Y ; VDU: write char in A to memorymap offset Y

INX ; increment idx of char in message

INY ; increment location on screen

CPY #$20 ; are we trying to write offscreen?

BCS wraparound_y ; if so, shift offset by screen width

JMP drawmsgloop ; loop (until all chars are done)

resetscreenpos:

LDY #$00

STY screenpos ; reset the screenpos to 0

JMP drawmsgloop
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wraparound_y: ; if Y trying to write off screen, wrap

TYA ; transfer Y to accumulator

SBC #$20 ; subtract with carry

TAY ; transfer accumulator to Y

JMP drawmsgloop

check_keyboard:

JSR $FF9F ; ROM SCANKEY IO, writes keybdmatrix to 00CB

JSR $FFE4 ; ROM GETIN, convert matrix to keycode in acc

CMP #65 ; compare accumulator to ASCII 'A'

BNE return

BRK ; if 'A' pressed, quit

return:

RTS

msg:

.byte "HELLO C64!\0" ; this is data, not an instruction

This creates a scrolling text result, as in Figure 11-10.

Figure 11-10: The hello C64 result. The text scrolls across
the screen.

The program can be used as the starting point for writing a game, as it
includes all of the basic game elements: a loop, display, keyboard read, and
state update.
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CHIPTUNES

In the 8-bit era, the sound chip was a genuine synthesizer, an actual musical
instrument made in hardware and placed inside the computer.

The simplest way to generate tones is to use square waves. This is how a non-
musician architect would go about building a sound chip, such as the Texas
Instruments SN76489. Square waves alternate at a given frequency (musical
pitch) between a digital 0 and 1, so they can be made entirely from digital
logic rather than requiring the analog voltages that would be needed to make
other waveforms. Limiting chips to square waves gave devices of the era their
characteristic, primitive 8-bit sound.

As Commodore had bought MOS, they used MOS’s latest tone generator, the
6581 Sound Interface Device (SID), in the C64. SID was far superior to previ-
ous sound chips. It was designed as a real musical instrument, by a musical
synthesizer designer. It added analog sawtooth and sine waves into the mix,
and revolutionized 8-bit audio by adding analog filters to these waves. Filters
emphasize or mute bands of harmonics in a musical signal. Both square and
sawtooth waves have infinite harmonics, which provide good raw material for
filters to act upon. Filters can be swept over notes in many different ways to
create many effects, and this gave the C64 its large musical palette.

SID contains the analog device and an I/O module that interfaces it to the
address space, so it attaches to the bus. In the C64, it’s controlled by writing
parameters such as frequencies, volumes, and filter cutoffs to its assigned ad-
dress space, D400 to D7FF, as in the following example, which plays a square
wave on channel 1:

main:
LDA #$0F
STA $D418 ; I/O SID volume
LDA #$BE ; attack duration = B, decay duration = E
STA $D405 ; I/O SID ch1 attack and decay byte
LDA #$F8 ; sustain level = F, release duration = 8
STA $D406 ; I/O SID ch1 sustain and release byte
LDA #$11 ; frequency high byte = 11
STA $D401 ; I/O SID ch1 frequency high byte
LDA #$25 ; frequency low byte = 25
STA $D400 ; I/O SID ch1 frequency low byte
LDA #$11 ; id for square wave waveform
STA $D404 ; I/O SID ch1 ctl register

loop:
JMP loop

After SID’s release, the great 8-bit “chiptune” composers such as Rob Hubbard
found highly creative ways to hack it to play samples and to appear to have
many more voices than the three it had in hardware. SID presented a limited
and constrained palette, encouraging minimalist, mathematical aesthetics. Hub-
bard was influenced by Philip Glass, Jean-Michel Jarre, and Kraftwerk. More
recently, music producers in the 2010s, such as Max Martin and Dr. Luke, have
used SID for its retro gaming sound.
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Working with the Motorola 68000 16-Bit CPU
The 16-bit era is somewhat misnamed: it should have been the “16/32-bit
era.” This is because the defining chip of the era was the Motorola 68000,
used in the Commodore Amiga, Atari ST, Apple Macintosh, and Sega
Megadrive, as well as in arcade machines such as Street Fighter II. The 68000
used 16-bit data words, but also had 32-bit registers and an ALU inside the
CPU. The Atari ST’s name refers to this hybrid “Sixteen/Thirty-two” nature
of the 68000. Also known as the 68k, the 68000 was released in 1979 and
appeared in computers in the later 1980s to define the 16-bit era.

Both the 6502 and 68000 descended from the earlier Motorola 6800,
in separate branches of evolution. Their names reflect this, and they share
some structures and instructions. This means that learning the 68000 is
often an extension of what we learned about the 6502. If you’re unsure of
how to do something in the 68000, you can often make a good guess based
on the 6502 equivalent.

Internal Subcomponents
Figure 11-11 shows a die shot of the Motorola 68000. In the figure, you can
see the same basic structure as in the 6502, with the registers and ALU at
the bottom, control logic in the center, and decoder near the top.

Figure 11-11: A 68000 die shot
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You can see that the registers and ALU section now has more repeated rows
due to having more than 8 bits. Unlike the 6502, the digital logic is now too
small to see when the whole CPU is shown on a printed page.

There are 16 user registers, all 32-bit, of which 8 are called D0 to D7 for
“data registers,” and the others are called A0 to A7 for “address registers.”
A7 is used as the stack pointer. There’s a 16-bit status register containing
similar status bits to the 6502, and some extra information.

The bus has 16 data lines and 24 address lines. The addresses, however,
refer to locations of bytes rather than 16-bit words, so there are 224 address-
able bytes, which is 16 M2B of addressable memory. The 24-bit addresses are
written as six hex characters, such as DFF10216.

The 68000 has a two-stage pipeline that fetches the next instruction
while simultaneously decoding and executing the current one.

Programmer Interface
As we’ve done for other machines, having seen the structure of the 68000
we’ll now examine the instruction set that it enables—via memory access,
arithmetic, and flow control—and that you can use to write your own pro-
grams. The 16-bit era saw a widespread shift from the use of upper- to
lowercase characters in programming, which we’ll respect from here
onward.

Data Movement
A single move instruction is used for load, store, and register data transfers:

move.l d0, d1 ; copy from register d0 to register d1

move.l #$1a2, d1 ; copy hex constant $1a2 to register d1

move.l $0a3ff24, d1 ; load longword from address 0a3ff24 to d1

move.l d1, $0a3ff24 ; store longword from d1 to address 0a3ff24

The l here stands for “longword” and moves 32 bits at a time. This is fast
between registers. When accessing memory, the 32 bits must be split up by
the CPU and sent over the 16-bit bus in two steps, sequenced by the CU.

If you only want to move 16-bit words (w) or 8-bit bytes (b) around, you
can use variants of move:

move.b d0, d1

move.w $0a3ff24, d1

Indirect addressing is specified using parentheses:

move.l ($0a3ff24), d1 ; load content from addr stored at addr 0a3ff24, to d1

Offset addressing includes the following:

move.l (pc, 2), d1 ; load content from program counter plus 2

move.l (a1, a2), d1 ; load content from addr formed as sum of regs a1+a2

move.l (a1, a2, 2), d1 ; load content from addr formed as sum of regs a1+a2+2
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A more complicated and unusual 68000 addressing mode combines in-
direct addressing with register incrementation; this is useful for iterating
over data stored in contiguous addresses:

move.l (a1)+, d1 ; load content from addr stored in register a1, to d1,

; then increment a1 by number of bytes in a longword

move.l -(a1), d1 ; decrement a1 by number of bytes in a longword,

; then load content from addr stored in register a1

For C programmers: this is roughly what *(a++) and *(--a) would compile
into. Pushing and popping the stack doesn’t need dedicated instructions
because it can be done using this mode with the stack pointer register:

move.w (sp)+, d0 ; push from register d0 to stack

move.w d0, -(sp) ; pop from stack to register d0

Load effective addresses (lea) is a related 68000 instruction that can load
the address of indirections. For example:

lea (pc, 2), a1 ; put address of program counter +2 bytes into a1

lea (a1, 2), a3 ; put address a1+2 into a3

lea (a1, a2, 2), a3 ; put address a1+a2+2 into a3

Note that lea loads the numerical address itself, rather than the content of
the address.

Flow Control
Due to their shared history, jumps, subroutines, and branches on the 68000
are the same as on the 6502. For example:

start:

jsr mysub ; jump to subroutine

cmp #2, d0 ; compare values

beq mylabel ; branch if equal

ble start ; branch if less than or equal

bne start ; branch if not equal

mylabel:

jmp mylabel ; infinite loop

mysub:

rts ; return from subroutine

That said, stack logic improved: with the 68000 you can push a series of
arguments to the stack, make a jump to a subroutine, and pop them off from
inside the subroutine. This allows subroutines to behave like functions with
parameters.

268 Chapter 11



Arithmetic
Here are some examples of arithmetic instructions:

add.b d0, d4 ; add d0 to d4, store result in d4

sub.w #43, d4 ; subtract constant 43 from d4, store result in d4

muls d0, d4 ; multiply (signed) d0 with d4, store result in d4

mulu d0, d4 ; multiply (unsigned) d0 with d4, store result in d4

divs d0, d4 ; divide (signed) d0 by d4, store result in d4

divu d0, d4 ; divide (unsigned) d0 by d4, store result in d4

and d0, d1 ; bitwise and d0 with d1, store result in d1

asr d0, d1 ; arithmetic shift right d1 by d0 bits, store result in d1

The addition and subtraction instructions are similar to those for the
6502. But unlike the 6502, the 68000 can perform multiplication and divi-
sion in hardware.

16-Bit Computer Design with the Commodore Amiga
Amiga is the feminine of amigo, meaning friend, and Commodore’s 1985
Amiga was intended to have that kind of relationship with its users. Early
versions of the Amiga were intended as high-end graphics workstations and
marketed to self-described “creatives”—the market now targeted by Apple.
However, the now-classic A500 model rapidly became a standard mass-
market gaming platform. This became self-fulfilling as both developer
and gamer populations increased together. Growth was accelerated by
the ease of (illegally) cracking and copying game disks, with bars in many
towns around the world hosting “Amiga nights” where they were traded.
In Europe, the Amiga was adopted by the “demo scene,” a subculture of
artistic assembly programmers who met up to compete at pushing the
graphics and sound to their limits, not in games but in multimedia dem-
onstrations. These scenes overlapped, with crackers adding demos to the
boot sequences of newly cracked games (those with the copy-protection re-
moved). Commodore management ignored all this and tried to push the
Amiga in the business market, where it and the company were destroyed by
beige-box PCs.

Understanding the Architecture
The classic A500 had 0.5 M2B of RAM, though it and its successors were
upgradable to a few mebibytes. (This was still much smaller than the 16 M2B
addressable by the CPU.) Figure 11-12 shows the A500 mainboard.
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Figure 11-12: An Amiga A500 mainboard

The design was based around four large custom chips, given human
names:

Agnus This chip contained a coprocessor (“copper”) with its own sepa-
rate RAM and bus, in addition to the main CPU system. The copper was
responsible for graphics. Machine code for the copper could be written
as data lines and sent to the copper as data by the main CPU program.
(A similar system is used today in GPUs.) Agnus also contained a DMA-
based “blitter,” used for copying sprites onto video RAM without CPU.

Paula This chip contained a sound device and its I/O module, as well
as several other I/O modules, such as for disks and communications
ports. It used DMA to read audio samples and other I/O data from
RAM without CPU intervention.

Denise This was the VDU chip, reading sprites and bitplanes from
RAM, compositing them together under various screen modes, and out-
putting CRT display controls.

Gary This was a memory controller, translating and routing addresses
from the bus to particular chips and addresses within them.

The A500 BIOS (called Kickstart) provides subroutines for accessing
I/O, such as graphics and sound. It comes on a chip usually described as
a ROM but that is more correctly considered an I/O module. This is be-
cause, unlike the C64 BIOS, these subroutines aren’t mounted into address
space directly. Instead, they’re stored on a part of the chip that isn’t directly
addressed. When a subset (library) of the subroutines is needed, a command
is sent to the smaller, addressed part of the chip to copy them into a new lo-
cation in RAM.

The whole computer was synchronized to the clock rate of the TV CRT
scan display, meaning that it (and its games) ran at different speeds in the
UK and US due to their different TV standards!
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The Amiga was designed as a multimedia machine, and a fundamental
requirement, especially for the 16-bit games of the time, was to quickly draw
sprites—small images such as game characters—that are overlaid onto back-
grounds to build up a scene.

A naive method to draw sprites is to store a primary copy of the sprite
at a fixed location in RAM, then write a subroutine in assembly language
to copy each pixel one at a time to a parameterized location in video RAM.
However, this is very slow because every pixel in the sprite then needs to be
loaded into the CPU and written out again to video RAM in sequence.

“Blitting” was a famous use of DMA in the Amiga copper to render
sprites more efficiently. The copper could be commanded by the CPU to
initiate a complete sprite “blit” by DMA. It would then read the sprite (or
blitter object, “bob”) pixel by pixel from its location in regular RAM, and
copy it into video RAM without any further CPU intervention.

“Hardware sprites” were a second method, in which the primary copy
of the sprite was loaded into the VDU at the start of a game. The VDU con-
tained its own dedicated digital logic to implement similar blitting com-
mands internally. There were severe memory limits inside the VDU, allow-
ing only eight hardware sprites, which could often be used for the animation
frames of a main character in a game or for the mouse pointer symbol.

For backdrops of 2D games, “playfields” are another hardware accelera-
tion, which allow backdrop images to be stored and scrolled around. Several
can be overlaid with transparency masks to create parallax effects.

Programming the Amiga
The following is a short program that displays a spaceship sprite on the
screen:

custom equ $dff000 ; custom chips

bplcon0 equ $100 ; bitplane control register 0 (misc, control bits)

bplcon1 equ $102 ; bitplane control register 1 (horizontal, scroll)

bplcon2 equ $104 ; bitplane control register 2 (priorities, misc)

bpl1mod equ $108 ; bitplane modulo

ddfstrt equ $092 ; data-fetch start

ddfstop equ $094 ; data-fetch stop

diwstrt equ $08E ; display window start

diwstop equ $090 ; display window stop

copjmp1 equ $088 ; copper restart at first location

cop1lc equ $080 ; copper list pointer

dmacon equ $096 ; DMA controller

sprpt equ $120 ; sprite pointer

COLOR00 equ $180 ; address to store COLOR00 (background)

COLOR01 equ COLOR00+$02 ; address to store COLOR01 (foreground)

COLOR17 equ COLOR00+$22 ; etc

COLOR18 equ COLOR00+$24

COLOR19 equ COLOR00+$26
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BPL1PTH equ $0E0 ; bitplane 1 pointer hi byte

BPL1PTL equ BPL1PTH+$02 ; bitplane 1 pointer lo byte

SPR0PTH equ sprpt+$00 ; sprite0 pointer, hi byte

SPR0PTL equ SPR0PTH+$02 ; sprite0 pointer, lo byte

SPR1PTH equ sprpt+$04 ; sprite1 etc

SPR1PTL equ SPR1PTH+$02

SPR2PTH equ sprpt+$08

SPR2PTL equ SPR2PTH+$02

SPR3PTH equ sprpt+$0C

SPR3PTL equ SPR3PTH+$02

SPR4PTH equ sprpt+$10

SPR4PTL equ SPR4PTH+$02

SPR5PTH equ sprpt+$14

SPR5PTL equ SPR5PTH+$02

SPR6PTH equ sprpt+$18

SPR6PTL equ SPR6PTH+$02

SPR7PTH equ sprpt+$1C

SPR7PTL equ SPR7PTH+$02

SHIPSPRITE equ $25000 ; address to store our ship sprite

DUMMYSPRITE equ $30000 ; address to store our dummy sprite

COPPERLIST equ $20000 ; address to store our copper list

BITPLANE1 equ $21000 ; address to store our bitplane data

; Define bitplane1

lea custom,a0 ; a0 := address of custom chips

move.w #$1200,bplcon0(a0) ; 1 bitplane color

move.w #$0000,bpl1mod(a0) ; modulo := 0

move.w #$0000,bplcon1(a0) ; horizontal scroll value := 0

move.w #$0024,bplcon2(a0) ; give sprites priority over playfields

move.w #$0038,ddfstrt(a0) ; data-fetch start

move.w #$00D0,ddfstop(a0) ; data-fetch stop

; Define display window

move.w #$3c81,diwstrt(a0) ; set window start (hi byte = vertical, lo = horiz*2)

move.w #$ffc1,diwstop(a0) ; set window stop (hi byte = vertical, lo = horiz*2)

; Put RGB constants defining colors into the color registers

move.w #$000f,COLOR00(a0) ; set color 00 (background) to blue (00f)

move.w #$0000,COLOR01(a0) ; set color 01 (foreground) to black (000)

move.w #$0ff0,COLOR17(a0) ; Set color 17 to yellow (ff0)

move.w #$00ff,COLOR18(a0) ; Set color 18 to cyan (0ff)

move.w #$0f0f,COLOR19(a0) ; Set color 19 to magenta (f0f)

; Copy copper list data to addresses starting at COPPERLIST

move.l #COPPERLIST,a1 ; a1 := copper list destination

lea copperl(pc),a2 ; a2 := copper list source
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cloop:

move.l (a2),(a1)+ ; copy DMA command

cmp.l #$fffffffe,(a2)+ ; end of list?

bne cloop ; loop until whole list moved

; Copy sprite to addresses starting at SHIPSPRITE

move.l #SHIPSPRITE,a1 ; a1 := sprite destination

lea sprite(pc),a2 ; a2 := sprite source

sprloop:

move.l (a2),(a1)+ ; copy DMA command

cmp.l #$00000000,(a2)+ ; end of sprite?

bne sprloop ; loop until whole sprite moved

; All eight sprites are activated at the same time but we will only use one

; Write a blank sprite to DUMMYSPRITE, so the other sprites can point to it

move.l #$00000000,DUMMYSPRITE

; Point copper at our copper list data

move.l #COPPERLIST,cop1lc(a0)

gameloop:

; Fill bitplane pixels with foreground color (1-bit plane in fore/background colors)

move.l #BITPLANE1,a1 ; a1 := bitplane

move.w #1999,d0 ; 2000-1(for dbf) long words = 8000 bytes

floop:

move.l #$ffffffff,(a1)+ ; put bit pattern $ffffffff as next row of 16*8 pixels

dbf d0,floop ; decrement, repeat until false

; start DMA, to blit the sprite onto the bitplane

move.w d0,copjmp1(a0) ; force load to copper program counter

move.w #$83A0,dmacon(a0) ; bitplane, copper, and sprite DMA

;**your game logic would go here---read keyboard, move sprites**

jmp gameloop

; Copper list for one bitplane, and eight sprites. Bitplane is at BITPLANE1

; Sprite 0 is at SHIPSPRITE; other (dummy) sprites are at DUMMYSPRITE

copperl:

dc.w BPL1PTH,$0002 ; bitplane 1 pointer := BITPLANE1

dc.w BPL1PTL,$1000

dc.w SPR0PTH,$0002 ; sprite 0 pointer := SHIPSPRITE

dc.w SPR0PTL,$5000

dc.w SPR1PTH,$0003 ; sprite 1 pointer := DUMMYSPRITE

dc.w SPR1PTL,$0000

dc.w SPR2PTH,$0003 ; sprite 2 pointer := DUMMYSPRITE
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dc.w SPR2PTL,$0000

dc.w SPR3PTH,$0003 ; sprite 3 pointer := DUMMYSPRITE

dc.w SPR3PTL,$0000

dc.w SPR4PTH,$0003 ; sprite 4 pointer := DUMMYSPRITE

dc.w SPR4PTL,$0000

dc.w SPR5PTH,$0003 ; sprite 5 pointer := DUMMYSPRITE

dc.w SPR5PTL,$0000

dc.w SPR6PTH,$0003 ; sprite 6 pointer := DUMMYSPRITE

dc.w SPR6PTL,$0000

dc.w SPR7PTH,$0003 ; sprite 7 pointer := DUMMYSPRITE

dc.w SPR7PTL,$0000

dc.w $ffff,$fffe ; copper list end

; Sprite data. Stores (x,y) screen coordinate and image data

sprite:

dc.w $6da0,$7200 ; 6d = y location; a0 = x location; 72-6d = 5 = height)

dc.w $0000,$0ff0 ; image data, 5 rows x 16 cols x 2 bit color

dc.w $0000,$33cc ; each line describes one row of 16 pixels

dc.w $ffff,$0ff0 ; each pixel is described by a 2-bit color

dc.w $0000,$3c3c ; the low pixel bits form the first word

dc.w $0000,$0ff0 ; the high pixel bits form the second word

dc.w $0000,$0000 ; ... all zeros marks end of image data

Here, the sprite is defined in the data segment at the end. Amiga pro-
grams tend to involve a lot of defining constants for use with the many com-
plex ROM I/O subroutines used to call its graphics capabilities. In real life,
library files would be included to make the most of these definitions, but
they’re shown here in full as an illustration of a complete program.

A screenshot of the result is shown in Figure 11-13. Note that the sprite
doesn’t yet move, but further commands could be added to create a game
loop that repeatedly reads the keyboard, updates the sprite location, then
does the drawing. In real games, sprites aren’t usually defined as data lines
in assembly; rather, they’re drawn in the famous pixel art program Deluxe
Paint, then loaded into similar memory areas from files.
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Figure 11-13: The Amiga sprite game result

Retro Peripherals
The 8-bit and 16-bit eras introduced many peripherals that either are still
with us today or have had strong influences on modern standards. Let’s
look at some of the most important ones here to complete our study of retro
computing.

Cathode Ray Tube Displays
While the Manchester Baby’s Williams tube, seen in the “Historical RAMs”
box on page 220, wasn’t originally intended as a human display device, its
programmers were quick to realize its potential for this use, and they soon
began to write deliberately human-readable patterns to some parts of the
screen as a form of output, with the rest of the screen storing internal data
that appears as random patterns of on and off pixels. In recent decades,
hackers have written simple retro arcade games to play on the Baby, display-
ing Snake and Space Invaders on parts of its Williams tube as the display.

These green-on-black pixels are the origin of the later cathode ray tube
(CRT) green screen, and then color monitors, used as human displays in the
retro age, as seen in Figure 1-31.

Programmers grew accustomed to the green color scheme, and in the
1980s often switched their RGB monitors into high-resolution green-on-
black modes with a hardware switch to aid their concentration and famil-
iarity. Some claimed that using only the green pixels improved the precision
of the display, as the red and blue sub-pixels are some distance away from
the green so tend to blur the pixel when used. Today, we still follow this tra-
dition when we put our terminal emulators and text editors such as Vim into
green-on-black mode. This classic programming scheme is celebrated in the
stylized computer code in the movies Ghost in the Shell and The Matrix.

To reduce costs, home computers of the golden age were often designed
to use consumer television CRTs as RGB monitors. To display to a CRT
monitor or TV, an 8-bit machine such as the C64 first needs to read the de-
sired pixel values from video RAM, then arrange for them to be mapped

Retro Architectures 275



onto the strength of the CRT beam as it periodically scans the columns and
rows of the screen.

CRT monitors produce complex visual halos around each pixel that
blur into its neighbors, and pixel art for games of the time was optimized
to work with this blurring, which looks completely unlike the result of play-
ing retro games on a modern flat-screen monitor. The arcade game Asteroids
exploited this effect to the extreme by turning up the brightness for the bul-
lets to the maximum, resulting in the CRT ray functioning as a kind of death
ray firing right into the player’s eyes—an effect that’s impossible to capture
in emulation.

User Input
Keyboards in the retro age were typically memory-mapped, with each key
wired directly to an address in memory space to look like RAM. There would
be a group of addresses together, each mapped to a key, and by loading from
one you could determine if the key was up or down.

A mouse of the retro era is shown in Figure 11-14.

Figure 11-14: A ball mouse teardown

Mice like the one in Figure 11-14 work by physically rolling a thumb-
sized rubber ball over your desk, which in turn spins two roller sensors
detecting its horizontal and vertical rotations. The sensors convert the rota-
tions into analog then digital signals to send down the wire to your computer.

Serial Port
The serial port was, and still is, a simple communications protocol (formally
the RS232 standard) found on retro machines but still very relevant in em-
bedded systems today. The core of a serial port is two wires, called RX and
TX, which stand for receive and transmit, respectively. These use digital volt-
ages over time to transmit 0s and 1s, so there’s one wire sending information
one way and another wire sending information the other way. A historical
serial port has many other wires as well, as in the old days they were used as
controls for many things, but nowadays we tend to use only RX and TX. Se-
rial port connectors still have extra, mostly unused, pins from this history, as
shown in Figure 11-15.
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Figure 11-15: A traditional serial port
connector

Serial ports can run at different speeds. They may also use different con-
ventions for error checking, which can add extra redundant bits, and for stop
bits, which show where the boundaries of characters lie in the stream of 0s
and 1s. You have to make sure the device at one end of the wire is using the
same speed and conventions as the device at the other end of the wire.

MIDI Interfaces
MIDI (Musical Instrument Device Interface, as seen in Figure 11-16) has been
the standard bus for musical keyboards, synthesizers, samplers, and 1980s
keytars to communicate real-time, symbolic musical input and output since
its standardization in 1983. It’s an early example of a bus hierarchy, in which
an optional MIDI interface could be connected to the main bus; it also pro-
vides a secondary MIDI bus for multiple musical devices to communicate
along.

Figure 11-16: A MIDI
connector

MIDI connections are composed of a pair of
unidirectional buses. One is for the manager to
send messages to devices, and the other is for de-
vices to send messages to the manager. They’re
buses in the sense that all devices use the same
physical wires and can see all the messages on
these wires, and so the devices must look out for
which messages are addressed to them to read, and
act on only those.

Each direction’s bus has its own connector and
runs on three physical wires. (In fact, a standard
MIDI connector has five pins, with two spare to
help with related work such as supplying “phan-
tom” power to devices.) One wire is 5 V, one is
ground, and one is UART (universal asynchronous receiver-transmitter)
data. The bus nature of the wire from the manager to the devices is seen
in the MIDI specification that all devices have three sockets: “in,” “out,” and
“thru,” where “thru” relays all “in” messages to the next device in a daisy-
chain wiring scheme; other hardware adapters can merge the “out” mes-
sages from several devices onto a single wire, which is a rarer thing to want
to do. As a 1980s standard, all messages are 8-bit words (known as “MIDI
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bytes”), transmitted similarly to a serial port connection at a standard rate of
31.25Kbps.

MIDI, including recent extensions in MIDI 2.0, is still with us today.

Summary
For readers of a certain age, understanding and programming golden age
machines can be a beautiful way to relive their youth and understand what
was really going on inside their old machines. But for everyone else, these
machines are still valuable to study because they bridge the gap between
the simplest electronic computers, such as the Baby, and what you actually
have on your desk and in your pocket today. Those modern machines have
many more features that can be overwhelming, so by practicing on older ma-
chines of increasing power, you can build your confidence. To this end, this
chapter studied an 8-bit system, the Commodore 64, and a 16-bit system, the
Commodore Amiga. The two are related through their CPUs’ common an-
cestry, meaning they share some instructions and styles. Many of the ideas
introduced by these classic systems are still in use today, as we will see in the
next chapters.

Exercises
6502 Programming

1. Easy6502 is an open source 6502 emulator that runs in your browser.
It’s written in JavaScript by Nick Morgan, the author of JavaScript for
Kids and JavaScript Crash Course, also available from No Starch Press.
Download Easy6502 with:

> git clone https://github.com/charles-fox/easy6502.git

> cd easy6502

2. Open the downloaded emulator.html in your browser to run Easy6502.
Then enter and run the sample 6502 programs from this chapter.
The emulator shows the content of the registers on the right.

3. Try writing a 16-bit multiplication subroutine in 6502 assembly us-
ing Easy6502.

4. Nick’s own tutorial can be found in the downloaded tutorial.html.
This gives many more 6502 programming details and builds up to
writing a retro Snake-type game. Try to learn enough to understand
how this game works, then try to modify it in some way, either to
change the rules of the game or to transform it into another retro
game such as Space Invaders or Tetris. Code built in this emulator
can be ported to the C64 or other 6502-based machines, with some
extra work to replace the graphics and I/O with calls to their spe-
cific designs.
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C64 Programming
1. Nowadays, we can do C64 programming and assembling on a mod-

ern machine, then just run the resulting executable machine code
on a C64 emulator, such as the open source VICE emulator, which
can be installed locally. To get started, install the Dasm assembler
from https://dasm-assembler.github.io.

2. Put your assembly code in a file such as hello.asm. Dasm requires
the following two lines to be added to the start of the file to tell it
to generate an executable for the C64 rather than other machines.
They must have exactly eight spaces of indent:

processor 6502 ; define processor family for das

org $C000 ; memory location for our code

3. Assemble your code into a C64 program (.prg) with:

> dasm hello.asm -ohello.prg

4. The .prg file can be imported into a C64 emulator, such as the on-
line JavaScript-based emulator at https://c64emulator.111mb.de, or
VICE. (For SID programs: some emulators, such as the JavaScript
one mentioned here, have sound disabled by default, so you need to
turn it on.)

5. If you’re lucky enough to have access to a real physical C64 and tape
drive, you can also try converting your .prg files to tape images (.tap)
and then sound waves (.wav) using a program such as tap2wav.py
available at https://github.com/Zibri/C64. Then record the .wav to a
physical tape to load to the read machine. Try inspecting the .tap
and .wav files to see the 0s and 1s along the way.

Programming a Sprite-Based Game on the Amiga
Assemble and run the spaceship code shown in the “Programming the Amiga”
section on page 271 as follows:

1. Download the vasm cross-assembler from http://sun.hasenbraten.de/
vasm. Build it in Amiga mode with:

> make CPU=m68k SYNTAX=mot

2. Use vasm to assemble your assembly program with:

> ./vasmm68k_mot -kick1hunks -Fhunkexe -o myexe -nosym myprog.asm
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3. Install amitools for Python from https://pypi.org/project/amitools/. Cre-
ate a disk image and write the file to it, and make the disk image
bootable with:

> xdftool mydisc.adf create

> xdftool mydisc.adf format "title"

> xdftool mydisc.adf write myexe

> xdftool mydisc.adf boot install

> xdftool mydisc.adf makedir S

> echo myexe > STARTUP-SEQUENCE

> xdftool mydisc.adf write STARTUP-SEQUENCE S/

4. Download and install the FS-UAE Amiga emulator from https://fs
-uae.net/download. Run it and boot from your virtual mydisk.adf disk
image.

More Challenging
1. Research how to read the Amiga keyboard or joystick, then extend

the spaceship example into a simple game using the keyboard to
move the sprite around. Research how to add double buffering to
remove the flicker as the screen is redrawn during the loop.

2. Building your own 6502-based computer has recently become a pop-
ular hobby. Take a look around YouTube and https://hackaday.com
to find examples of “6502 breadboard computers” and learn how
they are made. You might try doing a rebuild of one of these exist-
ing designs, or making your own design.

Further Reading
• To read the book that taught a generation of 8-bit programmer kids,

see Lisa Watts and Mike Wharton, Usborne Introduction to Machine
Code for Beginners (London: Usborne, 1983). The book is now freely
available online at https://archive.org/details/machine-code-for-beginners.

• For a guided tour of the C64 system from 1983, see J. Butterfield,
ed., “Commodore 64 Architecture,” Computer! 32 (January 1983):
208, https://www.atarimagazines.com/compute/issue32/112_1_COM
MODORE_64_ARCHITECTURE.php.

• For information on 8 bit–era audio programming, see James
Vogel and Nevin Scrimshaw, The Commodore 64 Music Book
(Boston: Birkhauser, 1983), https://archive.org/details/The
_Commodore_64_Music_Book/page/n3/mode/2up.

• See https://github.com/emu-russia/breaks for a 6502 and NES
rebuild in LogiSim.
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12
EMBEDDED ARCHITECTURES

Computers are now common inside cars,
robots, factories, art galleries, and domes-

tic appliances. These environments bring
particular constraints and challenges to compu-

tation, and architectures designed for them are known
as embedded systems. The vast majority of manufactured
processors—about 98 percent of them—go to embed-
ded systems. This is a huge market, with a value of
around $250 billion in the early 2020s, so it’s worth
your time to study these systems.

This chapter will give you the understanding of embedded systems
needed to build your own robots, home automation hacks, electronic mu-
sical instruments, or art installations, as well as industrial applications. We’ll
begin by examining key differences between general-purpose computers and
embedded systems, including the structure of typical microcontrollers and
their I/O features. We’ll then turn to Arduino, the most common embed-
ded system used by computer scientists, and show how to program it in sim-
ulation and for real at the assembly language level, where its architecture is
clearest to see. Finally, we’ll explore some alternatives to Arduino, including
Arduinoless AVR, PIC, DSPs, and PLCs.



Design Principles
There are several well-known design principles that distinguish embedded
systems from other architectures. Let’s walk through them now.

Single Purpose
Unlike PCs, embedded systems are usually purchased and used for a sin-
gle purpose. An embedded system controls your robot or your washing
machine by running a single program, meaning you don’t need an oper-
ating system to switch between programs, and you don’t often—or ever—
need to change the program. As a result, embedded devices can be diffi-
cult to upgrade. You can occasionally try asking all your users to upgrade
the firmware on their TV or music player, but it would be very expensive to
promote and explain the concept widely enough for many users to actually
do it. Instead, it’s common for most users to throw away such devices and
buy new ones. Depending on your point of view, this can be a huge waste of
Earth’s resources or a highly profitable business model.

Reliability
Reliability is often much more of an issue for embedded systems than for
general-purpose computing—it can literally be life or death. Consider a heart
pacemaker and its embedded systems, which are put inside a human being
during surgery. You have to be very sure that it works correctly, as you re-
ally don’t want to have to open the person up again to fix a bug or turn the
device off and on again. Other embedded systems control heavy machinery
in factories, signaling systems for public transportation, and nuclear missile
launches, all of which have a similarly low tolerance for errors.

Mobility and Power
Embedded systems are usually designed as the computational parts of phys-
ical machines, which constrain their physical shape more heavily than for
general-purpose computers. It’s common for the physical machine to be de-
signed first, and for the embedded system to be designed to fit into what-
ever space is left. Some embedded systems have mobility concerns, too: if
the embedded system has to go on a person, for example, it has to be small
and light enough to carry around (and it wouldn’t hurt to look good, too).

There are considerations of electricity, especially if the host machine
runs on a battery instead of plugging into the wall. Designers have to con-
sider how much power to draw and for how long, and how large the battery
has to be. A lot of effort goes into designing embedded processors to use as
little energy as possible.
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Encapsulation
Because they’re intended for a single purpose, embedded systems typically
don’t need to expose the user to most or any of their functionality, a concept
known as encapsulation. Instead, the user might get a simple interface, with
just a few buttons and some LEDs, or none at all if the system is intended to
work without human intervention. Often, the user won’t even realize that
there’s a computer present in their machine.

Careful Debugging
While finished embedded systems are often designed to be very robust,
safety-critical, and fault-tolerant, you’ll find as a computer scientist that they
can feel very brittle during development work. We’re used to working with
systems that can be quickly and safely hacked around; if something doesn’t
work, we fix it and run it again until it does. But when you work with em-
bedded systems, a failure can physically destroy a component that may be
difficult, expensive, or time-consuming to replace, so you often have to be
more careful and organized about how to plan tests.

Microcontrollers
A microcontroller (aka a microcontroller unit, MCU, or µC) is a chip including a
CPU that’s designed and marketed for embedded applications. A microcon-
troller may look like the one in Figure 12-1.

Figure 12-1: An Atmel ATmega328P
microcontroller chip

In the next few sections, we’ll walk through some common features of
microcontrollers.

CPU
Microcontrollers are based around a CPU. The CPU is usually much lower
power than a desktop’s, in terms of both computational power and energy
consumption. They’re often 8-bit, behaving quite similarly to retro 8-bit ar-
chitectures, and they often don’t have floating point—as with retro machines,
you need to work in either integers or fixed point.
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Microcontrollers usually also include memory and I/O components on
the same silicon as the CPU. This arrangement removes the need for exter-
nal buses and reduces the number of pins on the microcontroller. It’s easier
to build a physical system from a single MCU chip than to require separate
chips and bus wiring.

Memory
Because they’re intended to run a single, fixed program, microcontrollers
typically use a Harvard architecture, with the program stored as firmware in
ROM, and RAM used only as working memory for the program’s data. Us-
ing ROM in this way enables the program to remain in memory when the
system is powered off, and to be immediately available when powered on
again. Like all CPUs, microcontrollers are designed to fetch from a hard-
wired initial address on power-on, and the first instruction will be placed in
ROM at that address.

Because it has to fit on the single chip, microcontroller memory is much
smaller than in desktop PCs.

Timers and Counters
As many real-world control tasks need to operate based on time and events
in the real world, it’s common for timers and counters to be included in
microcontrollers. They usually appear as extra simple machines, with their
own dedicated registers and instructions, in the microcontroller’s CPU.

You saw how to make counters from digital logic in Chapter 6. If you
connect a wire from the outside world to a counter, you can use the counter
to count the number of occurrences of some physical event, such as the
number of presses of a button.

A timer measures the amount of real time that has elapsed since it was
initialized. Real-world time is often called “wall-clock” time in this context,
as in the time difference that would be reported by a human looking at a
physical clock on the wall. A timer can be made by connecting the electronic
clock, as used to control the CPU’s cycle, to a counter.

A watchdog is a special timer that automatically resets the microcon-
troller in the case of failure. This is used in systems that have to be reliable
in the real world. If something goes wrong, you need a way to reset the sys-
tem without needing to touch the machine (think of the pacemaker exam-
ple). The reset is done at the digital logic level and isn’t part of the CPU’s
program.

Embedded I/O
Embedded systems exist to control physical devices, so I/O is particularly
important. We often find I/O modules, ports, and some very basic, slow
serial communication built into the chip itself. As microcontrollers don’t
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expose their bus on their external pins, the scarce resource of pin real es-
tate can instead be used to expose I/O connections. Some microcontrollers
forgo I/O modules and use direct I/O instructions to talk to these pins—
similar to what you saw for the Commodore 64 6510.

I/O isn’t only important for real-time execution; it also provides a way
to upload programs to embedded systems. Unlike with PCs, it’s usually not
possible to do the development work on an embedded device, as this would
require graphics, a keyboard, an operating system, and a compiler to all run
on the low-power device. Instead, we do development work on a desktop,
and perhaps test our programs there too using simulation or emulation, be-
fore transferring the final binary executable to the embedded device. Micro-
controllers have special modes for doing this: usually they can be connected
to a desktop via USB, serial port, or other means, then put into “firmware
upgrade” mode to copy the executable into their non-volatile program mem-
ory via this connection and a software device driver on the desktop machine.

Analog-Digital Conversion
Many microcontrollers need to handle incoming and outgoing analog
signals, but inside the controller signals must be digital; this requires con-
version at both ends. The necessary converters may be found outside the
microcontroller, connected to its pins, or in some cases on the microcon-
troller silicon itself.

The classic case of analog-digital conversion (ADC) is audio processing.
An analog signal from a microphone is sent to a digital processor, which
adds effects to the audio before sending the processed analog signal back
out to the speakers. This is done by taking a continuous analog signal wave
and quantizing it, turning it into a digital signal by sampling it at regular
time intervals, as shown in Figure 12-2. You can do this at different resolu-
tions by taking samples more or less frequently.

Time
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Figure 12-2: Quantizing an analog signal to digital

When converting the other way, digital-analog conversion (DAC), some
devices (like the Arduino Due) do true conversion of digital integers to ana-
log voltages. Cheaper ones (such as the Arduino Uno) approximate the con-
version with pulse-width modulation (PWM). Here, the output is only ever

Embedded Architectures 285



0 V or 5 V. If 3 V is asked for, the output oscillates rapidly between 0 V and
5 V, spending three-fifths of its time at 5 V and two-fifths at 0 V, to give a
temporal average of 3 V. For some applications this creates no noticeable
difference, but for others it can play havoc with the output.

Embedded Serial Ports
The serial ports seen in the previous chapter continue to be used heavily to-
day in embedded systems, due to their simplicity and stability. In the projects
you do here, you’re more likely to see this convention in a virtualized form,
as you don’t often see a physical serial port on a modern computer these
days. Instead, you can use something like USB to emulate the old-fashioned
serial port protocols. Similarly, the Zigbee wireless protocol acts as a virtual
serial port running over a specific radio frequency; it’s used by embedded
devices such as programmable light bulbs and transportation and agricul-
ture sensor networks.

Inter-Integrated Circuit Bus
The Inter-Integrated Circuit bus, pronounced “eye-two-see” (written as I2C
and sometimes pronounced “eye-squared-see”), is a standard for connect-
ing chips together. It’s very common in robotics. The standard is owned and
licensed by NXP (formerly Phillips).

I2C communication is done on just two wires: data (SDA) and clock
(SDL), as shown in Figure 12-3.
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worker

Rp

DAC

worker

µC

worker
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SDA

SCL

µC

manager

Figure 12-3: The I2C architecture

I2C can use 5 V or 3.3 V as its high voltage, and runs in various speed
modes, from 100Kbps to 3Mbps. There may be multiple devices on the bus,
each having a 7-bit licensed device address. One node must take on the role
of manager by generating the clock and initiating communications. The
other nodes are workers, which reply to the manager. Basic message colli-
sion avoidance is implemented by the rule “only talk if the bus is free.”

In practice, I2C devices can be accessed via a standard FTDI (Future
Technology Devices International Ltd) chip, which provides a hardware and
software interface to it, usually via a serial connection (which itself is usually
via a USB port). Examples of an I2C device (an inertial measurement unit
sensor) and an FTDI for interfacing to it are shown in Figure 12-4.
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Figure 12-4: An I2C device (left) and FTDI interface (right)

No extra device drivers are needed for transport—the FTDI behaves as a
serial port to the user.

Controller Area Network Bus
A vehicle bus is a specialized internal communications network that intercon-
nects components inside a vehicle such as an automobile, train, ship, air-
craft, or robot. A controller area network (CAN) bus is a type of vehicle bus
that has a single public serial channel shared by all devices. CAN has no
standard connector, as it isn’t intended for use by consumers, but rather
for the internals of vehicles. Usually its wires are soldered directly into the
printed circuit boards (PCBs) of the many devices in the vehicle. If you re-
move the plastic covering in front of the passenger seat in a car, you’ll usu-
ally find a wiring loom, which will include accessible CAN wires. Check your
vehicle’s service documents to locate and connect to them.

CAN usually has four internal wires, which use differential voltages to
protect against the strong external electromagnetic fields expected in vehi-
cles, especially around electric motors and engines.

CAN security is a current concern. Because it’s a bus, all devices can
read and write to it. This may create problems when safety-critical devices,
such as antilock brakes, are connected to the same bus as non-critical de-
vices, such as media players. The concern is that security in media and sim-
ilar devices is typically less rigorous than in the safety equipment. A hacker
could take control of a non-critical device and use it to send malicious com-
mands to critical devices, or deny service to them by filling the bus with junk
messages. For autonomous vehicles where steering and acceleration are also
managed via the CAN bus, the consequences could be particularly severe.

Now that you’ve seen the general concepts that go into an embedded
system, let’s explore how they show up in practice in the best-known exam-
ple, the Arduino.
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Arduino
Arduino, shown in Figure 12-5, is the standard embedded system for hackers,
makers, and robotics researchers because it packages a microcontroller onto
a PCB together with all the power management and I/O that you need to
program it from a PC—you can just connect it to your desktop via USB and
start programming it, without having to worry about analog power supplies
or setting up its USB I/O system by yourself.

Figure 12-5: An Arduino board. The ATmega328P
microcontroller is the large chip near the bottom right.

The Arduino PCB is an open source hardware design based around
a microcontroller from the closed source Atmel AVR family, usually the
ATmega328 model. The microcontroller is surrounded by additional hard-
ware that makes powering and interfacing with it both easy and standard.
These components were the traditional barrier to computer scientists pro-
gramming microcontrollers, as they have to be made up on breadboards
or PCBs for every project, requiring analog electronics skills. The clever-
ness of the Arduino design was to select and standardize a single set of these
components that are generally useful for many applications, and to manu-
facture them cheaply in bulk so that end users don’t have to worry about
them anymore. Arduino comes with open source software to easily assem-
ble and transfer programs via USB into its firmware. (There’s also a C-like
language and compiler, but as this book is about the architectural level, we’ll
here study only Arduino’s assembly-level programming.)

You can program Arduino by itself—for example, to read numbers sent
to it over USB from your desktop, do arithmetic on them, and send the re-
sults to your desktop. However, Arduino is usually used to interface with
other electronic sensors and actuators, starting with LEDs and switches.
Typically you lay these out on a breadboard, then connect wires from the
breadboard to your Arduino, as in Figure 12-6.
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Figure 12-6: An I/O circuit connecting an LED and
button to an Arduino using a breadboard and wires

No soldering is required, as components and wires can be pushed into
place in both the breadboard and the Arduino’s connectors.

The ATmega328 Microcontroller
The classic Arduino microcontroller, the Atmel AVR ATmega328, shown in
Figure 12-1, behaves somewhat like an old-style 8-bit system such as a 6502.
There are 32 8-bit user registers (more than the three of the 6502). There’s
an arithmetic logic unit (ALU) that includes integer multiplication and divi-
sion, but no floating point. Similar to the 6502, there’s an 8-bit status regis-
ter, containing bits telling you the result of arithmetic calculations to allow
branching. The instruction set architecture (ISA) includes indirect address-
ing and a hardware stack. It’s usually clocked around 20 MHz.

The pinout, shown in Figure 12-7, is different from a typical CPU, as
there’s no external bus.

ATmega328
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2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

(PCINT14/RESET) PC6

(PCINT16/RXD) PD0

(PCINT17/TXD) PD1

(PCINT18/INT0) PD2

(PCINT19/OC2B/INT1) PD3

(PCINT20/XCK/T0) PD4

VCC

GND

(PCINT6/XTAL1/TOSC1) PB6

(PCINT7/XTAL2/TOSC2) PB7

(PCINT21/OC0B/T1) PD5

(PCINT22/OC0A/AIN0) PD6

(PCINT23/AIN1) PD7

(PCINT0/CLKO/ICP1) PB0

PC5 (ADC5/SCL/PCINT13)

PC4 (ADC4/SDA/PCINT12)

PC3 (ADC3/PCINT11)

PC2 (ADC2/PCINT10)

PC1 (ADC1/PCINT9)

PC0 (ADC0/PCINT8)

GND

AREF

AVCC

PB5 (SCK/PCINT5)

PB4 (MISO/PCINT4)

PB3 (MOSI/OC2A/PCINT3)

PB2 (SS/OC1B/PCINT2)

PB1 (OC1S/PCINT1)

Figure 12-7: The pinout of the ATmega328 (note the lack of A and D bus pins)
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Instead of an external bus, 14 I/O pins are directly exposed. Pins in-
crease the size of the chip’s package, so they’re a scarce resource. The I/O
pins are each configurable to function as either input or output. Their con-
figuration is set and stored using dedicated data direction registers (DDRs).

The die shot (Figure 12-8) reveals that the microcontroller contains
more than just a CPU.

RAM

Logic

Flash

Figure 12-8: A die shot of the ATmega328

In addition to a CPU, the chip has 2 k2B of SRAM, 32 k2B of flash mem-
ory, and a 1 k2B EEPROM, all on the silicon. In this sense, the chip is really
more comparable to an entire retro computer than to only a CPU.

The Arduino uses a Harvard architecture. The program you send to the
board is programmed into the flash memory using software on your host
PC, while the RAM is used for data. (The EEPROM is user-writable, and
is provided for applications where small configuration-style data needs to
be stored during power-off.) The Harvard architecture uses two separate
buses: an 8-bit bus for data and a 16-bit bus for programs. There’s no exter-
nal memory or bus; the memory is all on the chip.

The microcontroller contains serial port pins and I/O modules. On
power-on, the microcontroller first runs a small internal ROM program that
checks its serial port. If there’s data waiting on the serial port, it’s assumed
to be a new user program, which is then loaded into flash. The program
counter is set to start the user program.
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The Rest of the Arduino Board
While it’s possible to program the ATmega directly from its serial port pins,
most desktop machines don’t have physical serial ports anymore, so it’s eas-
ier for users to use a virtual serial port running over USB. The Arduino
board includes a USB connector and a dedicated chip (actually another,
smaller microcontroller) that reads the USB wires and translates them into
serial port signals to pass to the ATmega’s pins.

Most of the analog electronics on the board are used for power man-
agement. The microcontroller requires only a simple 5 V power supply. If a
single, stable 5 V is provided, then no further electronics would be needed.
However, Arduino is designed to work in several different use cases. In par-
ticular, it can be powered by a battery or can take power via a USB cable.
The extra components regulate these supplies, protecting the board from
peaks and dips, and enabling it to switch between them. (It could otherwise
be very bad to allow current from elsewhere to travel back up the USB cable
into the connected desktop computer.)

An I2C bus enables extra extensions to plug into the Arduino. You can
get other physical boards (“shields”) that plug into ports on the I2C bus, in a
nice, physically stackable way.

As it’s an open source platform, Arduino has been modified by many
designers. For example, Ruggeduino is a hardened (and thus more expen-
sive) version that includes extra safeguards to prevent you from blowing it
up in stupid ways. There are also official variants from the Arduino team.
The Due is a version with real DACs replacing PWM, the Mega and Giga
have larger PCBs to enable more connections, and the Nano has a smaller
footprint. Some variants use different microcontrollers, providing more
computing power and different instruction sets for those who need or pre-
fer them.

Programming Arduino
Like all CPUs, Atmel AVRs execute machine code from an instruction set,
which you can program by assembling from a human-readable assembly lan-
guage. The Arduino assembler isn’t very different from the other assem-
blers we’ve seen so far. You can write, edit, and assemble this assembly code
on your desktop PC. The classic “Hello, world!” program for Arduino is to
turn on its built-in LED on pin 13:

.global main

main:

ldi r16,0b00100000 ; load bits describing eight AVR PB pins into r16

out 0x04,r16 ; set AVR pin PB5 (Arduino pin 13) to output mode

out 0x05,r16 ; set output on AVR pin PB5 (Arduino pin 13) to ON

.global loop

loop:

jmp loop
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The global main label gets called automatically when the Arduino is pow-
ered on. The ldi instruction is “load immediate,” and it loads a constant into
a register. This particular constant contains 8 bits, one for each of the AVR’s
eight digital I/O pins (labeled PB0 through PB7 in Figure 12-7). They’re all
set to 0, except for pin PB5 (counting right to left, from PB0, along the bi-
nary digits), which is set to 1. The AVR’s PB5 pin is wired to the Arduino
PCB’s pin 13 and thus to the LED. The first out instruction copies the bits
from r16 to 0x04, the data direction register, to configure the pins for I/O.
This sets PB5 to act as an output and the other seven pins to act as inputs.
The second out writes the same bits from r16 to 0x05, the “PortB” register,
which sets values to output on the eight PB pins. This writes the 1 to PB5
and thus sends a high voltage to turn on the LED on Arduino pin 13.

Unlike many CPU programs, the loop label and jump are important
because they keep the program running forever. Without these, the LED
would light only for a fraction of a second, then go off as the program ends.
Embedded programs usually need to run forever like this.

A more complex version of the program makes the LED blink on
and off:

#define DDRB 0x04

#define PINB 0x03

.global main

main:

sbi DDRB, 5 ; set bit IO; port b 5th pin (make pin 13 an output)

blink:

sbi PINB, 5 ; set bit IO; to toggle PINB

ldi r25, hi8(1000) ; 1,000 ms delay as argument, hi byte

ldi r24, lo8(1000) ; 1,000 ms delay as argument, lo byte

call delay_ms

jmp blink

delay_ms: ; delay about (r25:r24)*ms. Clobbers r30, and r31

ldi r31, hi8(4000)

ldi r30, lo8(4000)

innerloop:

sbiw r30, 1 ; subtract immediate value from word

brne innerloop ; branch if not equal to zero status flag

sbiw r24, 1

brne delay_ms

ret

To make the code easier to read, I have here defined DDRB and PINB
to represent the data direction register and PortB register. One millisecond
is about 16,000 cycles at 16 MHz. The inner loop takes four cycles, so we
repeat it 3,000 times.

NO T E The AVR also has some 16-bit instructions that operate on pairs of 8-bit registers
together, as in the 6502.
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Other CPU-Based Embedded Systems
Arduino isn’t the only CPU-based embedded system in town. Let’s look at
some alternatives that you might encounter.

Atmel AVR Without the Arduino
Arduino is designed for computer scientists, not engineers. You wouldn’t
normally sell a product based on a full Arduino board. Rather, you would
create a custom PCB containing the AVR chip plus only the electronics that
are needed, both from the Arduino board and from your own design.

As an intermediate step, you can use a breadboard without the Arduino
to mount the AVR and other electronics, as in Figure 12-9.

Figure 12-9: A breadboard implementation using an
AVR microcontroller

Once you’re happy that your design is working, you turn it into a PCB
design using a program such as KiCAD, submit it to a PCB manufacturing
company using their website, and receive your PCB in a few days through
the mail. You don’t have to solder things yourself nowadays, the PCB manu-
facturing companies have robots that do it for you.

PIC Microcontrollers
PIC is another series of microcontrollers, similar to but different from the
AVR series. As with Arduinoless AVR, PICs require breadboards, PCB de-
sign, and serial ports.

PICs are designed by the American company Microchip, who bought
out their competitor Atmel in 2016. PICs are found in many consumer and
industrial embedded systems. There are a number of PICs to choose from;
you decide which to buy based on your needs in terms of speed, power, cost,
and physical size. Because of the wide range of options, PICs are more pop-
ular than Arduino/AVR in production engineering. The flexibility allows a
selected PIC version to be closely matched to its application needs.
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Digital Signal Processors
Digital signal processors (DSPs) are a specialized class of microcontroller de-
signed for handling real-time signals, such as audio. Embedded systems
working with such signals have particular requirements, as they’re funda-
mentally working with long—effectively endless—real-time streams of identi-
cally formatted data that have to be processed repeatedly in identical ways.
This means there isn’t much branching; instead, the data flows through a
smooth pipeline from one stage to the next, always being processed in the
same way.

For example, guitarists often buy and use digital effects boxes that con-
nect between their guitar and amplifier to modify the sound (by adding
compression, distortion, delay, or reverb, for example). These boxes are
embedded systems containing one or more DSPs, such as the chip shown
in Figure 12-10.

Figure 12-10: A DSP chip inside
a guitar digital effects unit

DSPs aren’t only for audio signals, though. There are many other types
of signals with similar properties, such as video, radar, and data streams
from all kinds of medical and scientific monitoring instruments. With sound
and sound-like data, you can often mostly get away with representing directly
quantized sound waves from the ADC. With video, however, the data is usu-
ally so huge that it needs to be compressed during storage and transmission,
which means many DSP units are used primarily to perform compression
and decompression.

DSPs often use fixed-point number representation (as discussed in
Chapter 2) rather than integers or floating point. This is because most sig-
nals have clear, fixed upper and lower bounds that can be rescaled to +1.0
and –1.0. For example, musical audio is usually recorded in this way, with
any signal outside these bounds being clipped. Fixed point is cheaper and
simpler to implement than floating point, but can give similar quality results
for these kinds of signals.

DSPs use their available silicon to provide additional instructions dedi-
cated to signal processing. (Recall from Chapter 8 that adding extra domain-
specific instructions like this is often considered to be the CISC philosophy.)
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For example, special instructions for fast Fourier transforms and convolu-
tion are found in DSPs designed for embedded audio use, as these opera-
tions form the basis of many standard audio processing algorithms. These
usually operate in fixed point. As DSPs are designed to process large streams
of data, they sometimes include additional instructions that load and store
chunks of data larger than single words. Such instructions may trigger a se-
quence of transfers over the bus from a series of neighboring memory loca-
tions to a group of registers. Similarly, I/O instructions may trigger a series
of ADCs to and from these groups of registers.

As with standard microcontrollers, DSPs use a Harvard architecture, so
that firmware can be placed in ROM during manufacture, then left alone to
run forever.

Embedded Systems with No CPU
The embedded systems we’ve seen so far have been microcontroller-based,
meaning they’re still based around a CPU that executes programs of ma-
chine code instructions. But there are also other, simpler styles of embed-
ded systems where there’s no CPU, no program, and no instruction set.
There’s only hardware that you lay out to compute what you want to be com-
puted, using digital logic circuits. These systems include PLCs and FPGAs.

Programmable Logic Controllers
Programmable logic controllers (PLCs) are a type of embedded system designed
to perform simple computations to control machinery in industrial envi-
ronments, with very high reliability. They’re usually found in factories with
dust, chemicals, bits of food, high and low temperatures, and other extreme
conditions that make life hard for normal chips. The idea is to install some-
thing durable that can operate continuously for 20 years, without ever go-
ing down. Systems have to be almost indestructible, utterly reliable, and as
simple as possible to avoid any kind of bugs slipping in. In this context of in-
dustrial automation, embedded systems are sometimes known as supervisory
control and data acquisition (SCADA) systems.

You’ll see PLCs in these kinds of environments, usually packaged in
what are called DIN modules and mounted on standard DIN rails, as in
Figure 12-11.

In your house—often in a basement or under the stairs—you might have
a DIN-style module that acts as a fuse box or circuit breaker (aka a residual
current device, or RCD) for your whole house. Again, it’s robust engineer-
ing that’s designed not to fail under any normal operating circumstances.
The DIN design was standardized in the 1970s and is still with us today.

Embedded Architectures 295



Figure 12-11: DIN modules mounted on a DIN rail

A PLC doesn’t run a program in the sense of a series of instructions;
instead, its function is usually specified using a visual system called ladder
logic, as shown in Figure 12-12.

STA

STA

STB

STB

STB

STB

STAX

STAX

STBX

STBX

STCX

STCX

STA

STC

STC

STCSTC

FS

A

A

D

C

STBSTB

C A D

B

B

STA

Figure 12-12: An example of a ladder logic configuration
for an embedded device

In essence, ladder logic is a set of if-then rules that say that if one input
is high, then connect a wire to another wire. There’s no program starting
at the top and working through a list of instructions; each unit follows the
logic of the rules around it. It’s derived from the old days where you’d make
computers from physical electromechanical relays.
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Ladder logic is so simple that even engineers can do it. But the sim-
plicity also means that both formal methods and intuitive inspection can
be used to verify that systems do exactly what they’re supposed to do. You
wouldn’t want all the complexity of an operating system and modern pro-
gramming languages and compilers when even tiny bugs in any of that could
cause your nuclear fuel rods to move to the wrong place; everything has to
be absolutely reliable and understandable.

PLCs are simple, completely transparent, and verifiable. It may surprise
you to learn that the engineers programming this equipment often make
more than most computer scientist programmers, but they’re also getting
paid to take responsibility for safety. The program might exist as part of a
nuclear power station where, even if the program is very simple, it has to be
very correct. You don’t have to design PLCs by directly configuring the lad-
der logic anymore; there are now compilers and assemblers that will turn C
code into these configurations for you. Doing this, of course, requires trust-
ing the compiler and assembler programs, as well as your own code.

EMBEDDED SECURITY

SCADA systems should never be connected to the public internet. A famous
leading question used in security audits asks SCADA managers, “How would
you connect to the system in an emergency, when all the staff are away work-
ing at home and they need to take over control remotely before the nuclear fuel
rod goes critical?” A worrying number of managers will then proudly explain
that they do in fact have such a connection, which of course can be exploited
by hackers.

Even when there’s no internet connection and the system is separated from the
network by an “air gap,” it is possible to gain access. The 2010 Stuxnet worm
was distributed on USB sticks left around international academic conferences. It
replicated itself from USB stick to USB stick around the world until it reached the
Iranian nuclear weapons fuel enrichment centrifuge embedded systems. Stuxnet
then affected only their specific model and configuration of PLC, altering its be-
havior very subtly and almost undetectably to change the timing of the centri-
fuges, destroying them and preventing enrichment of the fuel.

Embedded FPGAs
The FPGA (field programmable gate array) chips discussed in Chapter 5 can
be used to actualize any digital logic designs—not only those intended for
use in or with CPUs. This can include PLC-like structures and many other
digital logic network designs.

As embedded systems perform single functions, a CPU design capable
of running arbitrary programs of instructions may be both overkill and in-
efficient. Instead, the particular sequence of arithmetic or other transfor-
mations can be implemented directly as a sequence of simple machines,
pipelined together in an FPGA. This can include, for example, placing mul-
tiple adders and multipliers connected in the specific sequence needed to
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implement your signal processing algorithm. In addition to reducing the
CPU-style paraphernalia needed, this can also make systems run very fast, as
all these arithmetic operations can happen in parallel.

Hardware description languages can be especially useful for creating
such designs. For example, they enable the arithmetic steps to be expressed
in a C-like language before being automatically compiled to the appropriate
digital logic.

UBIQUITOUS VS. MINDFUL COMPUTING

Ubicomp, or Ubiquitous Computing, is an embedded design philosophy
founded by Marc Wiser in the 1980s Xerox PARC (the same place where
the mouse and graphical desktop were invented). Its core idea, as outlined by
Marc Weiser, is that “the purpose of a computer is to help you do something
else. The best computer is a quiet, invisible servant. The more you can do by
intuition the smarter you are; the computer should extend your unconscious.
Technology should create calm.”

Ubicomp shows up in products such as Amazon’s Alexa. It sits invisibly in your
house, and when you want something, you say it out loud and it gets done for
you. There’s no need for you to sit down at a computer and think about how to
do it. Ubicomp ideas have also returned in recent fields such as “pervasive
computing” and the Internet of Things.

There has recently been a counter-movement against Ubicomp, which we might
call mindful computing. Its adherents have decided that users don’t want deci-
sions made for them by an uncertain, non-understood corporate cloud. They’re
freaked out about losing control to these machines. Mindful computing therefore
does the opposite, deliberately drawing attention to the technology and forcing
users to think about and understand the machines they’re using.

According to a Ubicomp philosophy, light switches might disappear as ma-
chines automatically predict when the lights should turn themselves on and off
without your input. According to mindful computing, the light switches should
remain, and the user should devote their full conscious attention to becoming at
one with the light switch as they touch it.

Summary
Embedded architectures form the vast bulk of the world’s computers, yet
by their nature they’re often invisible to most users. Their applications exist
at the border between computing and engineering, but their architectures
can be quite similar to those of retro computers, and they provide an inter-
esting place for fans of that style of computing to work today. Most embed-
ded systems are based on microcontrollers, which are chips that combine
a low-power CPU with onboard memory, I/O, and other useful features.
Arduino is a standard embedded platform that wraps most of the engineer-
ing needed for computer scientists to get started interfacing to hardware
such as robots, factories, cars, and art installations.
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Exercises
Simulated Arduino Programming

1. Use the open source Wokwi Arduino emulator to run the example
Arduino programs shown in this chapter. To use the assembler, go
to the blink.S tab at https://wokwi.com/arduino/projects/2903486811
99092237, or find the offline version at https://github.com/arcostasi/
avr8js-electron-playground.

2. Remember that Arduino’s I/O pins are each configurable to act
as inputs or outputs. If a pin isn’t reading or writing as expected,
check that you’ve put it into the right mode first.

3. Instead of the nested delay loops used in the LED blinking program,
a prettier and more energy-efficient way to program blinking lights
is to use the AVR’s built-in timer. Research what registers and com-
mands are needed to do it this way, and implement this alternative
version.

Challenging
1. There are many affordable Arduino starter kits available; obtain one

and try to run the example programs on the real hardware. When
working with real LEDs, remember that as diodes they’re directional
and must be connected the right way around and always in parallel
with a resistor; otherwise, they’ll explode!

2. Most kits come with some additional sample programs written in
Arduino C; try to reproduce their functionality using your own
handwritten AVR assembly. (If stuck, try compiling the Arduino
C into assembly and inspecting that to get ideas.)

3. If you prefer command line tools to the Arduino IDE, AVRA is the
AVR assembler, and AVRDUDE is the AVR downloader/uploader.

Further Reading
• For a famous parable about engineers’ and computer scientists’ dif-

fering opinions on embedded design, see Do-While Jones, “The
Breakfast Food Cooker.” Various versions can be found around the
internet, dating from 1990.

• For a full reference for the AVR instruction set, see Atmel, “AVR-
Instruction-Set-Manual,” 2016, https://ww1.microchip.com/downloads/
en/DeviceDoc/Atmel-0856-AVR-Instruction-Set-Manual.pdf.

• For an Arduino PCB design explanation and CAD files, see the
“Arduino from Scratch” series, https://rheingoldheavy.com/arduino
-from-scratch-series.

• For information on programming PIC microcontrollers, see “PIC
Programming in Assembly,” https://groups.csail.mit.edu/lbr/stack/pic/
pic-prog-assembly.pdf.
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• To get your hands dirty with a CAN bus, see Jared Reabow, “How to
Hack and Upgrade Your Car Using CAN Bus and Arduino,” https://
www.instructables.com/How-to-Hack-and-Upgrade-Your-Car-Using-CAN
-Bus/. The tutorial includes instructions for making a Back to the
Future–style date and time display.

• Hackaday (https://www.hackaday.com) is a well-known website for
embedded project ideas.
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13
DESKTOP ARCHITECTURES

“A computer on every desk” was Bill
Gates’s ambition during the 32-bit era of

the 1990s, and while the current trend is
toward the Internet of Things and the cloud,

a personal computer (PC) can still be found on many
desks and laps today. The PC isn’t a single computer
design; rather, it’s a set of loose conventions for com-
bining many different components from different
manufacturers into computers, based around the x86
family of CPUs.

Thanks to a business-led focus on backward compatibility, modern PCs
retain many features from earlier stages of their evolution, so in this chapter
we’ll study how these conventions came into being and how they’ve affected
x86 architecture and PC computer design. We’ll examine x86’s CISC phi-
losophy and its Silicon Valley history and instruction set, then look at some
computer design elements used to build modern PCs around it.



CISC Design Philosophy
Most desktop computers use CPUs from the x86 family, which are usually
described as CISC architectures. We’ve seen CISC architectures a few times,
but let’s take a closer look at some of the CISC principles that appear in x86.

In a CISC architecture, you try to do as many big and clever things as
you can on a large, complex chip with lots of silicon. You design many dif-
ferent small machines that all do different specialized things; you also pro-
vide dedicated instructions for each of them. As you can imagine, this is
very hard to design, and you end up having to pay your architects a lot of
money—especially when all the new complex features need to be made to
play nicely with other innovations, such as pipelining and out-of-order ex-
ecution (OOOE). Using lots of silicon typically consumes lots of power, so
CISC processors often have to be plugged into the wall, with heavy power
transformers and large cooling systems such as fans. These requirements
are easier to meet in a desktop setting than in embedded and smart-type
environments.

A classic aspect of CISC philosophy is having lots of instructions that
combine memory access with arithmetic logic unit (ALU) instructions, such
as “multiply the contents of a first address by the contents of a second ad-
dress and store the result in a third address,” where the addresses are in
RAM. This is, in fact, a compound instruction involving many steps: we
need to load both addresses, multiply their values, put the resulting value
in a register, and store it in memory again.

CISC also emphasizes implementing new instructions in hardware
essentially saying, “Throw more silicon at the problem.” For example,
if users demand lots of video codec streaming, you can create special in-
structions that perform the specific mathematical operations used in video
codecs, and build lots of new simple machines in digital logic to implement
each of them.

A “decode my video” instruction is going to take more than one clock
cycle, and accommodating different instructions that take differing amounts
of time is a major challenge that arises in CISC architectures. In particular,
pipelining and OOOE are harder to get right when instructions have differ-
ent durations. This problem can be fixed by throwing even more silicon at
it: you can create even more complex digital logic in the control unit (CU) to
identify these durations and schedule around them.

One supposed advantage of CISC architectures is that the compiler has
to do very little work to translate common high-level language statements
into assembly; this is because the instruction set architecture (ISA) has ded-
icated instructions for commands such as “decode my video,” which then
have a simple one-to-one translation. But these instructions make life harder
for compiler writers, who now need to wade through a five-volume set of
instructions for every backend CPU they target; they’re also now expected
to make some attempt to optimize their compiler for each particular ISA. It
would be much easier for compiler writers to just use one volume of instruc-
tions and ignore all the advanced ones. In practice, this means that CISC
architectures are more likely to come with compilers written by the same
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people who built the CPU, because no one else wants to work to optimize
for one particular CPU. These compilers tend to be proprietary and to run
faster than the open source versions due to the complexity involved; only
those who built the system fully understand all the features.

Another upside is that assembly programs can be short, as every instruc-
tion does a lot of work. In the 1980s, this was important: RAM was limited,
so shorter programs freed up more RAM for data. It’s not so important
today.

CISC was invented by an Englishman, Maurice Wilkes, seen previously
in Figure 1-19, but was commercialized by Americans. Stereotypical CISC ar-
chitects and users are business-driven, and CISC is dominant in real-world
desktop computing. You’re probably using a CISC architecture on your
desktop today. If a CISC client asks for a new instruction to speed up their
particular multimedia application, then the CISC business will often design
and add it for them—for a cost. New features are often bolted on in this way,
without necessarily being designed to beautifully fit together with what was
there before. The older features will usually be retained, however, in order
to avoid breaking other customers’ existing systems.

Microprogramming
Building new CPUs in hardware is hard and expensive. A chip mask set costs
around $5 million to make, and if you get it wrong anywhere, new masks
will be needed. This problem is acute for CISC due to its complex designs.
Microprogramming is a solution to this problem in which the architecture
consists of many simple machines that can be connected and disconnected
through basic switches. Instructions are then defined as sequences of con-
nections and disconnections. For example, to add two registers, you first
connect one of them to an ALU input, then connect the other register to
the other ALU input. Then you connect the ALU to a signal asking it to add,
and finally you connect the result in the ALU output to a register.

This idea is reminiscent of the rotating barrel CU in Babbage’s Analyt-
ical Engine. The barrel has pins that are placed to trigger sequences of the
simple machines. If the pins are moved around, different instructions and
architectures can be easily created. Modern electronic microprogramming—
and hence CISC—is credited to Wilkes, who studied and taught the history
of computing and was very open about having picked up the idea from Bab-
bage’s mechanical barrel. This is a paradigmatic example of how studying
the arc of history can enable major, Turing Award–winning advances in
modern architecture.

The electronic version of Babbage’s barrel pins is usually firmware,
known as microcode, inside the CPU, containing a list of connections to make
and break in sequence for each instruction. (This isn’t ROM in the CPU’s
address space, it’s a non-addressable, separate region inside the CPU itself.)
As firmware, it can be electronically reprogrammed at any time. This mas-
sively reduces the cost of fixing hardware bugs in the CPU, as they can be
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corrected with a firmware update rather than having to return and remanu-
facture the chip itself.

Microprograms aren’t machine code programs; they exist at a lower
level, defining the machine that the machine code runs on. The actions of
microprograms can be notated using register transfer language (RTL), as
in Chapter 7. Modern CISC chips may have many thousands of complex in-
structions all defined in microcode. You can re-microprogram your CPU to
implement a completely different instruction set if you like, such as turning
an x86 into a retro 6502! There’s now so much reconfigurability that micro-
programs can behave almost like FPGAs.

Now that we’ve seen some of the design concepts, let’s turn to the his-
tory of x86. Doing so will help you make sense of features still present in
modern x86s that have accumulated through this history.

x86 History
The x86 architecture has been the most commercially successful and
resilient CPU architecture to date, reaching its 45th anniversary in 2023.
x86 is a family of CISC architectures whose designs and names derive from
the model numbers of the first few generations of Intel processors: 8086,
80286, 80386, and 80486. x86 has persisted across three generations of word
lengths: 16-, 32-, and 64-bit architectures. As a commercial product, it has
strongly emphasized rigorous backward compatibility with all previous gen-
erations, at the cost of adding complexity to the design, including digital
logic to ensure historical bugs are kept in order to allow old games that ex-
ploit them as features to continue to run. You can still take your executable
machine code from the 1970s and run it on a modern x86 and it will “just
work.” (This is a similar approach to software design in commercial operat-
ing systems, which similarly grow to huge, bloated sizes to maintain compat-
ibility for customers at the expense of performance and beauty.) As a result
of continually adding new CISC instructions and keeping all the old ones,
the latest version of x86—the amd64 ISA—now includes over 3,000 instruc-
tions, documented in a five-volume set of reference books.

Prehistory
The history of x86 design is one of Silicon Valley architecture and politics,
and specifically of the companies Intel and AMD. Both companies make
processors using the same proprietary instruction set, and they’re constantly
locked in legal battles with each other, which have now spanned decades.

William Shockley, John Bardeen, and Walter Brattain were awarded
the Nobel Prize in Physics in 1956 for their invention of the transistor at
Bell Labs, New Jersey. Shockley’s family was from Palo Alto, California,
though he was born in London. After winning a Nobel Prize, you can live
and work wherever you like, so Shockley decided to relocate from New Jer-
sey to Mountain View, California, because he wanted to be near his mother
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in Palo Alto. He set up Shockley Semiconductor there to continue his tran-
sistor research and commercialization.

By 1957, Shockley had become a difficult person to work with due to
a mixture of Nobel laureate hubris and obsession with topics considered
fringe by his staff. A group of employees, the so-called “traitorous eight”—
including Gordon Moore and Robert Noyce—walked out on Shockley to set
a rival firm, Fairchild Semiconductor. This was considered almost blasphe-
mous by the commercial culture of the time, in which it was assumed peo-
ple would join a big company and be loyal company servants for their whole
careers. It has since become the blueprint for Silicon Valley’s startup culture,
in which it’s assumed employees will and should leave big companies to start
their own.

Fairchild created the first commercial version of the integrated circuit
(chip). Demand for computing at this time was almost entirely from the
American military, which used taxpayer money to subsidize research and
buy the products of chipmakers to power missiles and planes for the Cold
War. These government funds fed the silicon industry, accelerating the
growth of Fairchild and also many rival upstarts as Fairchild staff copied the
Fairchild model and left to start their own competing chip companies, giving
rise to modern Silicon Valley.

In 1968, Fairchild politics led Gordon Moore and Robert Noyce to quit
again—this time leaving Fairchild to set up Intel (short for Integrated Elec-
tronics). AMD (Advanced Micro Devices) was founded the following year by
Jerry Sanders. AMD’s early goal was to copy Intel’s products and produce
them more cheaply as a second source. Before the x86 series proper, Intel
produced the 4-bit 4004 in 1971. AMD cloned it shortly afterward in 1975
as the Am9080. Intel preempted this in 1974 with an 8-bit version, the 8080
(3 MHz), which was then also copied by AMD.

16-Bit Classical Era
The first member of the x86 family proper—defined by modern backward
compatibility—was Intel’s 16-bit, 5 MHz 8086 chip, made in 1978. This was
a CISC chip that used microprogramming. x86 is named after its last two
digits.

Competition between Intel and AMD became formalized in 1982 by a
three-way contract between Intel, AMD, and IBM, whose business at the
time was building computers. IBM wanted to buy CPUs for its computers
but didn’t want to be locked into using a proprietary design from a single
company, because such a company could then hold IBM to ransom via the
lock-in and increase its prices. As a huge company, IBM had enough buy-
ing power to play suppliers against one another to get what it really wanted,
which was for more than one company to compete to produce the same
chips as generic commodities; this would push down the prices and enable
IBM to get them cheap in perpetuity. IBM said to Intel, “We want to buy
your chips, but we’ll buy them only if you sign this contract saying you’ll let
AMD copy them. If you don’t sign, then we won’t buy from either of you.”
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The three companies agreed and thus created the famous Intel-AMD cross-
license for both chipmakers to design and sell chips implementing the same
x86 ISA.

NO T E This is a general lesson about computer economics: after a sale, the seller of a hard-
ware or software platform can wield extreme power over the buyer via lock-in. Plat-
form sellers should thus try to initially give away their platforms for free or at large
discounts, to get users locked into them, before ramping up their sales terms once they
have the buyer over a barrel. But before the buyer selects a platform, it’s the buyer
who holds all the power and calls the shots. Thus, buyers should negotiate hard to
formalize a contract that mitigates the seller’s power over them later. Once you hand
over the money, you have no power except what was agreed in that contract.

The IBM deal propelled both chipmakers into the business computing
market, enabling them to scale rapidly. After the deal, Intel updated the
8086 with its 80186 (1982; 6 MHz), followed soon after by the 80286 (1982;
8 MHz), which added protected mode for OS support for the first time.
AMD then quickly cloned the 80286 as its Am286 (1982; 8 MHz). These
16-bit devices were appearing in the early 1980s as high-end business ma-
chines, at the same time that the 8-bit golden age was arriving in homes.

32-Bit Clone Wars Era
The 32-bit era began with Intel’s 386 (1985; 16 MHz), which introduced the
32-bit instruction set x86 IA-32. Throughout this era, we saw continual an-
tagonism and legal action between the two big chipmakers; this was made
more entertaining by the entry of additional competitors Cyrix and Via, who
also made x86 clones. Table 13-1 summarizes these developments.

Table 13-1: 32-Bit Era x86 Developments
Year Maker Architecture Features
1985 Intel 386 16 MHz
1989 Intel 486 50 MHz, pipelined, FPU
1991 AMD Am386 Clone of 386
1993 Intel Pentium 75 MHz, superscalar
1993 AMD Am486 Clone of 486 (last clone)
1995 Intel P5 150 MHz, MMX SIMD “Pentium MMX”
1995 Intel P6 (i686) 200 MHz, SSE SIMD, OOOE, “Pentium Pro”
1996 AMD K5 133 MHz, Pentium-like
1995 Cyrix Cx5x86 140 MHz, Pentium-like
1996 Cyrix 6x86 140 MHz, Pentium-like
1997 AMD K6 300 MHz, 3D-NOW, rival SIMD
2001 VIA C3 500 MHz, Pentium-like
2001 AMD Athlon 2 GHz

Intel was usually the technical leader, creating new technologies such as
pipelined designs and extension instructions, with the others copying a year
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or two later to bring the price down. At every step, clock speeds reliably got
faster, following Moore’s law for clock speed. This was the “bland 1990s,”
where customers assumed they would need to buy a new beige desktop com-
puter every 18 months to keep up with doubling clock speeds.

After the 486, Intel got sick of competitors copying the untrademark-
able 86 name, so they switched to the trademarkable brand name “Pen-
tium.” This was the dominant chip for some time, but then AMD took the
lead by becoming the first to reach 1 GHz speed with its Athlon in 2001.

64-Bit Branding Era
The 64-bit era of x86 arrived in 2000 when AMD formally defined the
amd64 ISA, which was adopted by most CISC processors following it.
This was a coup: the x86 ISA family had previously always been defined
by Intel, with others pegging their own products to them.

Intel attempted to define its own failed 64-bit competitor ISA, called
IA-64, but this was released after amd64 and never caught on; today, every-
one uses amd64. Intel, however, refuses to acknowledge the name amd64,
instead referring to the same ISA as x86_64. Confusingly, you’ll see both
names used to describe executable software downloads for this ISA, such as
in the names of Linux distribution packages.

The 64-bit era is characterized by a separation of marketing terms from
the underlying technologies, with the same marketing brand often used to
label completely different architectures. Unlike the previous 32-bit Pentium,
the branding is no longer attached to specific designs. You’re probably used
to seeing 64-bit products with brands like Pentium, Celeron, and Xeon. You
may also see the numbers 3, 5, 7, and 9 in brand names, as in Core i3, Core
i5, and so on. For Intel, these numbers don’t mean anything other than sug-
gesting an ordering of which products are better; AMD uses the same num-
bers to suggest which products are similar to Intel’s.

Table 13-2 shows examples of Intel and AMD releases and some of their
notable features during the 64-bit era.

Pipelines have varied between around 14 and 20 stages during this pe-
riod, and OOOE has been used throughout. AMD Piledriver was the first to
introduce neural network–based branch prediction hardware.

Clock speeds hit 3.5 GHz around the start of the 64-bit era and have
been stuck there ever since, due to the end of Moore’s law for clock speed.
However, Moore’s law for transistor size continued to hold, and it became
common to define machines by their transistor scale, in nanometers (nm)
per transistor, rather than their clock speed, to show the continued progress.
Between 2006 and 2016, Intel used a “tick-tock” cycle, in which their new
products alternated between new digital logic designs (tock) and the use
of new transistor technologies to make the same design smaller and faster
(tick). Boosts are a feature first added in Nehalem, which temporarily increase
the clock speed beyond the usual 3.5 GHz heat limit for short periods of
time at the bottlenecks of intensive computations.
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Table 13-2: 64-Bit Era x86 Developments
Year Maker Architecture Transistor

size (nm)
Branding

2003 AMD Hammer (K8) 130 Opteron
2005 AMD Hammer (K8) 90 Athlon 64 X2
2006 Intel Core 65 Celeron/Pentium/Xeon
2007 AMD 10h (K10) 65 Opteron
2008 Intel Nehalem 45 Pentium, Xeon, Core (1st generation)
2011 Intel Sandy Bridge 32 2nd-generation Core i3/i5/i9; Xeon
2012 AMD Piledriver 32 Opteron
2013 Intel Haswell 22 4th-generation Core i3/5/7;

Celeron/Pentium/Xeon
2015 Intel Skylake 14 6th-generation Core i3/5/7;

Celeron/Pentium/Xeon; CoreM
2017 Intel Coffee Lake 14 8th-generation Core i3/5/7;

Celeron/Pentium Gold/Xeon
2017 AMD Zen 14 Ryzen 3/5/7 1000 series
2018 AMD Zen+ 12 Ryzen 3/5/7 2000 series
2019 AMD Zen2 7 Ryzen 3/5/7 3000 series
2020 AMD Zen3 7 Ryzen 5/7/9 5000 series
2021 Intel Cypress Cove 14 11th-generation Core i5/7/9; Xeon
2021 Intel Golden Cove 7 12th-generation Core i5/7/9; Xeon
2022 AMD Zen4 5 Ryzen 5/7/9 7000 series

Now that we’ve seen how x86 evolved, let’s look at its instruction set and
learn how to program it. This will be a messier experience than for the other
architectures we’ve studied, but hopefully, by understanding the history, you
can at least understand why things ended up this way.

Programming x86
x86 is big and ugly; its code is usually generated by compilers rather than
written by hand. Still, it’s worth your time to study it if you want to better
understand what your compiler and computer are doing, or if you want
to write compilers or other system software such as operating systems and
bootloaders. Because x86 is such a widely used architecture, understanding
it is also useful in security applications, such as cracking and defending code,
including cheat and anti-cheat systems for games.

As a CISC architecture, x86 often has many variations of each instruc-
tion, taking different types of operand, such as constants, registers, and
memory locations. Groups of instructions have been added at different
points in the architecture’s history, and they don’t always use the same con-
ventions: for example, integer addition, integer multiplication, and floating-
point operations all present very different interfaces to the programmer.
You wouldn’t design a new CPU from scratch using such different interfaces;
this mess is simply how the architecture has grown over time.
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This won’t be an exhaustive tour of x86 features. Rather, we’ll look at a
couple of examples to give a flavor of how CISC extensions are created and
how they operate.

Registers
Because of the way x86 has evolved over time and its requirement for back-
ward compatibility, its register set has grown into a particular form. There
are two general types of register; let’s look at each.

General-Purpose Registers
There are eight general-purpose user registers in x86 architecture. Their
names reflect their traditional uses. Table 13-3 shows them.

Table 13-3: x86 General-Purpose Registers
Register Meaning Use
AX Accumulator register Arithmetic operations
BX Base register A pointer to data
CX Counter register Shift, rotate, and loop instructions
DX Data register Arithmetic and I/O operations
SP Stack pointer register A pointer to the top of the stack
BP Stack base pointer register A pointer to the base of the stack
SI Source index register A pointer to a source for data copies
DI Destination index register A pointer to a destination for data copies

In the original 16-bit 8086, the general-purpose registers all had
16 bits. To retain partial backward compatibility with the previous 8-bit
8080, the first four—AX, BX, CX, and DX—can also be split into two 8-bit
registers, named with H and L for high and low bytes, which can be accessed
independently.

IA-32 extended the eight registers to have 32-bits. They can still be
accessed as 16- or 8-bit registers as before, to maintain compatibility. To
access them in their full 32-bit mode, we add the prefix E (for extended) to
their names: EAX, EBX, ECX, and so on.

amd64 extended the eight registers again, to 64 bits. As before, the
32-, 16-, and 8-bit versions are left intact for compatibility. To access them
in 64-bit mode, we add the prefix R to their names: RAX, RBX, RCX, and so
on. amd64 also added eight more 64-bit general-purpose registers, named
R8 through R15.

As x86 is defined as the family based on the 16-bit system, and has to
retain backward compatibility, a word in x86 speak still means 16 bits of data,
rather than the full size of the modern registers. Doubleword or dword means
32 bits, and quadword or qword means 64 bits.

Figure 13-1 summarizes the evolution of the general-purpose x86
registers.
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|qword (64) |dword (32) |word (16) |byte (8)

RAX EAX AX       AH       AL

RBX EBX AX       BH       BL

RCX ECX AX       CH       CL

RDX EDX AX       DH       DL

RSI ESI

RDI EDI

RSP ESP

RBP EBP

R8

R9

R10

R11

R12

R13

R14

R15

Figure 13-1: The x86 registers. Register names are shown to the left of each register,
apart from 8-bit register names, which are shown in the center of the register.

For compatibility with these different word sizes, memory addressing
is always done per byte, even on a modern amd64. This is in contrast to ad-
dressing, say, non-overlapping 64-bit words of memory. Words are stored in
memory as little-endian bytes.

Internal Registers
The program counter is called the instruction pointer in x86 speak, identified
as IP, EIP, or RIP when used in its 16-, 32-, or 64-bit form, respectively.

The status register is called FLAGS, EFLAGS, or RFLAGS, again when
used in 16-, 32-, or 64-bit form. Its structure is shown in Figure 13-2.
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Figure 13-2: The x86 status register (compare with Figure 11-6)

This is very like the 6502’s status register, with similar mnemonics. As
with the 6502, these flags are set with comparison instructions, then con-
sulted with separate branch instructions. There are also instructions to clear
flags. Two important flags, as in other architectures, are the zero flag (ZF)
and sign flag (SF).
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Netwide Assembler Syntax
Because of its long history, x86 has acquired several different assembly lan-
guages with different syntaxes, which all assemble into the same machine
code. Here we’ll use the Netwide Assembler (NASM) style, which is the least
worst of them.

x86 instructions usually have two operands. In NASM syntax, the first
is usually the destination and sometimes also an input that gets updated to
store the result, like an accumulator; the second operand is an input.

Like most assemblers, NASM enables us to label lines of a program with
text labels by inserting the label as text, followed by a colon, like so:

mylabel:

If a label is inserted on line 5, we can jump to or load from line 5 by using its
label name rather than the number 5.

Data Movement
To copy constants or register contents between registers and RAM, you can
use the same mov (move) instruction. This generalizes all of loading, storing,
and moving. Several different addressing modes are provided.

Immediate addressing places constants into registers. For example:

mov rbx, 123 ; place decimal 123 into register RBX

mov ebx, 4c6h ; place hex 4c6 into register EBX

mov bh, 01101100b ; place binary 01101100 into register BH

Register addressing copies data from one register to another inside the
CPU, such as:

mov rax, rbx ; copy to RAX from RBX

Direct addressing loads from and stores to memory through a specified
address. Labels can be used in place of numerical addresses, in which con-
text they’re known as variables. For example:

mov rbx, [1000h] ; load to RBX from hex address 1000

mov [1000h], rbx ; store to hex address 1000 from RBX

mov rbx, [1000h+20h] ; load from an address with offset

mov [1000h+20h], rbx ; store to an address with offset

mov rbx, myvar ; load a labeled address (address, not its content)

mov rbx, [myvar] ; load content of a labeled address

mov [myvar], rbx ; store to a labeled address from RBX

Register indirect addressing is notated using square brackets, such as:

mov rax, [rdi] ; copy to RAX, from content of the address in RDI

mov [rdi], rax ; copy to address in RDI, from RAX

In these two instructions, RDI is assumed to contain an address that in
turn is used to load or store the value from RAX.
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Data Creation
Data locations in RAM can be given names, and can be initialized or unini-
tialized. To initialize a location with a value and create a name for it, we use
commands beginning with d, for define. For example:

mybyte: db 15 ; define byte

myword: dw 452 ; define word (2 bytes)

mydword: dd 478569 ; define doubleword (4 bytes)

myqword: dq 100000000 ; define quadword (8 bytes)

To name an uninitialized location, we use commands beginning with r,
for reserve:

mybyte: resb 1 ; reserve uninitialized 1 byte

myword: resw 1 ; reserve uninitialized 1 word

mydword: resw 1 ; reserve uninitialized 1 doubleword

myqword: resw 1 ; reserve uninitialized 1 quadword

Note that these aren’t x86 instructions, but rather just labeled regions of
data, with the directives telling NASM to treat them as such.

To create arrays, we simply allocate a set of consecutive addresses. For
example:

myarray: dq 1, 2, 3, 4 ; define 4 quadwords, myarray addresses first element

myzeros: times 4 dw 0 ; define 4 doublewords all to 0

mywords: resw 100 ; reserve uninitialized 100 words

mystring: db "hello", "world", 10, 0 ; define a single 12-char ASCII string

NASM also provides macro directives, which enable you to define nu-
meric (equ) and string (%define) constants:

SCREEN_WIDTH equ 1920

%define isTrue 1

NASM substitutes for these constants’ values before doing the assembly.
These macro directives aren’t part of the x86 instructions set, but NASM
provides them for convenience.

Arithmetic and Logic
As x86 instructions are usually designed to take two arguments, most arith-
metic is done accumulator-style. There isn’t a single accumulator register,
but any register can act like one. For example, here we place the value 1 into
RBX and add 2 into it, so it ends up storing the result, 3:

mov rbx, 1

add rbx, 2

As a CISC architecture, variations of arithmetic instructions usually exist
that combine loading data from memory with the arithmetic. For example,
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here’s how to add two numbers from addresses 1000h and 2000h and put
the result in RBX:

mov rbx, [1000h]

add rbx, [2000h]

Note that x86 doesn’t include the most extreme CISC style of addition, such
as [3000h] := [1000h]+[2000h], which combines two loads, one addition, and
one store in a single instruction.

Subtraction works similarly to addition:

sub ax, 5

Incrementing and decrementing 8-, 16-, or 32-bit operands can be done
using the inc and dec instructions:

dec ax ; decrement content of register

inc [mybyte] ; increment content of variable mybyte

To multiply or divide integer operands, x86 provides mul and div instruc-
tions. Unlike addition and subtraction, these always use the A register as the
accumulator (hence its name) and act on it with the operand given to the
instruction. For example:

; 64-bit multiplication

mov rax, 2

mov rbx, 3

mul rbx ; result 6 is in accumulator RAX

; 16-bit multiplication

mov ax, 20 ; first operand

mov bx, 4 ; second operand

mul bx ; result is stored in AX

; 8-bit division

mov al, 10 ; dividend

mov bl, 2 ; divisor

div bl ; result stored in AL

; 16-bit signed division

mov ax, -48 ; dividend is negative, need signed version

cwd ; extend AX into DX

mov bx, 5

idiv bx ; result in AX, remainder in DX

In the last of the above examples, the prefix i is added to the div instruc-
tion to indicate that signed integers are used. The cwd instruction converts a
word to a double by allowing the DX register to be used as an extension of
AX in order to accommodate the sign information.
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Bitwise logic instructions include and, or, not, and xor. For example:

and ax, 01h

or ax, bx

not ax

As with addition, the first operand acts as an accumulator so gets overwrit-
ten with the result.

Flow Control
NASM provides two types of labels, symbolic and numeric, that can both
be used for jumps and branches. Symbolic labels consist of an identifier fol-
lowed by a colon (:). They must be defined only once, as they have global
scope. If the label identifier begins with a period (.), it’s considered local
and can be used only in the current file. Here’s an infinite loop using a sym-
bolic label and a jump:

mylabel:

jmp mylabel

Numeric labels consist of a single digit in the range 0 to 9 followed by
a colon. Numeric labels are considered local. They also have limited scope
so can be redefined repeatedly. When a numeric label is used as a reference
(as an instruction operand, for example), the suffixes b (for backward) or f

(for forward) should be added to the numeric label. For numeric label 1, the
reference 1b refers to the nearest label 1 defined before the reference, and
the reference 1f refers to the nearest label 1 defined after the reference. For
example:

main:

1: ; define new numeric label

; do something

jmp 1f ; jump to first numeric label "1" defined

1: ; redefine existing label

; do something

jmp 1b ; jump to last numeric label "1" defined

Conditional jumps are performed using pairs of instructions. First, we
use the cmp instruction to compare two values. It takes two operands to com-
pare and raises appropriate flags in the status register. Next, a conditional
jump instruction consults the status register to determine whether or not to
make the jump. Some of the available conditional jump types are listed in
Table 13-4.
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Table 13-4: x86 Conditional Jump Instructions
Instruction Condition
je Jump if cmp is equal
jne Jump ifcmp is not equal
jg Signed > (greater)
jge Signed >=
jl Signed < (less than)
jle Signed <=
ja Unsigned > (above)
jae Unsigned >=
jb Unsigned < (below)
jbe Unsigned <=
jc Jump if carry (used for unsigned overflow or multi-precision add)
jo Jump if there was signed overflow

To illustrate, this program uses the cmp and je instructions to make a
jump if the compared values are equal:

cmp 15, 10

je equal ; jump to "equal" label if equal

; continue if jump condition is false

cmp 10,10

je equal

equal:

; they are equal

Subroutines are called and returned from as follows:

main:

call somefunction

somefunction:

; some content

ret

The call instruction jumps to the subroutine with the given label, and ret

returns from the subroutine to the calling location.

The Stack
Subroutine calls and returns are implemented internally using a stack. If
you’re just writing simple calls and returns, as in the example we just looked
at, you don’t need to see or think about the stack yourself. However, x86
also allows you to access the stack directly to pass arguments or for other
purposes. Specifically, registers SS and ESP (or SP) are provided and used

Desktop Architectures 315



for implementing the stack. The stack is limited to storing only words and
doublewords. Here’s how it works:

; save register values

push ax

push bx

; perform whatever you want with these registers

; restore the value

pop bx

pop ax

Here, the contents of registers AX and BX are pushed to the stack, mean-
ing these registers can then be overwritten and used for other purposes, be-
fore being restored by the pop instructions.

X86 CALLING CONVENTIONS

The x86 architecture has been used with many different calling conventions
during its history. Due to the small number of architectural registers, and a
historical focus on simplicity and small code size, many x86 calling conventions
pass arguments on the stack. The return value (or a pointer to it) is returned in a
register. Some conventions use registers for the first few parameters, which may
improve performance, especially for short and simple leaf routines that are very
frequently invoked (these are routines that don’t call other routines).

For amd64, there are two current conventions in widespread use, one suggest-
ed by System V UNIX designers and the other by Microsoft. They agree that the
caller rather than callee should clean up the stack. They both require the first
few arguments to be passed in registers, with the later arguments on the stack,
right to left, though they disagree on how many and which registers to use.
They disagree on which registers are temporary—that is, which can be over-
written by the callee during a function call. This is in contrast to those that are
safe, guaranteed to not be changed by function calls.

BIOS I/O
We can call BIOS routines from ROM to communicate with the screen and
keyboard, as on a retro computer. For example:

; BIOS Character display

mov ah, 0eh ; set mode

mov al, 'H' ; char 'H' to print

int 10h ; ask BIOS to display letter on screen

; BIOS Character input

mov ah, 00h

int 16h ; ask BIOS to read a keypress char to AL

; BIOS Graphics (only works in 16-bit mode)

mov al, 13h ; desired graphics mode

mov ah, 0 ; set graphics mode
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int 10h ; ask BIOS to set graphics mode

mov al, 1100b ; desired pixel RGB color

mov cx, 10 ; desired pixel x coordinate

mov dx, 20 ; desired pixel y coordinate

mov ah, 0ch ; ask BIOS to light the pixel

int 10h

This sets a screen mode, prints an ASCII character to a location on the
screen, reads an ASCII character from the keyboard, and sets a pixel color.
These are all the basic ingredients you need to make 8 bit–style video games.
The int instructions here generate interrupt requests, which pass control to
the BIOS, and their operands tell the BIOS which of its subroutines is to be
run. These subroutines each assume that their arguments have been placed
into particular registers such as AH and AL before the interrupt is made.

Floating Point
The x86 floating-point architecture derives from the 8086’s old coproces-
sor, the 8087. This was a separate, optional chip for accelerating numerical
computation. Since the 486, the FPU moved into the main x86 architecture,
where it has become known as the x87 extension.

The x87 extension adds dedicated floating-point registers called ST0 to
ST7, which are used as a stack (hence the prefix ST); the stack has a maxi-
mum of eight elements, with ST0 being the top. New floating-point instruc-
tions start with the letter F and move data to and from this stack; they in-
struct the FPU to perform arithmetic using the top items of the stack.

You can push floats to the x87 stack, call arithmetic on them, and pop
the result back, such as:

a: dw 1.456 ; a word (16-bit) float

b: dd 1.456 ; a doubleword (32-bit) float

c: resq 1 ; reserve for output float

;FP add

fld qword [a] ; load a (pushed on flt pt stack, st0)

fadd qword [b] ; floating add b (to st0)

fstp qword [c] ; store result into c (pop flt pt stack)

;FP multiply

fld qword [a] ; load a (pushed on flt pt stack, st0)

fmul qword [b] ; floating multiply by b (to st0)

fstp qword [c] ; store result into c (pop flt pt stack)

Here, when you give an ASCII representation of a float to NASM for any
of the word lengths used, NASM knows to convert it to IEEE binary repre-
sentation for you.

Segmentation
x86 programs can be written as collections of segments, which are separate
chunks of a program that can be stored in different locations in memory.
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For example, if you wish to keep your instructions apart from your data (as
in a Harvard architecture), you can do this by using a separate code segment
and data segment. A stack segment can also be used to keep the hardware
stack data separate from both. Segments all live in the same global address
space, but by storing the start address of each segment in a dedicated regis-
ter, addresses within them can afterward be referred to by just their offset
from the segment start. This system was intended as a way for 16-bit CPUs
to work with more than 64 k2B of RAM. It still exists but isn’t used much in
modern 64-bit x86, because the 64-bit address space is so large anyway. Six
segment registers, called CS, SS, DS, ES, FS, and GS, are specified to hold the
segment start addresses.

If you’re using the segment system, the NASM directive section specifies
code and data segments. In some settings, some assemblers will still look for
sections and assume that section .text is read-only and that section .data is
read-write, even though the concepts are no longer used at the amd64 hard-
ware level. A segmentation fault will occur if you try to access a segment that
the assembler doesn’t want you to access.

Backward-Compatible Modes
Part of the x86 standard is that all CPUs have to be backward-compatible
with the original 16-bit 8086. This means that when they first power on, they
have to start in 16-bit mode and behave exactly like an 8086.

From there, 32-bit x86s have instructions that switch them into 32-bit
mode, and 64-bit x86s have further instructions to switch from 32-bit to
64-bit mode. To boot an amd64, you therefore progressively switch up into
32- and then 64-bit mode, replaying the history of its architecture in a frac-
tion of a second.

Now that we have an understanding of the x86 architecture, let’s zoom
out to consider the PC computer design that uses it as the CPU component.

PC Computer Design
The desktop PC is a different concept from the other computers we’ve
studied: rather than specifying one particular computer design, it’s a loose
collection of formal and informal standards. The first PCs were designed
and defined as such by IBM, beginning in 1981 with the IBM 5150, seen
in Figure 11-1; they were then copied by other manufacturers using similar
compatible components.

In the 1990s, any computer with an x86 CPU capable of running a Mi-
crosoft DOS or Windows operating system was generally considered to be a
PC. Microsoft chose what computer design features to support in this soft-
ware, so it effectively set the standard definition. Other operating systems
could also run on many of these machines while making different support
choices. Often there are multiple competing standards for computer design
features, and it becomes a political as well as technical question which ones
get taken up by the PC community.
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Programming and using PCs thus feels different than more standard-
ized platforms. For example, games created for a particular machine, such
as a Commodore 64, can assume a precise hardware feature set and will run
exactly the same on any Commodore 64. This enables the game designer
to work as an artist, making the game look and feel exactly as they intend.
But a game made for PCs will run differently on different PCs with different
features, requiring game designers to create what is really a whole set of sim-
ilar games, some of which they’ll never see themselves and can only guess at
how to implement. Similarly, game players may have to get more involved in
configuring their hardware and software to customize which version of the
game they want to play.

Here we’ll look at some specific examples of buses, I/O modules, and
devices used in today’s desktop PCs. These can often form the bottlenecks
in modern PCS—there’s little use in having a highly optimized CPU if it has
to spend its time waiting on other parts of the system. When you buy a com-
puter, don’t just look at CPU speed—think about these supporting struc-
tures, too.

The Bus Hierarchy
Like CPUs, buses are continually being improved and replaced, so the PC
architecture has used various standard bus hierarchies over time. Buses can
be found in a desktop PC at several layers; each layer has different uses and
different bandwidths, and is optimized for different purposes. Table 13-5
shows some recent standards with their speeds and typical uses.

Table 13-5: PC Bus Speeds and Uses
Standard Bandwidth (GBps) Uses
Gigabit Ethernet 1 Network
USB3 5 Peripherals
SATA3 6 Secondary storage
NVMe 32 Secondary storage
PCI express 5.0 x16 63 Graphics cards

You can see that communication with the outside world via Ethernet is
at the slower end, local peripherals and secondary storage are in the middle,
and graphics cards have had a lot of work done to make them communicate
quickly.

The classic PC hierarchy used two structures called Northbridge and
Southbridge—known together as the chipset—as the main skeleton of the bus
hierarchy. This is shown in Figure 13-3.
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Figure 13-3: The Northbridge-Southbridge bus architecture

Northbridge connects directly to the CPU’s FSB (front-side bus) and links
it to RAM and to fast I/O modules using the same address space via PCIe
bus. It also connects to Southbridge. Northbridge is fast and powerful. It
was traditionally constructed on a separate chip from the CPU that also
hosted some memory cache levels. More recently, Northbridge has moved
onto CPU silicon in many systems.

Southbridge bridges a second time, from Northbridge to slower I/O bus
hierarchies. It’s still usually located in its own dedicated silicon chip (which
is sometimes also called “the chipset” even when Northbridge is located on
the CPU chip). Southbridge contains many different standard I/O modules,
all printed on the same silicon. Here you’ll see structures such as USB con-
trollers, hard disk controllers, and the older PCI (not PCIe) bus.

Figure 2 in the introduction shows the physical layout of this design on
a 2010s PC mainboard. In the figure, both Northbridge and Southbridge
are covered by large heatsinks, showing that they’re major consumers of
power and producers of heat, just like the CPU. Compared to retro comput-
ers, there are few other chips remaining on the mainboard, because most of
their functionality has migrated to either Southbridge, Northbridge, or the
CPU. The rest of the mainboard is taken up mostly by physical connectors
and analog components used in power management.

With Northbridge now migrated onto the same silicon as the CPU in
many cases, it’s become harder to identify it on more modern mainboards.
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Standardized I/O
A current desktop PC trend is toward standardized I/O. In the bad old days,
every device would have its own I/O module, a physical component sitting
on the bus. That meant that each device had its own IRQ (interrupt request)
line into the processor. You would need a specific I/O-level driver to look
after that module, which could be painful to configure.

Bus hierarchies such as USB have now largely solved this problem for
PCs. These use a single I/O module, such as a USB controller, which has
to be configured only once and uses only a single IRQ. All the devices then
connect to this controller using a lower-level bus with its own protocol, which
can include communications that inform the controller what the device is.
They can easily share the single IRQ allocated to the controller.

Fast Serial Buses
In the golden age, a bus meant a whole load of parallel wires, often in the
form of a ribbon cable, as in the left of Figure 13-4.

Figure 13-4: A 1980s parallel bus ribbon cable with lots of wires (left)
versus a fast serial 2020s connector with fewer wires

It’s rare to see ribbon cables nowadays, as most buses are serial, having
just one wire for communication plus a few control and power wires, as on
the right of Figure 13-4. For example, SATA, SSA-SCSI, USB, and CAN are
all serial buses.

This change was prompted by technical problems with parallel buses
that arrived once speeds exceeded around 1Gbps. Small differences in de-
lays on out-of-box parallel wires can put signals on different wires out of
sync, and resynchronizing their data is very hard. Serial buses, on the other
hand, can be made faster and faster as there’s no need to sync multiple wires.

Migration Up the Hierarchy
As I/O modules get faster they want to move up the bus hierarchy to be
closer to the CPU. Devices that used to hang off standardized buses, such
as USB, want to connect directly to Southbridge; devices that used to hang
off Southbridge want to get promoted to Northbridge; and devices that
used to hang off Northbridge want to get promoted up into system-on-chip
(SoC) silicon. At the same time, Northbridge, Southbridge, and standard-
ized buses all want to increase their own speeds, meaning a device wanting
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to move from Southbridge to Northbridge, for example, might get overtaken
by a new, faster Southbridge that makes its migration unnecessary. Since
Moore’s law stopped the central CPU clock from getting faster, there’s been
a big push to move innovation to all of these levels, which perhaps is making
it a little more glamorous for the non-CPU architects who work on them.

Migration up the bus hierarchy and onto silicon makes the economics
and legal structures of computer design harder to understand. In 8-bit times,
different companies could make separate physical chips, such as CPU and
I/O modules. Computer manufacturers would buy these chips, then design
and build PCBs to integrate them. Nowadays, as more of these structures
need to be fabricated together on the same piece of silicon, the CPU and
I/O module companies need to share their designs with the computer man-
ufacturer, using software files similar to LogiSim designs. The manufacturer
then adds designs to these files to link them together, then sends them to
a fabrication company. The units of digital logic design provided by each
company are known as IP (intellectual property) cores and need to be closely
guarded by lawyers and patent agents rather than just bought and sold as
physical chips in plastic packages.

Common Buses
Most of the space on mainboards is now taken up by connectors rather than
chips, as you saw in Figure 2 of the introduction. The connectors seen in
that figure are typical of other parts of the bus hierarchy. We’ll examine
some of the main ones next.

Peripheral Component Interconnect Express Bus
PCIe (not to be confused with the older PCI) stands for Peripheral Com-
ponent Interconnect Express and is a general-purpose bus for connecting
graphics and other cards. PCIe comes in several flavors, as shown in Fig-
ure 13-5; the connectors have physically different widths because they have
different numbers of lanes.

Figure 13-5: Some PCIe bus connectors

You can get various powers of 2 between 1 and 32 lanes, depending on
how much data you want to transfer. PCIe also comes in different genera-
tions, with speeds going from 250MBps to 2GBps per lane.
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Like many modern “buses,” PCIe began as an actual bus—in which many
nodes share the same set of wires, each with its own address—but has evolved
into a mesh network, with nodes now performing some routing to avoid con-
gestion on the bus.

SCSI and SATA Buses
SCSI and SATA are competing buses for mass storage devices (for exam-
ple, hard disks). The Small Computer System Interface (SCSI, pronounced
“scuzzy”) is a very ancient, classic, well-tested, reliable, and expensive stan-
dard, dating from the 1980s. It pioneered moving compute work for I/O
control from CPU into digital logic in the I/O module, freeing up the CPU
to work on other tasks more quickly. It’s used today in servers. SCSI has
been through many versions; the latest update is Serial Storage Architecture
(SSA), a serial bus version.

Serial Advanced Technology Attachment (SATA) is cheaper and sim-
pler than SCSI. For these reasons, it’s used in most consumer systems rather
than SCSI.

Universal Serial Bus
The Universal Serial “Bus” (USB) is the one you’re probably most familiar
with. However, USB isn’t a bus at all—it’s not even a mesh network. It’s actu-
ally a point-to-point connector, intended to upgrade the older serial port.

Before USB was invented, whenever you got a new piece of hardware
you would spend a day trying to get the device driver working and config-
uring the IRQ lines. USB now makes all of this instant so you can “plug and
play” many devices. USB is designed so that devices can be connected and
disconnected while the computer is turned on, and part of its standard de-
fines a generic method for devices to state their type and model over the
basic USB protocol itself rather than requiring a device driver. This en-
ables computer software to automatically see what’s been plugged in, and
in many cases to download and run the appropriate drivers for it without
intervention.

USB also defines standards for requesting and sending power down the
wires. A USB cable has four wires, two for sending a serial signal and two for
power. There are 5 V and a ground in there, so, for example, you can use
the same USB cable to charge your mobile phone and exchange data with it.

All of this is done through a centralized USB controller, which is a sin-
gle I/O module, so you don’t have to worry about IRQs anymore. The USB
controller itself has an IRQ, but then everything else is hanging off a USB
network. There have been different versions of USB, including USB 1 run-
ning at 12Mbps and USB 3 running at 5Gbps.

Unlike some point-to-point networks, USB connections have a manager
end and a worker end, with the manager in charge of the communications
protocol. If you plug a USB memory stick into your computer, your com-
puter is the manager. As the worker, your USB stick can’t take over and start
sending its own requests to copy data from your computer. This is why USB
wires have different endings: one end plugs into the manager that controls
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it and the other end goes into the worker, and you can’t connect them the
other way around.

On-the-go (OTG) is part of the USB protocol that allows a worker device
to act as a manager via a physical adapter. Sometimes you do want to con-
nect them the wrong way around. For example, when you connect your
smartphone to your computer, you usually want it to be the worker, like a
USB stick, with your computer as the manager. But other times you want
the phone to be the manager, such as when connecting a memory stick or
sound card to it.

Ethernet
Ethernet, in its oldest and simplest form, is a true bus, with multiple PCs in
a local area network all writing and reading on public wires. Each message
is packaged as a “frame,” containing the address (Media Access Control, or
MAC, address) of the recipient. Senders must take care to avoid collisions—
that is, people talking at the same time—by watching the bus and waiting for
a suitable time to transmit. Everyone can see everything on the bus, so it’s
easy to “sniff” the bus and spy on other users.

Modern networks build non-bus features on top of the basic Ethernet
bus structure. For example, rather than connecting all computers in a build-
ing to a single shared Ethernet bus, it’s now common for each to connect
only to a central switch using a dedicated Ethernet cable. The switch receives
all messages that are sent, but rather than forwarding them, bus-style, to all
machines on the network, it forwards them only to the intended destination.

Standard Devices
Your desktop PC wouldn’t be complete without some other standard de-
vices. To complete our study of PCs, let’s take a quick look at how these
have evolved.

Flat-Screen Displays
Modern flat-screen displays are used in mobile phone screens and large-
screen TVs and monitors. They’re made from transistors and capacitors,
laid down like chips by photolithography masks and gas processes. Many
rare elements are used to produce the specific red, green, and blue light-
emitting pixels, including yttrium, lanthanum, terbium, praseodymium,
europium, dysprosium, and gadolinium. Some of these are so rare that they
can be mined only in one or two places. Many specific combinations of elec-
tronics and elements have been used as display “technologies,” including
TFT. The latest at the time of writing is organic LED (OLED).

Graphics Cards
In the 1980s, graphics was simple. An area of memory was allocated to rep-
resent the array of pixels on the screen. User programs would write to it like
any other part of memory. Then a graphics chip would read from it and
turn the data into CRT scanning commands to send to the monitor. Now
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things are more complicated, as programmers expect graphics hardware to
provide commands for complex rendering of 2D and 3D shapes without tak-
ing up CPU time.

To respond to this demand, the modern graphics processing unit (GPU)
evolved from 1980s visual display units (VDUs). Rather than taking com-
mands to light up pixels, GPUs typically take commands to render 3D tri-
angles with sprite-like textures, and to shade them using complex lighting
models.

If you’ve been playing video games over the last couple of decades, you’ll
have seen the visual abilities of GPUs evolve with Moore’s law, doubling in
quality and getting closer to photorealistic, real-time rendering.

The GPU traditionally sits on one of the buses of the mainboard, such as
PCI, AGP, or PCIe. GPUs have been the one part of computer architecture
that’s been getting physically bigger rather than shrinking over the years,
starting off as a small chip and now most likely a full card (Figure 13-6).

Figure 13-6: A 2022 Nvidia RTX 3080 GPU

There has, however, also been a recent trend to shrink GPUs back to put
on a single chip on the mainboard, or onto the same silicon as the CPU. This
is particularly the case in machines where the GPU isn’t the main focus, such
as generic business PCs where the graphics requirements don’t extend much
beyond displaying the desktop.

Graphics cards sit on the system bus as I/O modules. Importantly, they
can use direct memory access (DMA). For example, an image can be placed
in regular RAM, then a single command can be given to the GPU to load
it from main RAM into the GPU. This DMA action doesn’t go through the
CPU, so from the CPU’s point of view it’s almost instant. (It will, however,
slow down if the bus is needed for other things, such as additional DMAs
from a webcam into the main RAM.)

Early GPUs were designed to accelerate rendering of the popular
OpenGL 3D graphics API by implementing its commands directly in hard-
ware, beginning with a memory-mapped area and a chip that read that area
and figured out how to display that memory block on the screen. In the
2000s, in addition to or instead of memory-mapped graphics, optional plug-
in graphics cards sat on the system bus as I/O modules and drew graphics in
response to compiled and assembled commands of graphics languages such
as OpenGL or DirectX, sent to them via the system bus. Graphics cards were
labeled and sold as implementing one or more of these language interfaces.

A 3D graphics language usually assumes that 3D objects are composed
of many small triangles. Triangles are chosen because their three points
always lie in a plane, making the math easier. Their implementations, in
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hardware and/or software, usually split into two main parts, known as shaders.
First, vertex calculations convert the 3D coordinates of each vertex into 2D
pixel coordinates. Second, pixel calculations compute the color (shade) of
each display pixel.

The latter can be done in many different ways according to different
mathematical models of how surfaces and lights interact. Most shaders al-
low triangles to be translucent (partly transparent), modeled via an alpha
channel in their RGBA color, as discussed on page 68. Some shaders allow
normal (orthogonal) vectors to be described for each triangle as a hint that
they’re part of smooth, continuous surfaces.

Figure 13-7 shows the results of three traditional shaders built into early
OpenGL implementations, rendering the same triangle mesh approxima-
tion to a sphere.

Figure 13-7: Traditional OpenGL shaders: flat (left), Gouraud
(center), and Phong (right)

Graphics users demanded more flexibility in shaders. New shading
models are often proposed in graphics research, and users wanted them to
be quickly available in their own systems. The graphics languages rapidly
gained many extension commands in their later versions, to enable partic-
ular additional shaders, and graphics card architects struggled to keep up
with designing new hardware to implement them and make them compat-
ible with one another. These architects instead began to open up new and
simpler shader languages (such as GLSL) to enable these and other arbitrary
shaders to be implemented in user programs, and executed on the graphics
card—now known as a GPU—via their own ISAs. This allowed programmers—
especially game designers and movie studios—to create their own custom
shaders to give their creations a more individual feel, as in the examples in
Figure 13-8.

Figure 13-8: Custom shaders: water effects from 0 A.D. (left), “toon” shading (center), and retro
CRT emulation (right)
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Today’s graphics systems have continued this architectural trend, with
GPUs now functioning as highly general parallel processors of their own in-
struction sets, and the graphics-specific shaders moved into software. For-
mer hardware interfaces including OpenGL and DirectX are now imple-
mented in software, written in the GPU’s own assembly and machine code.
Such code can now also be generated directly by other graphics tools, such
as Wayland compositors and the Vulkan SPIR-V language. The resulting
GPU machine code is sent over the bus to the graphics card, where it runs
on the GPU. We’ll study this code in more detail in Chapter 15.

Sound Cards
Unlike retro sound chips, such as the SID, modern sound cards don’t gener-
ate signals at all. Instead, they manage the flow of quantized, digital sound
wave signals. As a result, computers have lost their characteristic sound
effects and musical culture: modern game music can consist of ordinary
recordings of orchestras or rock bands rather than any particular “computer
music.” Like graphics cards, sound cards are always now under OS control,
so user programmers are unlikely to see much of their architecture.

A modern sound card is really just a group of digital-to-analog convert-
ers (DACs), and indeed it’s possible to make your own from any DAC, such
as the one found on a Labjack, a software-defined radio, or an Arduino Due.
Typically, professional sound cards are optimized for low latency, sound
quality, and many channels, while consumer cards are optimized for lower
cost. Human hearing has a maximum frequency of around 20 kHz, which re-
quires a 40 kHz sampling rate to be represented accurately. It’s common to
use 48 kHz to allow some wiggle room and because it’s almost a power of 2.
Professional systems may use higher rates to reduce the buildup of audible
errors from repeated processing.

Sound card hardware typically consists of a ring buffer for each chan-
nel, as well as DAC hardware, which reads or writes to and from it. A ring
buffer maintains a pointer to the next location to write, and wraps the stor-
age around the ring so space doesn’t run out. The buffer size provides a
trade-off between latency and dropouts. A small buffer means low latency
but risks dropouts. We can also choose the bit depth of the audio.

Sound cards, like graphics cards, connect to the system bus. They’re less
bandwidth-hungry than video, so they’re usually found on a bus hanging
off of Southbridge, such as PCI for internal cards or USB or Firewire for
external cards.

Sound card I/O protocols vary by manufacturer, and like GPUs, their
details may be proprietary and known only to the driver writers inside the
company, who then make a software API available. As with GPUs, the hard-
ware or software interfaces are then reverse engineered by open source
driver writers, who wrap them in generic software APIs such as ALSA.
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Keyboards and Mice
Modern keyboards are nothing like the memory-mapped keyboards of the
1980s. They now contain small, embedded computers (see Figure 13-9).

Figure 13-9: The key pressure sensors and embedded
system inside a modern keyboard

The keyboard’s embedded computer is actually doing a lot of work, sim-
ilar to a typical Arduino application. It takes the matrix of key presses, con-
verts them to a keycode data representation scheme, and transmits them
over a virtual serial port wrapped in USB protocol.

Something similar has happened with mice. A modern optical mouse
performs some extremely complicated real-time machine vision processing
known as optic flow on a dedicated internal embedded system. If you try to
implement optic flow in software, you’ll find it’s hard to do fast. It’s still
a research area, with recent implementations in software libraries such as
OpenCV. In a mouse, however, it’s implemented directly as low-level digital
electronics, as in Figure 13-10.

Figure 13-10: The inside of an optical
mouse
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This digital logic is just about simple enough for you to still be able to
see the connections. You can see from the overall, fairly homogeneous struc-
ture that it’s processing a region of 2D space—the image underneath the
mouse. It tracks how light and dark areas of this image are moving around
and from that infers the movement of the mouse.

There’s also usually a USB controller attached to the device. This is
actually a complex embedded system—possibly a computer in its own right—
and the fact that it’s now available for a few dollars in every mouse is very
impressive.

THE PC BOOT PROCESS

The term booting comes from the paradoxical expression “pulling yourself up
by your bootstraps.” It means starting with nothing and getting into a complex
computer system by having small programs execute that load slightly larger and
more powerful programs, in a sequence. On both retro systems and modern
PCs, this begins by the CPU fetching an instruction from a hardwired ROM
address.

Unlike retro computers, modern PCs aren’t made from standard components;
instead, they are assembled from many different optional components, such as
RAM modules of various types, caches, and I/O extension cards. It’s not ini-
tially obvious where all these things are, how they should be initialized, or how
they should be mounted in the address space. To address this, the modern PC
boot process is split into two parts.

First, a bootloader such as coreboot is burned into ROM firmware, at the ad-
dress of the CPU’s initial program counter. For x86, this is ffff,fff016. This is a
16-bit address, because x86 processors always power on in “legacy mode”
(Intel calls it “real mode”), which makes them behave like 1980s 16-bit chips
for backward compatibility. In this mode, only 1 M2B of combined ROM and
RAM memory is addressable, and the initial program counter address is near
the top of it. The bootloader runs from here and is responsible for inspecting,
initializing, and assigning addresses to the available hardware. The boot-
loader doesn’t display anything onscreen because there aren’t yet any routines
available for doing I/O. Because it’s invisible, it can be hard to understand all
the hard work the bootloader is doing.

Second, after this initialization, the bootloader performs a jump to code in the
BIOS. The BIOS, as in a retro computer, contains subroutines for basic I/O such
as ASCII character display, keyboard reading, and hard disk access. At this
stage, your PC can look and feel much like a retro computer.

(continued)
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Usually, the BIOS code jumped to from the bootloader will print a few strings on
the screen, such as the name and logo of the BIOS. A PC BIOS ROM and an
example of BIOS display I/O capabilities are shown here.

A BIOS will usually first offer the user the chance to “go into the BIOS” by
pressing a key, which will call graphical routines for setting configuration
options. One of these options is usually to give the name of a storage device
whose first data contains the next program to be loaded and jumped to, usually
at address 7c0016. What this program does is up to you—a common first
move is to switch the x86 up into 32-, then 64-bit modes.

There was a time when different x86 BIOS manufacturers all made different and
incompatible libraries of routines, but they’ve now converged on two standards.
One, PCBIOS, was defined by IBM (who just call it “BIOS”) in early x86 PCs. It
was cloned by other manufacturers and is still used by many x86 machines to-
day. SeaBIOS is an open source implementation. The other standard, UEFI, is
more recent. It assumes more advanced graphics and I/O are available, so its
library of routines includes higher resolution and more colorful graphics, and
access to additional devices such as USB. TianoCore is an open source
implementation.

Summary
No one would design a modern desktop PC to have its current form if they
were able to start from scratch. Like many successful commercial, real-world
systems, the PC has evolved over time as new features have been requested
and bolted on, while existing customers demand backward compatibility. As
a result, both the x86 architecture and PC computer design have accumu-
lated layers of legacy features. The CISC philosophy is a good fit for this en-
vironment. It’s common for multiple competing standards to be supported
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within single designs, even including multiple choices for x86 assemblers
including but not limited to NASM. Recent x86 has extended beyond the
features seen in this chapter by adding parallelization, which we’ll examine
in Chapter 15. But before this, we’ll take a breather by looking at develop-
ments in the cleaner, more beautiful world of RISC in the next chapter.

Exercises
Creating a Bootable ISO Image
Here you’ll create a simple 16-bit “Hello, world!” program, assemble it with
NASM into executable machine code, then store this machine code in an
ISO file, an image of the contents of a physical secondary storage device that
you can use to boot a real PC or a virtual machine.

1. Create the following hello16bit.asm file:

bits 16 ; tell NASM we're only using 16-bit x86

org 0x7c00 ; base address for bootloader to place this code

section .data ; this segment is read-write data

message db 'Hello, World!', 13, 10, 0

section .text ; this segment is read-only code

entry:

jmp start

printer: ; subroutine for printing ASCII strings

lodsb ; load SI into AL and increment SI [next char]

or al, al ; check if the end of the string

jz printer_end;

int 0x10 ; otherwise, call interrupt to print char

jmp printer ; loop

printer_end:

ret ; return flow

start:

mov si, message ; say what we want to print

mov ah, 0x0e

call printer ; print it

; ** add your own code here ... **

hlt

times 510-($-$$) db 0 ; zero out rest of 512-byte boot sector

dw 0xaa55 ; code to mark sector as bootable

2. Run the following commands:

mkdir -p cd/boot

nasm hello16bit.asm -o cd/boot/loader.sys

mkisofs -R -J -c boot/bootcat -b boot/loader.sys -no-emul-boot -o cd.iso cd
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NO T E If you’re using Microsoft Windows, these commands can be run by instal-
ling and using the Windows Subsystem for Linux. If you don’t already
have NASM, install it from https://nasm.us. You may also need to in-
stall mkisofs for your system.

3. If everything worked, you’ll now have a cd.iso file for booting a physi-
cal or virtual x86 machine. This will allow you to run on “bare metal”
x86, without an operating system getting in the way.

We’ll discuss how to boot into your ISO file in the next exercises. When
you do, you should see something like Figure 13-11 on the screen.

Figure 13-11: The result of booting into a bare metal test program

Before going any further, let’s look at what hello16bit.asm actually does.
In addition to actual x86 instruction mnemonics, a NASM program usually
also includes some directives, which are lines that aren’t assembled them-
selves but instead tell NASM to change its behaviors in various ways. The
section directive tells NASM to change which segment of the output file to
write the next assembled instructions to. In some file formats, the number
and names of sections are fixed; in others, the user may make up as many
as they wish. The Unix object and bin formats all support the standardized
section names .text (contains executable instructions), .data (contains initial-
ized variables), and .bss (contains uninitialized variables). The ASCII string
includes special ASCII codes 13, 10, and 0 after the human readable letters.
What are these? (Hint: See Chapter 2.)

Booting on a Virtual x86
The ISO can be booted on a virtual machine as if it were a physical disk.
Follow these steps to try it out using the VirtualBox virtual machine. (Open
source Linux users may prefer to use virt-manager at https://virt-manager.org.)

1. Visit https://www.virtualbox.org for instructions on how to install
VirtualBox on your system.

2. Once installed, create a new virtual machine by clicking the New
icon; use the default settings.

3. Start your virtual machine and “insert” your bootable virtual CD by
selecting your cd.iso file when asked.
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Booting on a Physical x86
The ISO can also be booted on a physical x86 machine if you first “burn” it
onto a physical USB stick. Here’s how:

1. Use a program such as Etcher (https://www.balena.io) for your cur-
rent operating system to burn the ISO to a USB stick.

2. Once you have a bootable USB stick, you need to tell your PC to
boot from it. Your PC is probably currently configured to boot
from a hard disk, but it will have some method—which varies by
manufacturer—to change to booting from USB as part of its BIOS
configuration tools. Editing these settings is called “going into the
BIOS.” On most machines it’s done by holding down a particular
key for a few seconds as you turn on the machine. This is often ESC,
DEL, F1, F2, F8, F10, or F11, depending on the manufacturer (if it
doesn’t say which, try running a finger over the whole top row of
the keyboard to hit them all). You’ll usually see some low-resolution
BIOS menus: if you hunt around, there will be some way to specify
the boot order and bring USB to the top of it. Some machines may
have additional security features that need to be disabled before you
can boot from a new device.

Booting to and Programming in 64-Bit Mode
Switching a modern x86 into 32- and 64-bit modes isn’t trivial. Due to histor-
ical baggage, it requires a couple of screens of instructions and data. How
these work is fairly obscure, but luckily it’s a standard process that can now
be done using the boilerplate code shown here:

org 0x7c00 ; base address where this code will be placed (by bootloader)

entry:

jmp real_to_protected

GDT32: ; Global Descriptor Table for 32-bit mode

.Null: equ $ - GDT32

dq 0 ; defines 32 bits of zeros for the null entry

.Code: equ $ - GDT32

dw 0xFFFF ; segment limit

dw 0 ; base address

db 0 ; base address (again)

db 0b10011010 ; binary flags describing mode

db 0b11001111 ; binary flags describing mode

db 0 ; last remaining 8 bits on the base address

.Data: equ $ - GDT32

dw 0xFFF ; --|

dw 0 ; | - identical to code segment

db 0 ; --|

db 0b10010010

db 0b11001111

db 0
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.Pointer:

dw $ - GDT32 - 1

dd GDT32

GDT64: ; Global Descriptor Table for 64-bit mode

.Null: equ $ - GDT64

dw 0xFFFF

dw 0

db 0

db 0

db 1

db 0

.Code: equ $ - GDT64

dw 0

dw 0

db 0

db 10011010b ; binary flags describing mode

db 10101111b ; binary flags describing mode

db 0

.Data: equ $ - GDT64

dw 0

dw 0

db 0

db 10010010b ; binary flags describing mode

db 00000000b ; binary flags describing mode

db 0

.Pointer:

dw $ - GDT64 - 1

dq GDT64

bits 16 ; tells NASM the following is 16-bit x86 code

real_to_protected: ; switch from 16 bits to 32 bits

mov ax, 0x2401

int 0x15 ; enable a20 gate

mov ax, 0x3

int 0x10 ; change video mode

cli

lgdt [GDT32.Pointer]

mov eax, cr0

or eax, 1

mov cr0, eax

jmp GDT32.Code:protected_to_long ; perform long jump

bits 32 ; tells NASM the following is 32-bit x86 code

protected_to_long: ; switch from 32 bits to 64 bits

mov ax, GDT32.Data

mov ds, ax

mov fs, ax

mov gs, ax

mov ss, ax
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; root table - page-map level-4 table (PM4T)

mov edi, 0x1000 ; starting address of 0x1000

mov cr3, edi ; base address of page entry into control register 3

xor eax, eax ; set EAX to 0

mov ecx, 4096

rep stosd

mov edi, cr3 ; restore original starting address

mov dword [edi], 0x2003

add edi, 0x1000

mov dword [edi], 0x3003

add edi, 0x1000

mov dword [edi], 0x4003

add edi, 0x1000

mov ebx, 0x00000003 ; used to identity map the first 2MiB

mov ecx, 512

.set_entry:

mov dword [edi], ebx

add ebx, 0x1000

add edi, 8

loop .set_entry

mov eax, cr4

or eax, 1 << 5

mov cr4, eax

mov ecx, 0xC0000080 ; magic value actually refers to the EFER MSR

rdmsr ; read model-specific register

or eax, 1 << 8 ; set long-mode bit (bit 8)

wrmsr ; write back to model-specific register

mov eax, cr0

or eax, 1 << 31 | 1 << 0 ; set PG bit (31st) & PM bit (0th)

mov cr0, eax

lgdt [GDT64.Pointer]

jmp GDT64.Code:real_long_mode

bits 64 ; tells NASM the following is 64-bit x86 code

printer: ; subroutine for printing ASCII strings

printer_loop:

lodsb

or al, al

jz printer_exit

or rax, 0x0F00

mov qword [rbx], rax

add rbx, 2

jmp printer_loop

printer_exit:

ret

real_long_mode:

cli

mov ax, GDT64.Data
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mov ds, ax

mov fs, ax

mov gs, ax

mov ss, ax

xor rax, rax ; clears register rax

mov rsi, boot_msg ; say what we want to print

mov rbx, 0xb8000

call printer ; print it

mov rsi, l_mode ; say what we want to print

mov rbx, 0xb80A0

call printer ; print it

; ** add your own code here ... **

hlt

boot_msg db "Hello, world!",0

l_mode db "This is 64-bit (long mode) !",0

times 510 - ($-$$) db 0 ; zero out rest of 512-byte boot sector

dw 0xaa55 ; code to mark sector as bootable

If you save this, assemble it, and put it into an ISO as for the 16-bit ver-
sion, it will boot your real or virtual x86 into 64-bit mode and print another
“Hello, world!” message. You can then use the “Hello, world!” program as a
starting point, modifying it into your own bootable programs for the follow-
ing tasks:

1. Write a subroutine that reads integers and converts them into ASCII
strings. Extend it to floating point. Use it to print out some num-
bers along with “Hello, world!”

2. Try porting previous programs from the Analytical Engine and
Manchester Baby to run on x86. What’s gotten easier or harder to
do in modern x86 compared to those systems?

3. Call the BIOS routine to light up pixels on the screen several times
to draw a simple shape.

More Challenging
Write a simple game such as Space Invaders using the above BIOS calls, on
bare metal x86.

Further Reading
• For the official NASM manual, see “NASM: The Netwide Assem-

bler,” https://www.nasm.us/xdoc/2.13.03/html/nasmdoc0.html.

• For an overview of x86 history, see P. Lilly, “A Brief History of CPUs:
31 Awesome Years of x86,”Maximum PC, April 2009, https://www
.pcgamer.com/a-brief-history-of-cpus-31-awesome-years-of-x86.
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• For the full five-volume amd64 reference set, see AMD Technology,
AMD64 Architecture Programmer’s Manual Volumes 1–5 (Santa Clara:
AMD Technology, 2023), https://www.amd.com/en/support/tech-docs/
amd64-architecture-programmers-manual-volumes-1-5.

• For information on 3D graphics programming, see Graham Sellars,
Vulkan Programming Guide (Boston: Addison-Wesley, 2017).

• For details of how the x86 boot assembly code works, see Gregor
Brunmar, “The World of Protected Mode” (http://www.osdever.net/
tutorials/view/the-world-of-protected-mode), the lame_bootloader GitHub
repository (https://github.com/sedflix/lame_bootloader), and “Setting
Up Long Mode” (https://wiki.osdev.org/Setting_Up_Long_Mode).
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14
SMART ARCHITECTURES

Smart computing means general-purpose
computers built into low-power and/or

mobile devices, such as phones, tablets, TVs,
routers, and fridges. Unlike embedded systems,

they run multiple easily installable and upgradable pro-
grams, often known as apps. Unlike desktop systems,
they need to reduce power consumption, as they often
run from batteries. Reduced instruction set computing
(RISC) is a good fit for these requirements, so RISC
architectures are generally found in smart systems.
This chapter explores the RISC philosophy, smart de-
vices, and the details of a particular RISC architecture,
RISC-V. It’s shorter than the desktop chapter because
RISC is simpler than CISC by design.



Smart Devices

Early mobile phones were embedded systems whose primary purpose was
to function as voice telephones. They had microcontrollers programmed to
manage the telephone and user interaction via buttons and simple number-
displaying screens. Over time, these microprocessors and interaction devices
grew, and the firmware was extended to include features such as contact
books, alarm clocks, and simple games like Snake.

Modern smartphones now provide such features, and many more, as
software apps rather than firmware. They’ve replaced microcontrollers with
fully fledged general-purpose architectures that typically run an operating
system such as LineageOS, Replicant, or Android to host apps, much like a
desktop PC.

The prefix smart emerged to describe these phones, but it’s now applied
to anything that used to be an embedded system but has been upgraded to a
general-purpose computer. For example, smart TVs (the left of Figure 14-1)
and smart fridges have moved beyond microcontrollers and firmware to the
point where they can easily install and run multiple apps.

The modern consumer internet connection device shown on the right
of Figure 14-1 and widely but wrongly known as a “router” is another exam-
ple of a smart computer. Such devices now usually contain an operating sys-
tem running many services, including routing, Wi-Fi, firewalling, and a web
server (at least to run its configuration page). They should probably be re-
named “smart routers” for this reason.

Figure 14-1: The inside of a Toshiba smart TV (left) and a Zyxel router (right)

The “smart home” has been a computing industry ambition for several
decades, and refers to a home in which most or all of the usual domestic ap-
pliances are upgraded to networked, general-purpose computers. For ex-
ample, smart washing machines and smart central heating controllers will
enable innovative, machine learning–based apps to compete against one an-
other to make the best use of energy, given data from sensors monitoring
the condition of clothes to be washed and the temperatures and usages of
rooms. Linking these systems will enable automation chains such as your
smart fridge predicting that the milk will run out later today, and placing an
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automatic order to the local supermarket to deliver more, perhaps via a last-
mile delivery robot and a smart drop-off box to receive the delivery. Or your
heating system and fridge could be temporarily turned off while the washing
machine is turned on, so that it can be powered entirely from the batteries
in your parked electric car, charged from your solar panels, without needing
to use the power grid.

Architectures for smart devices have similar requirements to embedded
systems around reliability and energy usage. However, they also need more
computing power than embedded microcontrollers. These requirements are
a perfect match for the RISC philosophy, so let’s examine this philosophy in
more detail.

RISC Philosophy
The RISC concept was invented by an American, David Patterson, but most
successfully commercialized by the British. Patterson’s quantitative approach
to architecture involved a statistical analysis of the instructions actually being
used by real-world programs on processors of the 1990s. He found that the
more complex instructions were used very rarely, in part because compiler
back-end designers didn’t know or want to learn how to use them. He de-
termined that roughly 90 percent of the work was being done by roughly
10 percent of the resources. This led him to the central RISC tenet that the
silicon occupied by the rarely used instructions would be better put to work
making the most popular 10 percent of instructions run very fast, at the ex-
pense of removing the other instructions altogether. Patterson and his co-
architect, John Hennessy, won the 2017 Turing Award for their research on
the use of quantitative methods to guide RISC architecture design.

RISC usually aims for every one of its streamlined set of instructions to
be executed in a single CPU cycle. With fewer instructions available, RISC
assembly programs are often quite verbose, but each instruction is simple,
fast, and low-power to execute. Writing programs in RISC assembly and writ-
ing compilers for RISC is easy and fun because the instruction set architec-
tures (ISAs) are small, simple, and understandable.

RISC CPUs themselves aren’t necessarily simple, however. While the
instruction sets are by definition smaller, designers have found alternative
ways to make efficient use of the available silicon. For example, RISC proces-
sors typically have many more registers than their CISC counterparts. Extra
registers are especially useful in RISC because they help separate memory
access from arithmetic. In RISC programming and RISC compilers, it’s com-
mon to try to bring all relevant variables into registers at the start of a sub-
routine, then do the entire function’s computations in registers, storing only
the result back to main memory. This contrasts with CISC, where there can
be continual loading and storing throughout the subroutine.

Because part of the RISC philosophy is that every instruction should ex-
ecute in exactly one clock cycle, instruction-level parallelism through pipelin-
ing, branch prediction, and out-of-order execution (OOOE) are massively
easier to manage. Every instruction has the same fetch-decode-execute step
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duration, and each phase can be triggered regularly in open-loop style. Com-
pare this with CISC architectures, where steps of different instructions can
take different durations and must closed-loop trigger each other to say when
they’ve been completed.

RISC was traditionally seen as a very academic philosophy, being beau-
tiful in its design, lean and mean in its execution, and generally resisting the
temptation to make a fast buck by bolting on new features to please specific
customers by next Thursday. It was often associated with Britain and the
British company ARM, though it originated at the University of California,
Berkeley—located near to but separated from Silicon Valley. The stereotyp-
ical RISC advocate was more interested in beauty and cleverness of design
than pragmatism, and for a long time such people were laughed at by more
commercial-minded Silicon Valley architects. However, this is now chang-
ing: the beauty of RISC is paying off. Most processors now manufactured
are RISC. This is largely due to the trend of smart and embedded devices
replacing desktops, though serious thoughts are now turning to RISC for
cloud servers, too. In 2020, Apple also moved its desktop machines to the
RISC-based M1 architecture.

FROM ACORN TO ARM

The British company Acorn used the 6502 in their BBC Micro (“Beeb”), a
classic piece of British engineering, brilliantly designed but commercially
mistimed and mispositioned. Like much British technology, the Micro was
government-funded, in this case via the national broadcaster, the BBC, who
wanted a custom-designed, mass-market machine to go with an educational
TV series.

Hackers today often play at buying a 6502 and building an 8-bit computer
around it on a breadboard, and that was just what the Beeb designers did.
Acorn was founded by a bunch of Cambridge people who used that pedigree
to convince the establishment BBC to choose their design. The BBC gave a
huge specification list for what their computer needed for their TV series. This
had a strong education and science—rather than gaming—influence. For
example, they didn’t include a joystick port but did include options for co-
processors and interfacing to maker-style electronics.

One year after the Beeb’s release, the Commodore 64 appeared, designed to
be “for the masses, not the classes.” It had superior graphics and sound for
game playing, and came at a much lower price. The C64 filled the full 64 k2B
of addressable RAM, while the Beeb filled only 32 k2B. The C64 had the
glorious SID sound chip, while the Beeb had only basic square waves, white
noise, and amplitude envelopes from the poorer SN76489. Commodore had
by this point bought out MOS, so it could involve the designers of the 6502 and
related chips—including Chuck Peddle—directly in its computer designs to
exploit its most advanced features.
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The C64 quickly made the Beeb seem overspecified and overpriced. However,
Acorn used the Beeb internally to design their first RISC processor, the Acorn
RISC Machine (ARM), for their next computer, the Archimedes—a fully 32-bit
machine, released in 1987. Archimedes was technically a decade ahead of its
time, though temporally and culturally it still belonged to the “16/32-bit era.” It
was again sadly mismarketed, overspecified, and overpriced—for example,
having eight-channel audio compared to the Amiga’s four, yet no joystick ports
or TV output for games.

Acorn went on to spin out a new company, ARM, to focus on its ARM chip
designs. ARM found success, as its chips now power most of the world’s
smartphones, the M1 used in Apple’s tablets and desktops, and many smart
devices such as the chips seen in Figure 14-1.

Computing history could have been very different if the BBC had waited an
extra year to put a C64 into every UK school. Commodore’s business manage-
ment faced challenges that led to bankruptcy in 1994, but acceptance by the
British establishment might have provided the stability needed to survive.

A strange legacy has been that Acorn’s OS for Archimedes, RISCOS, is still
compatible with the latest ARM ISAs. It was painstakingly hand-coded in ARM
assembly to squeeze power out of early 1990s CPUs, so it now runs blindingly
fast on modern devices such as the Raspberry Pi. There’s been a resurgence of
old Acorn user groups around this, in some cases resulting in old friends
meeting up for the first time in 30 years.

RISC-V
ARM’s RISC ISA designs are heavily patented, but others in the industry
now wish for fully open source RISC ISA alternatives. As with the IBM-Intel-
AMD license, computer builders want to genericize the ISA and enable mul-
tiple implementations to drive down processor prices through competition.
A large consortium of major Silicon Valley companies is therefore now back-
ing Patterson’s latest and fully open source RISC ISA family design, called
RISC-V (V for, and pronounced, “five”), as the next standard for RISC. Note
that RISC-V is a family of ISAs, not a hardware implementation of these
ISAs. Companies may implement the open source ISAs in proprietary hard-
ware and compete on implementation quality. There are also fully open
source implementations by Patterson’s group and other members of the
RISC-V movement.

Understanding the Architecture
RISC-V is designed as a family of ISAs, rather than a single ISA. The family
includes versions suitable for embedded, mobile, desktop, and server ma-
chines, including versions for 32-, 64-, and 128-bit ISAs. RISC-V defines a
core ISA of instructions that all RISC-V systems need to implement. Like
x86, RISC-V uses per-byte, little-endian addressing. RISC-V uses RISC-style
instructions that separate memory access from arithmetic logic unit (ALU)
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operations. It’s not an accumulator architecture, and ALU instructions ex-
plicitly specify the output register, so they usually have three arguments.

As we’ve discussed, the RISC philosophy is to reduce the number of in-
structions as much as possible. This means that some operations that you
would usually expect to find in an ISA are absent if they can be achieved
through other means, such as by calling other instructions in slightly odd
ways. When such unusual uses of instructions are needed, RISC-V assem-
blers will sometimes provide pseudo-instructions that look like the classic in-
structions you expect. The assembler then converts them to the underlying,
somewhat ugly RISC instructions. To a limited extent, some of the complex-
ity of CISC digital logic is thus moved into the assembler, while keeping the
machine code itself clean.

RISC-V registers have standard names and standard conventions for
their typical uses, such as how to pass arguments to subroutines by storing
them in registers. For example, the integer registers are always called x0 to
x32 (and x0 always contains the constant 0). The RISC designers gave the
integer registers secondary nickname mnemonics, shown in Table 14-1, to
encourage conventions for their use.

Table 14-1: RISC-V Integer Registers
Name Mnemonic Intended convention
x0 zero Value is always zero
x1 ra Return address for subroutine calls
x2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5–x7 t0–t2 Temporary
x8–x9 s0–s1 Saved
x10–x14 a0–a7 Arguments for subroutine calls
x18–x27 s2–s11 Saved
x28–x31 t3–t6 Temporary

As with instructions and pseudo-instructions, this is designed to keep
the underlying architecture very clean and simple, while also providing the
ability to think and code in terms of some CISC-like styles, if and only if the
programmer wants to do that.

There may be a further 32 optional floating-point registers, also given
mnemonics, which you can see in Table 14-2.

The intended calling conventions for registers starting with t and s are
temporary and safe—the same concepts seen but less standardized in the x86
calling conventions from Chapter 13.
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Table 14-2: RISC-V Floating-Point Registers
Name Mnemonic Intended convention
f0–-7 ft0–-7 Floating-point temporaries
f8–-9 fs0–-1 Floating-point saved registers
f10–-11 fa0–-1 Floating-point arguments/return values
f12–-17 fa2–-7 Floating-point arguments
f18–-27 fs2–-11 Floating-point saved registers
f28–-31 ft8–-11 Floating-point temporaries

As with x86, the user can’t access internal registers directly. These inter-
nal registers include a program counter and status register.

Programming Core RISC-V
Now we’ve seen the basic structures, let’s use them in some instructions to
write RISC-V programs. As with the other architectures we’ve studied, we’ll
first introduce data moves and control flow. RISC-V then has various op-
tional extensions, including arithmetic, which we’ll also explore.

Data Moves
As a RISC system, data movement involving primary memory is cleanly
separated from all other operations, which are performed only on data in
registers. Loading from memory to registers, and storing to memory from
registers, is done by the following instructions:

lw x5, x6, 0 ; load word to x5, from content at address x6+0

sw x5, x6, 0 ; store value from reg x5 to address x6+0

la x6, mylabel ; load address of mylabel (not its content) to x6

Note that like NASM and Arduino assembly, RISC-V assembly writes the
destination register first, followed by the inputs. You can see the RISC na-
ture of the lw and sw instructions in the requirement for all three operands,
even when the third operand is a 0 and thus isn’t being used, rather than
providing a second form of these instructions with only two operands.

For convenience, a pseudo-instruction is provided to load content from
a labeled address:

lw x5, mylabel ; load content at address mylabel to register x5

This actually gets assembled to two instructions. First, an la obtains the ad-
dress of the label, and then an lw loads the content of that address.

Importantly, unlike in CISC, these instructions aren’t reused to copy
data between registers. This clean separation of memory access instructions
from between-register operations is often considered to be a defining fea-
ture of RISC. We’ll discuss how this is done in the “Arithmetic” section on
page 347.

Smart Architectures 345



Control Flow
Unconditional jumps come in two forms:

j mylabel ; jump to address mylabel

jr x5 ; jump to address in x5

Conditional jumps include:

beq x1, x2, mylabel ; branch if x1==x2

bne x1, x2, mylabel ; branch if not x1==x2

blt x1, x2, mylabel ; branch if x1<x2

bge x1, x2, mylabel ; branch if x1>=x2

Subroutines are called by “jump and link.” The “link” here refers to sav-
ing the program counter in a register. For example:

jal x1, mylabel ; store current PC in x1 and jump to mylabel

jalr x1, x2, 0 ; store current PC in x1 and jump to address x2+0

This is why x1 is nicknamed ra, for return address.
There isn’t a return instruction because returning can be done, RISC-

style, by reusing the jump instruction, jumping to what was previously saved
in x1:

jalr x0, x1, 0

That said, a ret pseudo-instruction may be provided and assembled into the
appropriate jalr instruction.

Using ret enables you to call and return from a single subroutine, with
the return address kept in x1. To call nested functions, however, you’ll also
need a stack. The convention is to have the register x2 (sp) be the stack
pointer. Here we push a 4-byte word to the stack:

addi sp, sp, -4 ; grow stack

sw a0, sp, 0 ; store a0 onto stack

The addi instruction means “add immediate,” in this case adding a constant
(–4) to the stack pointer. (“Immediate” means that an operand contains the
value itself, rather than an address or register containing the value.) Like-
wise, here we pop from the stack:

lw a0, sp, 0 ; retrieve data to a0 from stack

addi sp, sp, 4 ; shrink stack

Note that this is done, RISC-style, by reusing existing instructions. Un-
like CISC style, there are no additional stack instructions such as push and
pop. Rather, you have to manage the stack yourself with the reduced instruc-
tion set.
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Extending RISC-V
RISC-V also defines many plug-ins or libraries of additional instructions that
can be implemented optionally. Each of these extensions is given a single-
letter code, including:

I Basic integer add/subtract/shift/bitwise logic

M Integer multiplication and division

B Bitwise Booleans

F Single-precision floating point

D Double-precision floating point

Q Quad-precision floating point

To specify a particular ISA, we write “RV” for RISC-V, then the word
length, then the extensions used. For example, RV64IMF means “RISC-V,
64-bit, with extensions I, M, and F.” This design is intended to allow RISC-V
to span all applications from embedded systems (such as RV8I) to high-end
scientific computing clusters. Further standard extensions may be proposed
as new letters or as arbitrary strings beginning with a Z, and local experi-
mental extensions may be proposed as arbitrary strings beginning with an X.

Arithmetic
Integer arithmetic is performed with three operands. For example:

add x6, x7, x8 ; x6 := x7 + x8

sub x6, x7, x8 ; x6 := x7 - x8

mul x6, x7, x8 ; x6 := x7 * x8

div x6, x7, x8 ; x6 := integer of x7 / x8

rem x6, x7, x8 ; x6 := remainder of x7 / x8

Bitwise Boolean operations are similar:

and x6, x7, x8 ; x6 := x7 bitwise-and x8

or x6, x7, x8 ; x6 := x7 bitwise-or x8

xor x6, x7, x8 ; x6 := x7 bitwise-xor x8

not x6, x7 ; x6 := bitwise-not x7

Unusual cases such as division by zero and overflows are reported in the sta-
tus register, which can be queried by further instructions.

In a RISC architecture, register-to-register operations belong to arith-
metic rather than to data transfer in order to reduce the number of instruc-
tions and variations. Thus, there are no extra instructions for placing con-
stants in registers or copying data between registers. Instead, we treat these
as addition operations, with the always-zero x0 register used as one of the
operands. For example:

addi x1, x0, 3 ; load immediate integer 3 to x1

add x2, x1, x0 ; copy x1 to x2
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The RISC-V assembler developed by the mainline RISC-V project includes
alternative pseudo-instructions for these operations, for programmer
convenience:

li x2, 3 ; load integer 3 into x2

mv x2, x1 ; copy x1 to x2

These are assembled behind the scenes into the appropriate addition
instructions.

Floating Point
Floating-point instructions begin with f and act on the floating-point regis-
ters, f0 to f31, such as:

fadd f6, f7, f8 ; f6 := f7 + f8

fsub f6, f7, f8 ; f6 := f7 - f8

fmul f6, f7, f8 ; f6 := f7 * f8

fdiv f6, f7, f8 ; f6 := f7 / f8

fsqrt f6, f7 ; f6 := sqrt(f7)

There are also instructions to load, store, and compare floats, and con-
vert them to and from integers:

flw f1, t0, 0 ; load float word to f1 from address t0+0

fsw t0, f1, 0 ; store float word to address t0+0 from f1

flt.s x6, f1, f2 ; x6 := (f1 < f2)

fcvt.w.s x6, f1 ; convert float f1 to int x6

fcvt.s.w f1, x7 ; convert int x7 to float f1

Here the .s and .w stand for single and word precision. There’s also d

for double. These suffixes are similar to, and perhaps borrowed from, the
68000 discussed in Chapter 11. As with integers, RISC style can be seen in
the clear separation of memory access (load and store) from the arithmetic
performed.

Different RISC-V Implementations
As I’ve mentioned, RISC-V is a specification of a family of ISAs of the
machine code interface between the programmer and the CPU. It doesn’t
specify how the instructions should be implemented. Architects are free to
design their own implementations of RISC-V as CPUs from digital logic (or
from anything else).

So far, there are three major open source hardware implementations of
RISC-V. These are fully open source hardware in the sense that anyone can
download, edit, and fabricate the files describing the CPU layouts, free of
charge. The implementations are:
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Berkeley Educational cores These are deliberately simple implemen-
tations of some limited RISC-V ISAs for educational use, being eas-
ier to understand and modify. They include non-pipelined and simple
pipelined versions.

Rocket This is a family of CPU implementations using professional-
quality pipelining. It’s a family rather than a single CPU because there
are versions for different word lengths and for most of the ISA exten-
sions. The Rocket chip generator program can generate a particular
chip design and layout for most RISC-V descriptors.

BOOM (Berkeley Out-of-Order Machine) This is a high-performing
implementation, using state-of-the-art OOOE. It’s a platform for much
active research on OOOE and other hardware speedups.

RISC-V Toolchain and Community
RISC-V is more than just an architecture: it’s an open source community
and ecosystem. For the first time in architecture history, a fully open source
architecture and toolchain now exists that allows anyone in the world to
download it, hack it, and burn it onto cheap field programmable gate ar-
rays (FPGAs). These kinds of technologies used to be the preserve of a tiny
group of professionals working at architecture companies, where they were
closely guarded secrets. Now anyone can access and play with the same kinds
of tools as those big companies. As a result of this opening up of the tool-
chain, together with the pressure to develop radically new architectures due
to the end of Moore’s law(s), there are now over 700 architecture start-up
companies in Silicon Valley, and more around the world. Hennessy and
Patterson’s 2017 Turing Award lecture declared a “new golden age” of
architecture for the 2020s, and they encouraged everyone to get involved
with this community.

To get involved yourself, you’ll need to download the RISC-V commu-
nity’s tools and tutorials. RISC-V development is de facto led by Patterson’s
group at the University of Berkeley, near Silicon Valley. This group has pro-
duced a standard set of tools that the community uses to design and build
structures from transistor layouts all the way up to full CPUs. RISC-V devel-
opment is usually done in the program Chisel, and indeed Chisel is devel-
oped by many of the same people as RISC-V.

Smart Computer Design
For smart computing applications, it’s usually desirable to place a RISC CPU
on the same silicon as all the other components, such as memory and I/O,
needed to make a complete computer. Such a chip is known as a system-on-
chip (SoC). This is a superficially similar idea to embedded microcontrollers,
but with substantially larger and more powerful designs. An SoC is then typ-
ically mounted on a very small PCB together with only analog electronics for
power management and physical I/O connectors.
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Computer designers are now taking RISC-V chip designs and putting
them onto SoCs and hardware boards. There are several commercial and
research systems using silicon fabrications of RISC-V, including the following
examples:

HiFive This closed source, commercial RISC-V product, designed by
SiFive, was the first practical RISC-V hardware available to the public.
It’s a $50 Raspberry Pi–style board that uses an OOOE implementation,
capable of running Linux for applications, similar to the Raspberry Pi.

Mango Pi This is a RISC-V board with similar small form factor and
capabilities to the Raspberry Pi Zero.

lowRISC This is an ongoing project to design and produce a fully
open source hardware computer as an SoC, based on a Rocket CPU. To
make a full computer, all the other non-CPU components also need to
be designed as open source hardware, in particular I/O and devices for
communications, such as USB and Ethernet controllers.

ROMA This is the first laptop design based on RISC-V. It was released
by Xcalibyte in 2022.

Beyond RISC CPUs, smart computing requirements have also led to de-
velopments in memory and I/O. Let’s look at some of the most common
resulting computer design elements here.

Low-Power DRAM
The DRAM used in phones and other mobile devices is of a special low-
power (LP) type known as LP-DRAM. LP-DRAM is designed to reduce bat-
tery usage at the cost of some loss of speed and convenience. Primarily, this
is achieved by turning off the power to large areas of memory that aren’t
in use. This destroys their volatile contents but greatly reduces power con-
sumption, as no electricity is needed to continually refresh the memory. The
main cost is a delay in reactivating these regions when they’re needed again.
For example, your phone’s batteries will last longer on an LP-DRAM ma-
chine if you close down all unnecessary apps, because the operating system
will then free the memory they were using, which can be turned off to save
power.

Like DRAM, LP-DRAM has been through many standards iterations.
Various additional innovations beyond power switching include operating
on reduced voltages such as 1.8 V, scaling the refresh rate as a function of
temperature to reduce unnecessary refresh work, and multiple levels of shut-
downs. The latter may be used to differentiate between a user putting their
phone away in their pocket for many hours versus temporarily freeing mem-
ory from an app while continuing to use the rest of the phone.
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Cameras
Camera sensors, as shown in Figure 14-2, are active pixel sensors made from
CMOS-like chips.

Figure 14-2: A camera sensor (left) and a close-up showing its pixels (right)

Camera sensors are formed from 2D arrays of light sensors (pixels) cre-
ated through photolithography, like chips. Usually each pixel contains three
subpixels for sensing red, green, and blue light, as in displays.

Touchscreens
The touchscreen used in a phone or tablet is produced as a distinct, trans-
parent layer from the display screen placed beneath it. Like chips, touch-
screens are produced via photolithography; layers of different materials are
laid down in a pixel grid of small half-capacitors, as shown in Figure 14-3.

Figure 14-3: A touchscreen made from
an array of half-capacitors, with 2D
addressing

Human skin acts as the other half of the capacitor when in close proxim-
ity to these pixels, making the grid touch-sensitive.

To enable the touchscreen to act as a layer above a visible display, we
need to build these half-capacitors and the wires connected to them from
a material that’s both conductive (a metal) and also transparent to human-
visible red, green, and blue light. This is a difficult requirement, because
metals generally reflect all frequencies of light. Indium tin oxide (ITO) is a
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very unusual compound, based on the rare element indium, that happens to
have the desired property, so it’s used in most touchscreens.

NOT SO DIFFERENT AFTER ALL?

Unlike CISC, RISC doesn’t add extra instructions to make life easier for the
programmer, who instead must often make use of sequences of more basic,
general-purpose instructions with particular operands. This can make manual
RISC assembly programming less interesting than CISC programming, but RISC
assemblers can provide pseudo-instructions that function similarly to CISC in-
structions but are assembled into sequences of multiple RISC instructions. It’s
also possible to build CISC architectures that do similar but in digital logic,
fetching CISC-style instructions but decoding them into sequences of RISC
instructions that are then executed in RISC style. Such designs look internally
quite similar to the CISC microcode structures, suggesting that CISC and RISC
don’t have to be so different after all.

Summary
Smart devices are replacing embedded systems in many applications as
the cost and power consumption of general-purpose computing falls and
battery technology improves. RISC architectures are a good fit for smart
computing needs, as their simplicity can reduce physical size, cost, and
power requirements.

RISC architectures use small sets of simple instructions. They typically
make a clean separation between instructions for memory access and for
arithmetic. They try to have all instructions execute in the same time in or-
der to simplify execution and enable smoother pipelining and OOOE. RISC
assembly code is usually characterized by its appearance as homogeneous-
looking lists of instructions with triple operands.

RISC-V is an open source family of RISC ISAs, with both open and
closed source digital logic implementations and design toolchains available.
RISC-V includes a core instruction set and various optional extension in-
struction sets, so variants can be used for small, cheap smart devices, and
all the way up to higher-power servers.

Exercises
RISC-V Programming

1. Install and run the Jupiter RISC-V simulator from https://github.com/
andrescv/Jupiter.

2. Enter some simple programs from the examples in this chapter.
Jupiter requires a label called __start (with two underscores) to be
defined and made global; this will be used as the entry point when
the program runs. For example:
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.globl __start

__start:

li t0,0

3. If you have data lines in your program, then by default Jupiter as-
sumes a Harvard-style segmentation, which requires .data and .txt

sections, such as:

.globl __start

.data

mylabel: .word 17

myfloat: .float 34.56

.text

__start:

lw x5, mylabel ; load word to register x5, from content at address mylabel

la x6, mylabel ; load address to x6, of mylabel (not its content)

myloop:

sw x5, 0(x6) ; store value from reg x5 to address 0+x6 (= mylabel)

j myloop

4. Save and assemble each program (Run ▸ Assemble) and run it in
the simulator. You can place breakpoints at any time with the tick-
boxes on the left of the lines, and inspect the registers and memory
with the GUI on the right. To get back to the code, click Editor at
the top left.

Challenging
1. Try porting previous programs from the Analytical Engine and

Manchester Baby to run on RISC-V. What’s easier or harder to do
in modern RISC-V compared to those systems? How does it feel
compared to x86?

2. Obtain a physical RISC-V board and use its tools and documents to
run the same programs on it.

More Challenging
Want to make a real, working CPU in your bedroom? Using RISC-V and
Chisel, you can.

1. A full Chisel tutorial can be found at https://github.com/ucb-bar/chisel
-tutorial. Install Chisel and work through this tutorial.

2. All of the microcircuits used in Rocket and BOOM—including ALU,
FPU, and control unit—are available as Chisel libraries. Download
and build some of these and experiment with how they work.

3. The Rocket Chip Generator (https://github.com/chipsalliance/rocket
-chip) is a tool that takes a RISC-V CPU descriptor code such as
RV64IMFP as input, and outputs Chisel and Verilog files (or a C++
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simulation) for the desired CPU. Install and run Rocket Chip. Study
the outputs to find out how the microcircuits you looked at in the
previous problem are used in the generated CPU.

4. Torture (https://github.com/ucb-bar/riscv-torture) is a tool provided by
the RISC-V community to test correct RISC-V execution in hard-
ware designs, and to help locate errors. Install it, introduce a delib-
erate error to a Rocket Chip design, and use the tool to study the
error.

5. Buy a cheap FPGA board and use the RISC-V documentation and
mailing list archives to figure out how to burn your Rocket Chip
netlist onto it to make a real physical CPU.

6. Join the RISC-V community discussions at https://riscv.org and study
the open lowRISC designs at https://github.com/lowrisc. Use them to
find an interesting piece of work that needs doing and contribute it
to the RISC-V community.

Further Reading
• For a detailed RISC-V tutorial, see Edson Borin, An Introduction to

Assembly Programming with RISC-V, https://riscv-programming.org/book/
riscv-book.html.

• For the definitive RISC-V manual, see Andrew Waterman and Krste
Asanović (eds.), The RISC-V Instruction Set Manual Volume I: User-
Level ISA (Berkeley: RISC-V Foundation), https://riscv.org/wp-content/
uploads/2017/05/riscv-spec-v2.2.pdf.
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15
PARALLEL ARCHITECTURES

As we’ve discussed, computing is splitting
along two paths: low-power systems, form-

ing the Internet of Things; and high-power
computing centers, forming the cloud. In pre-

vious chapters, we’ve looked at the low-power IoT side
of the split: embedded and smart systems. This chap-
ter will look at the high-power, high-performance sys-
tems found in the cloud. Specifically, we’ll look at
parallelism, the backbone of cloud computing.

The rise of parallelism is related to Moore’s two laws. While Moore’s
law for density says we can still put more and more transistors on chips,
Moore’s law for clock speed is now over, meaning we can’t clock single CPUs
faster anymore. The number of fetch-decode-execute cycles per second is
no longer increasing, so we need to find new uses for the extra available
transistors to try to do more work within each cycle, rather than making
faster cycles.

For a while, we got away with using the extra silicon to boost classical,
serial architectures: we made more and more complex CISC instructions
to get more work per instruction; we added more and bigger registers levels



of cache onto the CPU silicon; we replicated structures such as arithmetic
logic units (ALUs) to enable simultaneous execution of branches; and we
constructed fancier pipelines and out-of-order machines. Together, these
techniques have recently delivered double digit–percentage yearly gains in
instructions per cycle (IPC) rather than cycles per second. But we may be
running out of easy wins in these areas, so we have to think more in terms
of digital logic being inherently parallel. Luckily for us, it is.

We’ve already encountered register- and instruction-level parallelism.
Register-level parallelism is the simultaneous per-column execution of dig-
ital logic acting on bits of a register. For example, all the bits in a word can
be negated at the same time rather than in sequence. Instruction-level par-
allelism includes pipelining, branch prediction, eager execution, and out-of-
order execution (OOOE). These concepts don’t appear at the instruction
set architecture (ISA) level; they’re invisible to the assembly programmer.
From the programmer’s perspective, they just make serial programs exe-
cute faster.

In this chapter, we’ll focus on the higher-level parallelisms that are visi-
ble in the ISA and therefore may require the attention of the assembly and
perhaps also the high level–language programmer. We’ll begin by thinking
about parallel foundations. Then we’ll turn to the two main types of paral-
lelism: single instruction, multiple data (SIMD), as found in modern CPUs and
GPUs, and multiple instruction, multiple data (MIMD), as found in multicores
and cloud computing centers. Finally, we’ll wrap up by considering more
radical, instructionless forms of parallelism that might take architecture be-
yond the concepts of CPUs and programs.

Serial vs. Parallel Thinking
Most of the silicon in a serial computer is used to form memory that sits
around doing nothing until it’s called on to load from or store to the CPU.
In this sense, serial computing is like having 1,000 people send all their work
to a single worker, then stand around waiting for the results to come back to
them. This effect is known as the serial bottleneck.

Parallel computing frees these 1,000 people to all work for themselves.
Each becomes an active unit of computation: they pass data directly to one
another as needed, and they get massively more work done than if they were
standing around waiting for that one worker. Similar gains can occur if we
use all the digital logic in a computer to constantly perform computation
rather than wait around for the CPU.

Parallel thus seems to be obviously faster and better than serial comput-
ing. But at least until the 2010s, computer scientists tended to get stuck in
“serial thinking.” Most people are at some point taught the concept of pro-
gramming using a recipe, assuming that only you are in the kitchen and that
you’re going to perform a sequence of tasks, such as:

1. chop vegetables

2. boil water

3. chop chicken
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4. brown chicken

5. add vegetables to pot

6. add chicken to pot

7. simmer pot

8. chop herbs...

This is fine on a small scale, but if you’re a head chef running a chain of
popular restaurants, you’d be in charge of a team of workers, and you’d have
to schedule in optimal ways to produce the food more efficiently. The field
of operations research is all about optimally scheduling work like this.

How do we take a sequence of instructions like the chicken soup recipe
and get everything done in the shortest period of time? There are well-known
algorithms to do this. For example, Henry Gantt’s charts, like the one shown
in Figure 15-1, are used to display and reason about sequences of tasks run-
ning in parallel over time.

Figure 15-1: A parallel Gantt chart for cooking chicken soup

Simple algorithms exist to generate optimal timings for the tasks, given
a list of dependencies—that is, a list of which tasks depend on the comple-
tion of which others before they can begin. A critical path can be calculated
for the network, which is the sequence of jobs that need to be done on time
because they’re the bottlenecks.

Bletchley Park made heavy use of this style of computation. Machines
weren’t the only types of computers used there: it was still the era of human
computation, where “computer” was a human job title. Human computers
would sit in a computing division (Figure 15-2), all doing parts of computa-
tions under a manager allocating and scheduling the work in parallel. These
programmer managers thought about how to break down a large mathe-
matical computation into components, distribute the tasks, and collect the
results together.
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Figure 15-2: A human computing division working in
parallel, with a manager (standing) scheduling the work

Given that the management of teams of parallel workers has existed
for a long time, and is based on how to design a program of work to effi-
ciently accomplish a task, why do so many programmers basically ignore it
and think instead in terms of recipes and serial computing? If the history
of computing had been different and started from an operations research
perspective rather than from serial algorithms, we might have had a much
better foundation. Programming—and perhaps the foundations of computer
science—is now having to move toward parallel thinking due to the end of
Moore’s law for clock speed. For example, today’s school children might
write their first ever program in Scratch with multiple sprites all running
code in parallel. And professional programmers are increasingly having to
think in terms of SIMD and MIMD, which we’ll study next.

Single Instruction, Multiple Data on CPU
Our first type of parallelism—single instruction, multiple data—means we’re
going to take a single instruction (for example, “add one”) and execute that
instruction uniformly on multiple data items at once. We can split SIMD
systems into CPU- and GPU-based implementations. Here we’ll look at the
CPU-based implementation; in the next section, we’ll look at the GPU-
based one.

Introduction to SIMD
SIMD on CPU is a very CISC-style approach: it involves creating additional
instructions and digital logic to perform parallel operations as single instruc-
tions. SIMD instructions pack more than one piece of data into a word, then
define instructions to apply the same instruction to each piece of data in
parallel. For example, on a 64-bit machine, instead of using a 64-bit register
to store one big 64-bit integer, we can partition it into four 16-bit chunks that
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each hold one 16-bit integer. We can then use instructions that understand
this packing and operate on all four chunks at the same time.

In a standard CPU, you might have an ADD instruction that adds integers
from registers r1 and r2, storing the result in r3. In an SIMD machine, how-
ever, you’ll have an instruction called something like SIMD-ADD, still using the
same three registers, but using a different data representation to perform
addition on pairs of 16-bit values from the two registers simultaneously; it
then stores the output in the third register, packed similarly.

NO T E SIMD instructions originated in early supercomputers, such as the famous 1960s
Cray supercomputers. SIMD was first brought from supercomputers to desktops by
Intel via their MMX instructions.

SIMD can split a 64-bit register into two 32-bit chunks, four 16-bit
chunks, or eight 8-bit chunks. The four-way split is especially useful for
3D games. It’s common for 3D programmers to represent 3D coordinates
using four-dimensional vectors, with the fourth dimension serving as a scal-
ing factor to enable affine transformations. These are transformations like
translations and rotations computed using simple matrix-vector multipli-
cations. The 16-bit precision of the numbers is usually acceptable for games
(though maybe not for serious scientific 3D simulations). We’re lucky to live
in a world whose number of dimensions, when affinated, is a power of 2!

SIMD is also a good fit for images and video, in which pixel colors
are often represented by four numbers for RGB and alpha (as discussed in
Chapter 2). More generally, for most types of multimedia, including audio,
it’s common to need to do many copies of the same operations for signal
processing, so SIMD can speed this up even when there’s no obvious 4D
structure.

SIMD instructions can be created for use with any ordinary registers, but
they’ve become more interesting as register sizes have increased to 64 bits.
Some architectures also include extra registers that are longer than their
word length, known as vector registers; these can store 128, 256, or 512 bits,
and they’re intended primarily for use with SIMD instructions.

Now that we understand the theory of CPU SIMD, let’s look at a con-
crete example of how it’s implemented in x86.

SIMD on x86
We saw the names of the various x86 architectures of the 64-bit era in
Chapter 13. Beyond the basic amd64 instruction set, most of these archi-
tectures have focused on adding extensions using different forms of paral-
lelism. Most of these ideas originated in high-performance computing and
high-end servers but have also been introduced to desktop architectures.

The classic CISC approach has been to use the extra transistors to
add more simple machines and instructions to the ISA, each intended to
do more work than the regular instructions. This has led to thousands of
new CISC instructions, added for all manner of special cases such as cryp-
tography, multimedia processing, and machine learning. There have been
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disagreements over the standards for these extensions. Everyone imple-
ments the same base amd64 ISA, but different manufacturers extend it in
different ways to add extensions. They try to get users hooked on their ver-
sions and to desert competitors (a well-known strategy called embrace-extend-
extinguish). This creates headaches for compiler writers who have to create
multiple back-ends to optimize for the different extensions.

Most of the new registers and instructions added to x86 during the
64-bit era have been for SIMD. Figure 15-3 shows the complete user register
set of modern amd64.
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Figure 15-3: The full register set for amd64

The SIMD registers are the ones with “MM” in their names. Notice how
new SIMD registers have appeared over time, usually by extending an ex-
isting register to have more bits. When extensions are made, x86 backward
compatibility requires the original shorter form to still be named and us-
able, as well as the extended form. This requires many different versions of
instructions to be provided.

MMX
MMX was the first x86 SIMD extension. It’s never been officially defined
what MMX stands for, and indeed this has been a matter of legal trademark-
ing debate between Intel and AMD. Suggestions include “matrix math exten-
sions” and “multimedia extensions.”

MMX extended the previous amd64 floating-point registers to 64 bits,
similar to how 32-bit registers, such as EAX, were extended to the 64-bit
RAX. The new registers have names MM0 through MM7 and still exist on
modern machines.

Each MMX register can be used for integer-only SIMD as either a single
64-bit integer, two 32-bit integers, four 16-bit integers, or eight 8-bit integers.
Integer SIMD is particularly useful and fast for processing images, including
for 2D sprite-based games and video codecs.

MMX instructions begin with p for “packed,” such as paddd for “packed
add doubles.” New move instructions—movb, movw, and movd—copy arrays of
bytes, words, or doubles into single MMX registers. For example, the follow-
ing defines two arrays of 32-bit doubles: a = [4, 3] and b = [1, 5]. It loads a as
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packed doubles into MM0 and b into MM1. It then packed adds the doubles,
leaving [5, 8] in MM0:

a: dd 4, 3

b: dd 1, 5

main:

movd mm0, [a]

movd mm1, [b]

paddd mm0, mm1

MMX adds a lot of new instructions, because every arithmetic operation
has to exist in each of the packed forms for bytes, words, and doubles.

SSE
Intel’s version of x86 SIMD has been extended several times since MMX, as
SSE, SSE2, SSE3, SSE4, and SSE4.2 (where SSE stands for streaming SIMD
extensions). AMD’s latest incompatible competitor is, confusingly, called
SSE4a. Unlike MMX, the SSE series provides for floating-point SIMD as well
as integers. This makes it particularly useful for accelerating 3D math for
games and other physics simulations. (MMX was unsuccessful by the bench-
marks of its time, which focused heavily on the 3D game Quake.)

Unlike MMX’s extension of the old floating-point registers, SSE adds
completely new, 128-bit vector registers, called XMM0 through XMM31. The
number of these has grown with the SSE versions. They can be split into 8-,
16-, 32-, or 64-bit chunks, with chunks representing either floating points or
integers. Each arithmetic operation thus has many instructions depending
on these choices.

Most SSE instructions have the letter p for “packed” added to their
mnemonics, at either the beginning or the end. For example, the top-left of
Figure 15-4 shows an SSE compare for equality with the cmpeqps instruction.
The name comes from cmpeq, the standard x86 instruction, plus ps to indicate
“packed, single-precision.”
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Figure 15-4: The contents of two SSE registers, XMM0 and XMM1, as SSE instructions are
carried out, comparing the two sets of data in different ways: equality (top left), inequality
(top right), less than (bottom left), and not less than (bottom right)
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In the top-right of Figure 15-4, the compneqps instruction similarly extends
cmpneq (compare not equal) to SSE.

The following code shows examples of getting arrays of floats in and out
of SSE’s XMM registers and performing arithmetic on them:

;from en.wikibooks.org/wiki/X86_Assembly/SSE, CC BY 3

section .data

v1: dd 1.1, 2.2, 3.3, 4.4 ; first set of four numbers

v2: dd 5.5, 6.6, 7.7, 8.8 ; second set

section .bss

v3: resd 4 ; result

section .text

_start:

movups xmm0, [v1] ; load v1 into xmm0

movups xmm1, [v2] ; load v2 into xmm1

addps xmm0, xmm1 ; add

mulps xmm0, xmm1 ; multiply

subps xmm0, xmm1 ; subtract

movups [v3], xmm0 ; store result in v3

ret

Here, the addps instruction adds the four numbers in XMM1 to the four
numbers in XMM0, and stores the result in XMM0. For the first float, the re-
sult will be 1.1 + 5.5 = 6.6. The mulps instruction multiplies the four numbers
in XMM1 with the results from the previous calculation (in XMM0), and
stores the result in XMM0. For the first floats, this result will be 5.5 × 6.6 =
36.3. The subps instruction subtracts the four numbers from v2 (in XMM1,
still unchanged) from the result of the previous calculation (in XMM0). For
the first float, its result will be 36.3 – 5.5 = 30.8.

AVX
Two generations of Advanced Vector Extensions (AVX) have added longer vec-
tors than SSE, having 256- and 512-bit lengths. The new 256-bit registers are
called YMM0 through YMM31, and the new 512 registers are called ZMM0
through ZMM31.

AVX instructions often have the same names as, and behave similarly to,
SSE instructions, but they start with a v. For example, to add eight pairs of
32-bit (double) floating-point numbers using AVX-256, we can do this:

v1: dd 0.50, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.0078125, 0.00390625

v2: dd 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256.0

v3: dd 0, 0, 0, 0, 0, 0, 0, 0
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main:

vmovups ymm0, [v1]

vmovups ymm1, [v2]

vaddpd ymm3, ymm1, ymm2

vmovups [v3], ymm3

Note how the form of AVX arithmetic is different from MMX and SSE,
with addition now taking three operands rather than two.

Domain-Specific Instructions Using SIMD
As mentioned earlier, SIMD is usually considered a very CISC approach, as
it involves adding lots of new instructions to the ISA. Initially, these arise
from the many combinations of packing styles, data types, and arithmetic
operations. Going beyond simple replication of arithmetic across the chunks,
CISC SIMD has also tended to create further complex instructions. These
might include horizontal SIMD, which means instructions that combine infor-
mation from multiple chunks in the same register. For example, there are in-
structions that find the minimum of multiple chunks in a register: phminposuw
in SSE or vphminposuw in AVX.

Horizontal SIMD instructions also sometimes sequence simpler SIMD
instructions together. For example, “dot product of packed double-precision
floating-point values” (dppd on SSE; vdppd on AVX) is a single instruction that
performs a complete vector dot product, often used in games, 3D simula-
tions, and machine learning. This consists of first SIMD multiplying pairs of
chunks, then summing the results horizontally along the register.

Cryptography has been a major source of CISC SIMD extensions. For
example, 128-bit AES is the NSA-approved standard for internet encryp-
tion. It’s computed via four steps: ShiftRows, SubBytes, MixColumns, and
AddRoundKey. Intel has added CISC instructions for each of these steps,
and also a single mega-instruction that combines them all to perform an
entire round (aesenc on SSE; vaesenc on AVX). If, like most end users, you
spend the bulk of your computing time streaming videos over HTTPS, then
this CISC approach gives a useful targeted speedup for your use case. But
Intel’s extensions have been controversial, with Linus Torvalds stating that
the NSA and Intel have likely back-doored them in the digital logic, and ad-
vising Linux programmers not to use them.

Machine learning—specifically, neural network—operations have been
the latest target for SIMD CISC, via Intel’s Vector Neural Network Instruc-
tions (AVX512-VNNI) and Brain Floating Point (AVX512-BF16) extensions
to AVX-512, which arrived in Golden Cove and are marketed together as DL
Boost. For example, “multiply and add unsigned and signed bytes with sat-
uration” (vpdpbusds) performs a full neuron’s sigmoid-like activation from
its inputs and weights in a single instruction. Some researchers have been
able to train neural networks faster than on a GPU using these and simi-
lar SIMD CISC instructions, so this is now a competition between CPU and
GPU architectures.
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Compiler Writers and SIMD
The only compiler writers who understand and care about x86 SIMD are the
ones working for Intel and AMD, so proprietary CISC compilers are likely to
go faster than open source or third-party compilers (such as gcc) for numeri-
cal code on CISC architectures.

Intel has released various C libraries, implemented with its own compil-
ers, that convert high-level numerical code into SIMD instructions. These
include Integrated Performance Primitives (IPP), the Math Kernel Library
(MKL), and the IPEX PyTorch-to-AVX compiler for neural networks.

Open source compiler writers find it hard to get excited about particu-
lar proprietary hardware extensions and CISC, and they generally prefer to
spend their valuable, scarce time on more general-purpose work to benefit
the wider community, such as generating beautiful RISC code that will be
accelerated through methods like pipelining and OOOE.

SIMD ON RISC-V

SIMD instructions are a fundamentally CISCy idea—they add lots of new in-
structions and digital logic, making the instruction set more complex. How-
ever, SIMD extensions have also been proposed for RISC-V, such as P for
parallel SIMD instructions and V for vector instructions.

No real-world architecture is purely RISC or CISC nowadays, and there’s no
law against a primarily RISC-style architecture such as RISC-V adding some
CISCy features, especially as RISC-V’s extension system makes them completely
optional. There have, however, been loud opposing voices in the open source
RISC-V community, offended by this potential CISC insertion. Even its founders
have published an “SIMD considered harmful” warning.

Good RISC style is rather to make use of extra available silicon to optimize
pipelines and OOOE, for example by replicating ALUs, registers, and other
components needed to run several branches in parallel. This approach may be
made harder by the existence of SIMD instructions, especially the most extreme
CISCy, multi-step ones, such as dot products, which do both multiplication and
addition. Multicores are generally more acceptable to RISC, and RISC-V has an
A extension for atomic memory instructions that provides multicore transactions
for them.

SIMD on GPU
SIMD appears on a much larger scale in GPUs. SIMD on CPU gives speedups
of 2 to 64 times, based on the number of chunks packed into a word. By con-
trast, a GPU can scale to thousands of identical instructions running simulta-
neously across the data.

In Chapter 13, we saw how graphics cards evolved, from providing hard-
ware implementations of graphics commands, to providing their own paral-
lel machine code for non-graphical computing. Initially, this was very hard,
geeky work, involving encoding big computational algorithms into shaders
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as if they were graphics computations, exploiting the highly parallel 3D ren-
dering hardware, then decoding the resulting images to obtain the computa-
tional output.

GPU manufacturers quickly noticed this as a new market and redesigned
their shader languages into general-purpose GPU instruction sets for general-
purpose SIMD computing. These can be used to implement graphics shaders
as before, but now also to implement general, non-graphical SIMD computa-
tions. This evolution has occurred rapidly to form GPUs that aren’t built for
graphics at all, but rather for general higher-power scientific and machine
learning computation, especially neural networks. This is why “graphics pro-
cessing unit” is now a misnomer; a modern GPU is really more of a “general
parallel unit.”

GPU Architecture
It used to be difficult to discuss GPU architectures in general because they
were each developed by different companies according to different, secret
designs. However, several of these manufacturers got together to agree on
Khronos standards, which define ways of thinking about GPU hardware ar-
chitecture at a level of abstraction common to most of them. This enables
most GPUs, and also some other devices, to be viewed as if their hardware
was implemented as the standard architecture, so the programmer doesn’t
have to care about their individual details so much. Programmers can also
easily swap one GPU for another, including between manufacturers, as long
as the new manufacturer provides software tools to convert programs from
Khronos standards to their more specific machine codes.

Khronos defines a hierarchy of named entities. We have a single host
(the computer), which may have multiple compute devices inside (the physical
GPU cards or chips). There are multiple compute units (CUs) in these, and
they each contain processing elements (PEs).

The main structure is the CU, whose PEs contain their own registers
and ALUs, but share a single program counter, instruction register, and
control unit. This creates the SIMD, as each processing element within the
CU executes the same instruction from the PC in parallel, but on its own
data from its own registers. A CU may also contain other structures such as
a cache and some shared memory, allowing the PEs to communicate with
one another. Compute devices typically package several independent CUs
together. SIMD exists only within single CUs.

NO T E Khronos standards are designed to be generalizable, not just to many different types
of GPU but also to any other SIMD-implementing technologies. For example, they
could also be implemented on an FPGA or on an SIMD CPU in some cases. This is
why the generic name “compute device” is used in place of “GPU.”

The die shot in Figure 15-5 shows what GPU silicon actually looks like.
It shows that the die is arranged much more regularly than the layout of a
CPU, with square CUs split evenly throughout and a general cache in the
middle.
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Figure 15-5: A die shot taken from an Nvidia Pascal GPU chip

Nvidia GPU Assembly Programming
In CPUs, SIMD is expressed by single instructions that perform a fixed num-
ber (for example, four or eight) of identical operations in parallel. Programs
are written as a series of such instructions, with one instruction referenced
from the program counter executing at a time. In GPUs, however, SIMD is
usually expressed differently: we want to enable large and arbitrary numbers
of copies of the instruction to run in parallel, rather than a fixed number.

Khronos defines software-level concepts to express GPU SIMD pro-
grams. A kernel is a usually small function written by the user programmer,
with the intent of each (assembled) line of the code running as a single in-
struction on multiple data. A work-item is one instance of the kernel—that
is, the sequence of instructions as applied to a single piece of data by run-
ning on one processing element. A work-group is the collection of work-item
instances running over the multiple data items. Unlike CPU SIMD, kernel
code is written by describing its effects on a single work-item. When you run
a kernel, you choose and specify how many work-items you want to launch in
parallel.
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Graphics shaders are traditionally small, simple programs that perform
a fixed sequence of operations on each pixel. They’re thus well suited to
SIMD, with work-items for each pixel stepping through the same instruc-
tions in the same order. However, other kinds of compute kernels may re-
quire branching. This presents a problem, somewhat in the same spirit as
pipeline hazards, where different work-items need to take different branches.
Taking different branches destroys the SIMD because the work-items are no
longer running the same instructions. There are two methods to deal with
kernel branching: masking and subgroups.

Like 1980s CPU designers, modern GPU designers each maintain their
own, mutually incompatible ISAs that define their platforms. Nvidia is the
most popular GPU designer at the time of writing, so we’ll learn to program
their ISA as an example of programming GPUs in general. As with other sys-
tems we’ve programmed in this book, we’ll simplify the truth a little in order
to make learning easier. We’ll here assume that all general-purpose Nvidia
GPUs implement a single ISA called PTX (Parallel Thread Execution), and
we’ll learn to program in PTX assembly. You can assemble and run PTX
programs on any general-purpose Nvidia GPU.

Data Movement and Arithmetic
The following is a simple PTX kernel program. Like all kernels, many copies
forming a work-group are intended to run in SIMD parallel, so this code de-
scribes only the actions of a single work-item:

mov.u32 %r1, %tid.x; // r1 := my threadID

cvt.rn.f64.s32 %fd1, %r1; // convert threadID to float

mul.wide.s32 %rd4, %r1, 8; // id times 8 = address offset

add.s64 %rd5, %rd3, %rd4; // global address to store result

st.global.f64 [%rd5], %fd1; // store threadID in result address

ret;

PTX assembly is written with semicolons at line ends, and two slashes
for comments. Register names are conventionally written starting with a
percent symbol. We’ll use four groups of registers: r denotes 32-bit integer
registers; rd denotes 64-bit (double) int registers; fd denotes 64-bit (double)
floating-point registers; and our fourth group, tid, denotes internal registers
used to store information about the parallelism.

As usual, most instructions use three operands, with the first being the
destination and the others being inputs. As we have several types of register
available, most instruction names use Amiga-like suffixes, separated by pe-
riods, to indicate which version is being used. For example, add.s64 means
addition for 64-bit signed integers, while mult.wide.f64 means wide (full) mul-
tiplication of 64-bit floats. Load (ld) and store (st) have suffixes to indicate
whether to use global or local memory. The cvt instruction means convert,
and with various suffixes it converts numbers between signed and unsigned
integers and floats of the different bit sizes. As usual, ret is return.
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The above program, as well as the rest of the PTX programs shown here,
assumes at the start that registers rd1 through rd3 contain the global mem-
ory addresses of three arrays of doubles, with rd1 and rd2 being inputs,
which we’ll nickname x and w, and rd3 being the output, which we’ll nick-
name out. (The reason for these conventions will become clear later, when
we get to neurons.)

The program’s function is very simple. It completely ignores the two
inputs. It then obtains its threadID, which is a unique integer assigned to
each work-item in the work-group. For example, if we were to launch a work-
group of 5,000 copies of the program, each one would be given a unique
threadID in the range 0 to 4,999 in its tid.x register during the launch. The
work-item then writes a copy of its threadID into the corresponding element
of the output array. For example, the 573rd work-item, with threadID 573,
will write the floating-point number 573.0 into the 573rd element of out. If
we launch a work-group of 5,000 copies in SIMD, they’ll each write a single
such number into out simultaneously, so that the out array then contains the
list of numbers from 0 to 4,999 when they complete together.

Although PTX uses 64-bit words (which can be restricted to 32-bit, as
seen in the example), it still uses byte addressing. This means that adding 1
to an address moves forward through memory by 8 bits. To move along by
a 64-bit word, we have to add 8 to an address. The program thus works by
obtaining its threadID, multiplying it by 8, adding the result to the address
of out, and storing a floating-point version of the threadID at that address.
The final out array thus contains [0, 1, 2, 3, 4, 5, . . .].

Branching
The definition of SIMD is that parallel copies of the kernel execute identical
instructions together as the program executes. Branching runs smoothly in
SIMD in GPUs if and only if all of the copies take the same branches, but it
becomes complex to handle if they need to take different branches.

For example, the following PTX kernel uses branching:

mov.u32 %r1, %tid.x; // r1 := my thread ID (an int)

cvt.rn.f64.s32 %fd4, %r1; // fd4 := convert threadID to doublefloat

setp.lt.s32 %p1, %r1, 4; // set predicate1 to "threadID is less than 4"

// lines starting @%p1 only execute if predicate1 is true

@%p1 mov.f64 %fd2, 0d4008CCCCCCCCCCCD; // load doublefloat 3.1 to fd2

@%p1 add.f64 %fd1, %fd2, %fd4; // and add it to the id

// lines starting @!%p1 only execute if predicate1 is false

@!%p1 mov.f64 %fd3, 0d4024000000000000; // load float 10.0 to fd3

@!%p1 mul.f64 %fd1, %fd3, %fd4; // and multiply it by thread ID

mul.wide.s32 %rd4, %r1, 8; // id times 8 = address offset

add.s64 %rd5, %rd3, %rd4; // global address to store result

st.global.f64 [%rd5], %fd1; // result address := fd1

ret;
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The first two and last four lines are the same as the previous program.
But after the first two lines, the program tests if the threadID is less than 4.
If so, it adds 3.1 to the threadID. If not, it multiplies the threadID by 10.0.
Whichever of these results was obtained is then placed in the threadID-th
element of out as before. On completion, out thus contains:

3.1, 4.1, 5.1, 6.1, 40.0, 50.0, 60.0. 70.0, 80.0, 90.0 --snip--

The complexity here is that we only want a work-item to execute some
of the lines if a condition is true or false. In PTX, we first test for the con-
dition (less than, lt) and set a predicate register to true or false to store the
result. Predicate registers are internal registers, usually written as p1, p2, and
so on, which can be set and tested similarly to the status flags we’ve seen in
the Analytical Engine and other systems. Unlike those flags, there are many
predicate registers that can each store predicates for long periods without
overwriting the previous comparison result. Once we’ve set a predicate, we
can indicate that some lines should be executed only if the predicate is true,
or if it is false. These indicators are known as predicate guards, and in PTX as-
sembly are written as, for example, @%p1 at the start of a line. Different GPUs,
including different Nvidia models, may handle predicate guards in two ways:
masking or subgroups.

Masking is a simple, pure SIMD method suitable for small branches,
such as if...else statements without jumps. The kernel is executed in SIMD
at all times, meaning that all copies share the same program counter and
execute the same line of code at the same time. If a line is guarded, the PE
tests the predicate, and if the line should not execute, then the PE replaces
it with an NOP (no operator), as in a CPU pipeline stall. This enables multi-
ple work-items to remain synchronized, with those that need to execute the
instruction doing so while the others wait around for them via these NOPs.
This wastes some time, with PEs executing NOPs from one branch and real
instructions from the other, but it enables all work-items to stay synchro-
nized as SIMD at all times.

Subgroups (a Khronos term, aka “local groups,” “warps,” “waves,” or
“wavefronts” by some manufacturers) are a more heavyweight solution that
goes beyond pure SIMD to accommodate conditional jumps. All the work-
items in a work-group start out running in pure SIMD until a predicate guard
is encountered. When this occurs, the work-group is split into two subgroups,
with work-items in one subgroup taking the branch and those in the other
not taking it. The subgroups are then treated as two independent SIMD
programs and are executed independently, either on two different CUs, if
available, or in series on a single CU if only one is available.

Every branch in the program creates an additional subgroup split, so,
for example, a program with four branches in a series can lead to 24 = 16
subgroups. At this point, the number of physically available CUs determines
the efficiency of execution, rather than the PEs within a CU. This is clearly
not sustainable for larger programs with many possible branching series.
However, subgroups can be merged back together (“resynchronized”) if
the programmer can find a way to do so. Typically this can be done when
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branching has occurred due to different work-items taking different num-
bers of loop repetitions. In this case, the programmer can ask the work-
items whose loops have completed first to wait until the others have also
completed; this is known as a synchronization barrier and is represented by
a special barrier instruction in assembly and machine code.

The challenges of branching make SIMD quite a restrictive style of pro-
gramming. It’s well suited to graphics shaders, which typically have no or
minimal branching, but it’s tricky for programs that require parallel threads
to take many different branches. Neural networks and physical simulations
are two major classes of code that have similar minimal-branching structure
to graphics; thus, they’ve greatly benefited from GPU acceleration. If you
need different threads to be doing completely different things from one an-
other, however, then SIMD isn’t appropriate. You need MIMD, as seen later
in the chapter.

Large Work-Groups
Sometimes we need to run more copies of a kernel than there are available
PEs in the CU. For example, a pixel shader needs to run for every one of
about eight million pixels for a 4K display, while only thousands or tens of
thousands of PEs may be available.

In these cases, a similar subgroup method can be used as in branch-
ing: you split the work-group into a number of smaller subgroups such that
each subgroup runs physically together in SIMD on the PEs, and multiple
subgroups can either run in series on a single CU or simultaneously across
several available independent CUs. Unlike in branching, these subgroups
are chosen to exactly match the total number of PEs. These maximal-sized
subgroups are known as blocks by some manufacturers, with the set of sub-
groups known as a grid.

Work-items within every subgroup will be allocated the same set of
threadIDs, corresponding to the position of the PE in its CU. It’s common
to need to convert between these and the global “jobID.” For example, if you
have eight million pixels to compute and 10,000 PEs, the four-millionth job
needs to know that it should write to the four-millionth pixel rather than to
its threadID-th pixel, which has a maximum value of 10,0000.

This is a common need, so PTX provides some extra machinery to assist
with programming it, as in the following example:

mov.u32 %r4, %ctaid.x; //r4:=which subgroup is this?

mov.u32 %r2, %ntid.x; //r2:=subgroup size

mov.u32 %r3, %tid.x; //as well as the usual local thread ID

mad.lo.s32 %r1, %r2, %r4, %r3; //compute the global job ID as

// jobID = r1 := r2 x r4 + r3

cvt.rn.f64.s32 %fd1, %r1; //fd1 := convert global jobID to float

mul.wide.s32 %rd4, %r1, 8; //id times 8 = address offset

add.s64 %rd5, %rd3, %rd4; //global address to store result
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st.global.f64 [%rd5], %fd1; //store threadID in result address

ret;

Here, two additional internal registers, ntid.x and ctaid.x, are loaded
automatically during kernel launches, with the subgroup size and a new ID
saying which subgroup is being run. By multiplying and adding these using
the dedicated mad instruction, we recover the global job ID and proceed as
usual. (The rest of the program is the same as the first one, storing a float
version of this jobID at the jobID-th location in out. The difference is that
this now works for much larger out arrays—with millions of elements.)

A GPU Neuron
Now let’s look at a larger example kernel, which computes a neuron for a
convolutional deep neural network (CNN). This is roughly how GPUs are
used in machine learning:

mov.u32 %r1, %tid.x; //r1 := thread ID

mov.u32 %r2, 0; //r2 = i = input counter := 0

mov.f64 %fd1, 0d0000000000000000; //cumsum:=doublefloat(0)

mul.wide.s32 %rd4, %r1, 8;

//id x 8 = addr offset from threadID

MYLOOP:

mul.wide.s32 %rd5, %r2, 8; //i times 8

//=adr offset from conv iteration

add.s64 %rd8, %rd1, %rd4; //rd8:=adr of id-th element of

// x=&x+jobIDoffset

add.s64 %rd8, %rd8, %rd5; // + convoffset

ld.global.f64 %fd3, [%rd8]; //fd3:=x_(job+i)

add.s64 %rd9, %rd2, %rd4; //rd9:=adr of id-th element of

// w=&w+convoffset

ld.global.f64 %fd2, [%rd9]; //fd2:=w_i

mul.f64 %fd4, %fd3, %fd2; //fd4:=x_(job+i) * w_i

add.f64 %fd1, %fd1, %fd4; //cumsum += fd4

add.u32 %r2, %r2, 1; //i++

setp.ne.s32 %p1, %r2, 10; //test if i==10

@%p1 bra MYLOOP; //stop if so, else loop, using pred guard

//reLU

setp.lt.f64 %p0, %fd1, 0d3DA5FD7FE1796495; //pred0:=(cumsum<double 0)

@%p0 mov.f64 %fd1, 0d3DA5FD7FE1796495; //predicate guard:

// if p0, cumsum:=0

add.s64 %rd5, %rd3, %rd4; //global address to store result

st.global.f64 [%rd5], %fd1; //store cumsum in result address

ret;
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Here, 0d3DA5FD7FE1796495 is floating-point zero. As in all our exam-
ples, we assume at the start that registers rd1 through rd3 contain the global
memory addresses of three arrays of doubles, with rd1 and rd2 being inputs
which we nickname x and w; rd3 is the output, which we will nickname out.
The nicknames x and w are chosen because the neuron computes:

out[id] = reLU
⎛
⎝

10
∑
i=0

w[i]x[id + i]
⎞
⎠

Here, reLU(a) = a if a > 0 and 0 otherwise (reLU standing for rectified linear
unit). x is a 1D signal such as a sound wave, and w are weights that are shared
by and convolved across the work-group of neurons.

The program is based on a loop that iterates over the terms of the sum
in the above equation. During each iteration i, it brings wi and xi into regis-
ters and multiplies them. Each of these wixi terms is then added into a cu-
mulative sum (cumsum). Predicate p1 is used to determine the end of the loop.
The reLU function is especially easy to implement and fast to run, which is
why it’s used. We use another predicate, p0, to check if cumsum > 0. If it is, the
reLU output in fd1 is set to cumsum, and otherwise to zero.

The recent “deep learning revolution” in machine learning owes much
more to the ability of GPU SIMD to run models like this at massive scales
than it does to any new algorithms.

SASS Dialects
As a manufacturer releases new models, they may modify their ISA, usually
by extending it with additional instructions, but often also by breaking back-
ward compatibility with older versions (unlike the x86 tradition of retaining
backward compatibility at any cost). For example, Nvidia’s ISAs are named
after famous scientists, such as Tesla (2006), Fermi (2010), Kepler (2012),
Maxwell (2014), Pascal (2016), Volta (2017), Turing (2018), Ampere (2020),
Lovelace (2022), and Hopper (2022). They share a core set of similar instruc-
tions, but with some variations between them.

Each of these ISAs has its own assembly language dialect, known as
a SASS, whose instructions correspond directly to machine code. These
assembly languages are each compatible only with their particular archi-
tecture, so they change every couple of years. They aren’t officially docu-
mented, and don’t present a stable platform for user programmers to learn.
Nvidia developed PTX as a single stable assembly representation, usable by
human programmers, that gets translated during assembly to the appropri-
ate SASS dialect.

The following code shows Turing SASS together with corresponding
Turing executable machine code, as assembled from the neuron PTX exam-
ple shown earlier, together with wrapper code to interface it to input and
output parameters:

0000 MOV R1, c[0][28] ; 00000a0000017a02 003fde0000000f00

0010 MOV R2, 160 ; 0000016000027802 003fde0000000f00
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0020 LDC.64 R2, c[0][R2] ; 0000000002027b82 00321e0000000a00

0030 MOV R12, R2 ; 00000002000c7202 003fde0000000f00

0040 MOV R13, R3 ; 00000003000d7202 003fde0000000f00

0050 MOV R12, R12 ; 0000000c000c7202 003fde0000000f00

0060 MOV R13, R13 ; 0000000d000d7202 003fde0000000f00

0070 MOV R2, 168 ; 0000016800027802 003fde0000000f00

0080 LDC.64 R2, c[0][R2] ; 0000000002027b82 00321e0000000a00

0090 MOV R10, R2 ; 00000002000a7202 003fde0000000f00

00a0 MOV R11, R3 ; 00000003000b7202 003fde0000000f00

00b0 MOV R10, R10 ; 0000000a000a7202 003fde0000000f00

00c0 MOV R11, R11 ; 0000000b000b7202 003fde0000000f00

00d0 MOV R2, 170 ; 0000017000027802 003fde0000000f00

00e0 LDC.64 R2, c[0][R2] ; 0000000002027b82 00321e0000000a00

00f0 MOV R8, R2 ; 0000000200087202 003fde0000000f00

0100 MOV R9, R3 ; 0000000300097202 003fde0000000f00

0110 MOV R8, R8 ; 0000000800087202 003fde0000000f00

0120 MOV R9, R9 ; 0000000900097202 003fde0000000f00

0130 MOV R12, R12 ; 0000000c000c7202 003fde0000000f00

0140 MOV R13, R13 ; 0000000d000d7202 003fde0000000f00

0150 MOV R10, R10 ; 0000000a000a7202 003fde0000000f00

0160 MOV R11, R11 ; 0000000b000b7202 003fde0000000f00

0170 MOV R8, R8 ; 0000000800087202 003fde0000000f00

0180 MOV R9, R9 ; 0000000900097202 003fde0000000f00

0190 S2R R4, SR_TID.X ; 0000000000047919 00321e0000002100

01a0 MOV R4, R4 ; 0000000400047202 003fde0000000f00

01b0 MOV R0, RZ ; 000000ff00007202 003fde0000000f00

01c0 CS2R R2, SRZ ; 0000000000027805 003fde000001ff00

01d0 IMAD.WIDE R4, R4, 8, RZ ; 0000000804047825 003fde00078e02ff

01e0 MOV R14, R4 ; 00000004000e7202 003fde0000000f00

01f0 MOV R15, R5 ; 00000005000f7202 003fde0000000f00

0200 MOV R14, R14 ; 0000000e000e7202 003fde0000000f00

0210 MOV R15, R15 ; 0000000f000f7202 003fde0000000f00

0220 MOV R12, R12 ; 0000000c000c7202 003fde0000000f00

0230 MOV R13, R13 ; 0000000d000d7202 003fde0000000f00

0240 MOV R10, R10 ; 0000000a000a7202 003fde0000000f00

0250 MOV R11, R11 ; 0000000b000b7202 003fde0000000f00

0260 MOV R8, R8 ; 0000000800087202 003fde0000000f00

0270 MOV R9, R9 ; 0000000900097202 003fde0000000f00

0280 MOV R0, R0 ; 0000000000007202 003fde0000000f00

0290 MOV R2, R2 ; 0000000200027202 003fde0000000f00

02a0 MOV R3, R3 ; 0000000300037202 003fde0000000f00

02b0 IMAD.WIDE R4, R0, 8, RZ ; 0000000800047825 003fde00078e02ff

02c0 MOV R6, R4 ; 0000000400067202 003fde0000000f00

02d0 MOV R7, R5 ; 0000000500077202 003fde0000000f00

02e0 IADD3 R4, P0,R12, R14, RZ; 0000000e0c047210 003fde0007f1e0ff

02f0 IADD3.X R5,R13,R15,RZ,P0,!PT; 0000000f0d057210 003fde00007fe4ff

0300 IADD3 R4, P0, R4, R6, RZ ; 0000000604047210 003fde0007f1e0ff
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0310 IADD3.X R5,R5,R7,RZ,P0,!PT; 0000000705057210 003fde00007fe4ff

0320 MOV R4, R4 ; 0000000400047202 003fde0000000f00

0330 MOV R5, R5 ; 0000000500057202 003fde0000000f00

0340 MOV R4, R4 ; 0000000400047202 003fde0000000f00

0350 MOV R5, R5 ; 0000000500057202 003fde0000000f00

0360 LDG.E.64.SYS R4, [R4] ; 0000000004047381 00321e00001eeb00

0370 IADD3 R6, P0, R10, R14, RZ; 0000000e0a067210 003fde0007f1e0ff

0380 IADD3.X R7,R11,R15,RZ,P0,!PT; 0000000f0b077210 003fde00007fe4ff

0390 MOV R6, R6 ; 0000000600067202 003fde0000000f00

03a0 MOV R7, R7 ; 0000000700077202 003fde0000000f00

03b0 MOV R6, R6 ; 0000000600067202 003fde0000000f00

03c0 MOV R7, R7 ; 0000000700077202 003fde0000000f00

03d0 LDG.E.64.SYS R6, [R6] ; 0000000006067381 00321e00001eeb00

03e0 DMUL R4, R4, R6 ; 0000000604047228 00321e0000000000

03f0 DADD R2, R2, R4 ; 0000000002027229 00321e0000000004

0400 IADD3 R0, R0, 1, RZ ; 0000000100007810 003fde0007ffe0ff

0410 ISETP.NE.AND P0,PT,R0,a,PT; 0000000a0000780c 003fde0003f05270

0420 MOV R2, R2 ; 0000000200027202 003fde0000000f00

0430 MOV R3, R3 ; 0000000300037202 003fde0000000f00

0440 MOV R0, R0 ; 0000000000007202 003fde0000000f00

0450 @P0 BRA 2b0 ; fffffe5000000947 003fde000383ffff

0460 DSETP.LT.AND P0,PT,R2,c[2][0],PT; 008000000200762a 00321e0003f01000

0470 MOV R4, e1796495 ; e179649500047802 003fde0000000f00

0480 MOV R5, 3da5fd7f ; 3da5fd7f00057802 003fde0000000f00

0490 MOV R0, R4 ; 0000000400007202 003fde0000000f00

04a0 MOV R4, R5 ; 0000000500047202 003fde0000000f00

04b0 MOV R5, R2 ; 0000000200057202 003fde0000000f00

04c0 MOV R2, R3 ; 0000000300027202 003fde0000000f00

04d0 FSEL R0, R0, R5, P0 ; 0000000500007208 003fde0000000000

04e0 FSEL R2, R4, R2, P0 ; 0000000204027208 003fde0000000000

04f0 MOV R3, R2 ; 0000000200037202 003fde0000000f00

0500 MOV R2, R0 ; 0000000000027202 003fde0000000f00

0510 IADD3 R4, P0, R8, R14, RZ ; 0000000e08047210 003fde0007f1e0ff

0520 IADD3.X R5,R9,R15,RZ,P0,!PT; 0000000f09057210 003fde00007fe4ff

0530 MOV R4, R4 ; 0000000400047202 003fde0000000f00

0540 MOV R5, R5 ; 0000000500057202 003fde0000000f00

0550 MOV R4, R4 ; 0000000400047202 003fde0000000f00

0560 MOV R5, R5 ; 0000000500057202 003fde0000000f00

0570 STG.E.64.SYS [R4], R2 ; 0000000204007386 0033de000010eb00

0580 MOV R2, R2 ; 0000000200027202 003fde0000000f00

0590 MOV R3, R3 ; 0000000300037202 003fde0000000f00

05a0 EXIT ; 000000000000794d 003fde0003800000

05b0 BRA 5b0; fffffff000007947 000fc0000383ffff

The hex seen here is the actual executable code that’s transferred over
the bus and run on the GPU for the neural network; it’s a direct translation
of the SASS assembly. (Compare this with the Baby machine code seen in
Chapter 7—it’s not really so different!)
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SASS dialects aren’t officially documented, but we—and the internet—
can make some guesses as to likely meanings of some instructions based on
what we’ve seen in the corresponding PTX. MOV is a move instruction, with
operands being either registers or memory locations such as c[][] to obtain
inputs to the kernel call. LDG loads from global memory, and STG stores to
global memory and is used to return the output of the kernel call. TID is the
threadID, which tells us which work-item we’re running. IADD and FADD are
integer and floating-point addition. SHL and SHR are shift left and right. XMAD
is “integer short multiply and add.” BRA is branch, NOP is null operation. @P0
is a predicate guard, where P0’s value is set in the previous line by the ISETP

instruction. The usual JMP, CALL, and RET are also provided for control flow.
SASS dialects also have dedicated instructions for graphics operations.

For example, there’s SUST, surface store, to actually write to the graphics sur-
face, as well as instructions to load and query textures and barrier sync (BAR).

To get the executable code onto the GPU, and then to specify when and
how many copies to launch, the host needs a CPU program. For general
computation, you need to write this yourself, using tools provided by the
GPU manufacturer. For graphics, driver software such as Vulkan will do this
work if you tell it where your kernel (known as a shader in this context) is
and what type of shading it does (vertex or pixel).

NO T E Recent GPUs may have many additional features and optimizations, including
many CISC-like specialist instructions, and even their own CPU SIMD–style instruc-
tions to split up registers into parts and operate on them together. Recent approaches
to branching have begun to abandon SIMD altogether and assign separate program
counters to PEs, resulting in the machine looking more like the MIMD systems in the
following sections than conventional SIMD GPUs.

Higher-Level GPU Programming
PTX, and occasionally SASS, code is currently written by hand in some cases,
where human creativity and knowledge of the underlying architecture can al-
low for speed optimizations. However, it’s more common to use higher-level
languages to compile into GPU assemblers in order to achieve portability
between different GPUs and to make programming easier.

CUDA is Nvidia’s proprietary C-like language that compiles to PTX and
then SASS, but not to anything usable by other manufacturers’ GPUs. For
example, this CUDA program adds two vectors together element-wise:

__global__ void myKernel(double *x, double *w, double *out) {

int id = threadIdx.x; //get my ID

out[id] = x[id] + w[id];

}

It can be compiled to PTX with Nvidia’s nvcc compiler:

> nvcc -arch=sm_75 -ptx kernel.cu
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SPIR-V (pronounced “spear vee,” as unlike with RISC-V, this V is for
“Vulkan”) is the Khronos standard for representing GPU kernels in an
assembly-like language. As PTX generalizes over many Nvidia architectures,
SPIR-V is intended to generalize over all manufacturers’ architectures. Like
PTX, it’s designed to be converted into assembly languages for each specific
architecture. As different architectures may have different numbers of reg-
isters, SPIR-V doesn’t describe registers at all. Instead, each instruction’s
result is given a unique ID number, which can be used similarly to a register
ID. When someone writes a converter program for a new architecture, they
need to think about how to best make use of the available registers to realize
the computations described in this way. Intel has also worked on converting
SPIR-V to x86 SIMD, enabling its CPUs to compete against GPUs to execute
the same code. The following shows SPIR-V code for a roughly equivalent
kernel to the vector addition seen in the CUDA example:

EntryPoint Kernel 9

MemoryModel Physical64 OpenCL1.2

Name 4 "LocalInvocationId"

Name 9 "add"

Name 10 "in1"

Name 11 "in2"

Name 12 "out"

Name 13 "entry"

Name 15 "call"

Name 16 "arrayidx"

Name 18 "arrayidx1"

Name 20 "add"

Name 21 "arrayidx2"

Decorate 4(LocalInvocationId) Constant

Decorate 4(LocalInvocationId) Built-In LocalInvocationId

Decorate 10(in1) FuncParamAttr 5

Decorate 11(in2) FuncParamAttr 5

Decorate 12(out) FuncParamAttr 5

Decorate 17 Alignment 4

Decorate 19 Alignment 4

Decorate 22 Alignment 4

1: TypeInt 64 0

2: TypeVector 1(int) 3

3: TypePointer UniformConstant 2(ivec3)

5: TypeVoid

6: TypeInt 32 0

7: TypePointer WorkgroupGlobal 6(int)

8: TypeFunction 5 7(ptr) 7(ptr) 7(ptr)

4(LocalInvocationId): 3(ptr) Variable UniformConstant

9(add): 5 Function NoControl 8

10(in1): 7(ptr) FunctionParameter

11(in2): 7(ptr) FunctionParameter

12(out): 7(ptr) FunctionParameter
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13(entry): Label

14: 2(ivec3) Load 4(LocalInvocationId)

15(call): 1(int) CompositeExtract 14 0

16(arrayidx): 7(ptr) InBoundsAccessChain 10(in1) 15(call)

17: 6(int) Load 16(arrayidx)

18(arrayidx1): 7(ptr) InBoundsAccessChain 11(in2) 15(call)

19: 6(int) Load 18(arrayidx1)

20(add): 6(int) IAdd 19 17

21(arrayidx2): 7(ptr) InBoundsAccessChain 12(out) 15(call)

Store 22 21(arrayidx2) 20

Return

FunctionEnd

Third-party open source efforts are underway at the time of writing to
compile CUDA to SPIR-V, though they aren’t supported by Nvidia. Nvidia
does, however, accept SPIR-V as input, providing closed tools to compile it
to SASS, via PTX and another intermediate language, NVVM.

OpenCL is another Khronos open standard, defining a language similar
to Nvidia’s CUDA. Open source compilers are available from OpenCL to
SPIR-V. The following is an OpenCL kernel roughly equivalent to the CUDA
example:

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

__kernel void vecAdd( __global double *a,

__global double *b,

__global double *c,

const unsigned int n) {

int id = get_global_id(0);

if (id < n)

c[id] = a[id] + b[id];

}

GLSL is the Khronos standard graphical shader language, which also
compiles to SPIR-V. A sample of GLSL implementing Gouraud shading
(from https://www.learnopengles.com/tag/gouraud-shading/) is shown here:

precision mediump float; // default precision to medium

uniform vec3 u_LightPos; // the position of the light in eye space

varying vec3 v_Position; // interpolated position for this fragment

varying vec4 v_Color; // color interpolated across the triangle

varying vec3 v_Normal; // interpolated normal for this fragment

void main() {

float distance = length(u_LightPos - v_Position);

vec3 lightVector = normalize(u_LightPos - v_Position);

float diffuse = max(dot(v_Normal, lightVector), 0.1);

diffuse = diffuse*(1.0/(1.0+(0.25*distance*distance))); //attenuation

gl_FragColor = v_Color * diffuse;

}
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Here, lightVector is the vector from a light to a vertex, and diffuse is the
diffuse component given by the dot product of the light vector and vertex
normal. If the normal and light vector point in the same direction, then it
will get maximum illumination. The color is multiplied by the diffuse illumi-
nation level to give the final display color.

Multiple Instruction, Multiple Data
SIMD is like a lot of people acting on the same instruction. Multiple instruc-
tion, multiple data (MIMD), on the other hand, is like a lot of people acting
on a lot of different instructions. Think of SIMD as a gym class with a
trainer shouting out instructions, and the class all moving together in re-
sponse. MIMD, then, is more like a gym where everyone has their own per-
sonal trainer telling them each to do different exercises at the same time.
As with SIMD, there are multiple different flavors of MIMD, which we’ll
explore here.

MIMD on a Single Processor
The simplest MIMD can occur on a single CPU, in architectures called very
long instruction words (VLIW). VLIW architectures are related to the vec-
tor architectures in SIMD. Vector architectures have multiple data items
packed into a single large register, with a single instruction acting on all of
the entities packed into that register. In VLIW, each entity in the register
has different operations performed on it. For example, instead of adding 1
to everything, we could add 1 to the first number, divide the second by 7,
and multiply the last two together, storing them somewhere else.

This may seem counterintuitive, but there are certain combinations of
instructions that tend to reappear. For example, when writing a video codec,
there are standard complex mathematical operations that you repeat over
and over on different data. You can design a single long instruction word to
perform this exact specialist sequence of operations. For example, a single
VLIW instruction ADDABCFPMDEFINCGSFTH might mean “integer add register A to
register B, store result in C; floating-point multiply registers D and E, store
in F; increment register G; and bit-shift register H”—all in a single instruc-
tion! This might, for example, be a standard but intensive part of a video
codec computation.

Shared-Memory MIMD
A step above single-CPU MIMD is shared-memory MIMD, in which multiple
CPUs share an addressed memory space. They can communicate with one
another by loading and storing data within this space. If the CPUs are iden-
tical, the style of parallelism is known as symmetric multi-processing (SMP).
If the CPUs differ, the style of parallelism is known as asymmetric multi-
processing (AMP). When the CPUs are located on the same CPU piece of
silicon, they’re known as cores, and the parallelism is called multicore.
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AMP shared memory goes back to the 1980s, when separate co-
processor chips were sometimes plugged in alongside the main CPU for
extra operations such as floating-point computation. For example, the Sega
Megadrive used a Z80 as a second processor to look after sound, freeing up
its main 68000.

SMP shared-memory computer designs have also existed all through
the history of x86, beginning with mainboards hosting two or more physical
8086 chips sharing the bus and memory.

With shared-memory MIMD, we have to think about how cache levels
should be shared. Often the L1 and maybe the L2 cache are stored inside
a single CPU and are specific to it, while the L3 and maybe the L2 cache
are shared between the CPUs. This makes managing the caches quite com-
plex. Imagine two CPUs are accessing the same address of RAM, caching
it independently. The first CPU writes to the cache, changing the value for
the address. Remember the different cache write algorithms we looked at
in Chapter 10: What is the cache going to do when the CPU tells it to up-
date the location? Will it just update the local cache? Will it send the change
straight back to main memory, or wait until the cache line is victimized be-
fore doing so? If the second CPU tries to read from the same address in
main memory, how can we ensure it will get the newly updated version? We
have to be careful when there are multiple CPUs, as they all have the ability
to write out to shared memory equally, which requires extra communica-
tion between the CPUs so that the values can be updated and the data can
remain in sync across all CPUs and their shared cache.

Multicore on x86
Multicore silicon is now the most common type of shared-memory MIMD,
and is probably found in your desktop, laptop, and phone. The first dual-
core x86 chip was the AMD Athlon X2, made from two Hammer K8 cores
on the same silicon. This was soon followed by Intel’s dual-core Core 2.
Both companies quickly followed with 4-, 8-, and 16-core processors—
including extra cores from hyperthreading—and by 2020 were able to pro-
duce 64 cores on high-end processors. Figure 15-6 shows a die shot of an
eight-core Zen2 chiplet.

Chiplets such as this are a recent innovation that split up a large chip into
several smaller pieces of silicon that are placed together in the same plastic
package. This is done because chips are now so large and complex that the
statistical probability of a manufacturing error occurring somewhere has be-
come significant. Traditionally, whole chips had to be discarded if any error
was present. By using chiplets, only the single chiplet with an error needs to
be discarded. Multiple copies of the chiplet shown here can be combined
together—and with additional I/O chiplets—to place many more CPUs into a
single package than would otherwise be reliably possible.

In Figure 15-6, each core has its own L1 and L2 caches, with an L3 cache
shared between them. Notice how the subcomponents of the cores have an
almost organic quality in their layouts, like growing mold. This is because—
unlike the older CPUs we’ve seen in die shots—they were laid out not by
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human designers but by automated routing algorithms, which prioritize effi-
ciency over beauty or human comprehension.

The cores run independently, with the onus on the software to perform
MIMD using them. Some new instructions have been added to the x86 ISA
to make this programming easier, however, such as Intel’s Transactional Syn-
chronization Extensions (TSX).

Figure 15-6: A die shot of an AMD Zen2 chiplet, showing eight cores (four rectangles
spanning the top, four spanning the bottom) and an L3 cache (eight rectangles in the
vertical center)
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LOOP VS. MAP PROGRAMMING

Sequential and parallel thinking lead to two different ways of programming
multiple copies of work: loops and maps. For example, in the following code
we have an array containing four elements that need to be processed. Thinking
sequentially, you’d create a loop and do something with each element in
sequence:

data = [1,2,3,4]
for i in data:

doSomething(i)

The problem with using a loop for this type of work is that it conflates two ideas.
First, it expresses that we would like each element of data to be processed. But
second, it also specifies the order in which to process them—in this case, start-
ing with the leftmost element and working rightwards one element at a time.
The first idea is usually what we actually want to express, and if parallelism is
available we don’t care about the ordering; rather, we want to allow the ma-
chine to order the work in whatever way gets it done most efficiently.

Some programming languages now provide libraries that parallelize regular
code across multicores for sections of programs; here’s an example from
Python:

from multiprocessing import Pool
data = [1,2,3,4]
pool(4).map(doSomething , data)

This says that we would like a pool of four computations to take place, in any
order, such that each computation is performed on one of the elements from the
data. Assigning data elements to tasks is called mapping, hence the map func-
tion here.

If you have four cores in your computer, you can run this Python code, and if
the system is set up properly, it will know to run on the four cores in parallel to
complete the task.

Non-uniform Memory Access
Non-uniform memory access (NUMA) architectures are shared-memory designs
in which the speed of access to memory differs according to which part of
memory is accessed and by which CPU.

NUMA requires specialist programmers to understand the architecture
and manually design programs to take full advantage of it. This includes
considering where data is located in memory and trying to group data and
processors together so that loads and stores are done on the fastest available
parts of memory.

As an example of NUMA, say we have four physical enclosures (cases),
each containing several CPUs and RAM. Initially, this may look like four sep-
arate computers, but the memory from all four enclosures is connected and
mapped together, sharing a single address space. These aren’t independent
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computers; they are, arguably, a single multicore computer. Unlike with a
regular shared-memory machine, however, it takes longer for a CPU to ac-
cess memory in another enclosure than it would to access memory in its own
enclosure.

NO T E You can address 16 exiwords of memory with 64-bit addressing, which is 16 exibytes
if byte addressing is used. This is large enough to cover the entire shared memory of
current supercomputers. If we want efficient shared-memory computing to go above
this, however, we may need to move to 128-bit architectures.

NUMA is used in high-performance computing (HPC), where devices
are also known as supercomputers or “big iron.” These are made from many
physical, enclosed computers, known as nodes, each containing one or more
CPUs together with memory, all connected by cables. Unlike regular net-
working, these interconnect connections and the digital logic controlling
them are designed to enable direct access to the address spaces of each ma-
chine. One possibility for interconnect is to physically extend a single main
bus along cables connecting all the machines such that every CPU, RAM,
and I/O module share the same bus. Another option is to map all exter-
nal addresses for a machine to a single I/O module in that machine, which
caches all loads and stores to these addresses and arranges for them to take
place by communicating with similar I/O modules on the remote machines.
Such communications can also include remote DMA (RDMA) to enable
large CPU-free bulk transfers between RAM and secondary storage across
nodes. Most NUMA architectures include an additional layer of cache, which
locally caches the data from remote machines. This is known as cache-coherent
or cc-NUMA.

The world’s most powerful publicly known supercomputer in 2022 was
AMD Frontier, at the US Department of Energy’s Oak Ridge National Labo-
ratory, shown in Figure 15-7.

Figure 15-7: The AMD Frontier supercomputer

Frontier consists of 74 liquid-cooled HPE Cray EX cabinets, each con-
taining eight chassis of eight blades. Each blade has two AMD CPUs and
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eight GPUs, giving around 9,400 CPUs and 37,000 GPUs in total. It’s ca-
pable of performing one quintillion floating-point operations per second,
known as an exaflop. It has 700 PB of storage, managed using the Lustre
filesystem. The secret sauce is the interconnect system, known as HPE Sling-
shot, which is used with the HyperTransport protocol and over 90 miles of
cabling—including direct point-to-point connections between every pair of
nodes—to provide NUMA-style memory, making memory on remote nodes
appear and act as if it were local. Slingshot uses a similar amount of space,
electronics, and power as the compute nodes.

NUMA supercomputers are used for tasks such as weather and climate
prediction, physical simulation, and brain modeling, taking advantage of the
topographical nature of these domains and linking that to the topographi-
cal hierarchy of the NUMA system. Topographymeans the connectivity over
physical space; in the context of climate prediction, we’re talking about mod-
eling the 3D space of Earth’s atmosphere. Each point interacts heavily with
adjacent points, with the amount of interaction decreasing with the distance
between points. Each point has its own data properties, such as wind veloc-
ity, temperature, humidity, and wind pressure. To predict what’s going to
happen over the next few days or months, we discretize the space into small
chunks and give each chunk to a processor to look after, with neighboring
chunks of atmosphere given to neighboring processors in the NUMA hier-
archy. The processor computes details and makes predictions, factoring in
data from other local chunks.

NUMA is also sometimes implemented within a single physical com-
puter enclosure, in high-end workstations and servers. These systems are
more likely to run many small, non-interacting programs than a single large
scientific program, so specialist programming is less likely to be needed.

MIMD Distributed Computing
Distributed computing means that we have multiple CPUs that each have their
own address space and aren’t directly accessible to each other. Often, these
address spaces are each contained in separate physical boxes, such as server
or ATX cases. CPUs in different address spaces can communicate only with
one another using I/O. Depending on your definition of a computer, these
systems can look a lot like many separate computers, loosely connected by
networking I/O. But in other cases, the work they do can be so tightly cou-
pled that it makes more sense to think of them as a single, multicore ma-
chine that just happens to have multiple address spaces linked by slower I/O
networks, like an extreme form of NUMA.

Servers are computers designed to remain powered on at all times that
are often used for distributed computing as well as for providing online ser-
vices such as websites and databases. Any computer connected to the in-
ternet can be used as a server, including desktop PCs and Raspberry Pis,
but specialized computer designs have evolved to better meet servers’ high-
reliability requirements. These include dual power supplies and auto power-
on after an outage to reduce downtime due to power grid failures; efficient
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heat-flow designs and use of ECC-RAM (as in Chapter 10) to reduce inter-
nal failures; 19-inch unit form factors to enable rack mounting; and various
forms of physical security to reduce human interference.

Let’s take a look at a few forms of distributed computing.

Cluster Computing
There may be a lot of constant communication between the nodes in a clus-
ter. Beowulf is a particular informal standard for building clusters from com-
modity computers (often many old, recycled desktops). Cluster computing,
especially Beowulf, tends to be quite hacky, amateur, and ad-hoc, but can
produce powerful systems from low-end machines.

Grid Computing
Grid computing, also known as the single program, multiple data (SPMD) style
of programming, is where we give the same program but separate data to
multiple identical computers. The computers don’t run the program’s in-
structions in sync; rather, they can all branch differently, depending on the
data, running copies of the same program all at different places in its execu-
tion. Grid computing is well suited for applications in data science, speech
recognition, data mining, bioinformatics, and media processing. Here you
have terabytes or more of information and want the machines to chug away
on separate chunks of it at the same time.

A characteristic of this style is that all the machines are exactly the same,
and are kept that way by a dedicated technician, who hosts them in a secure
environment. Lots of identically high-spec servers are stacked together in
racks to guarantee that each instance of your program will run fast and in
exactly the same way as the others.

Grid computers don’t use shared memory; rather, they’re connected by
networks via I/O. Network capacity is largely used for the compute nodes
to access data on storage nodes hosting hard drives, rather than to com-
municate with one another. Typically, work is divided into chunks that are
sent to compute nodes, which then work independently of one another on
their given chunks—this is in contrast to supercomputers, which are all about
dense communication between the processors.

Because of the relatively weak connections between nodes, grids are
sometimes built from nodes hosted at geographically separate locations. For
example, the CERN super-grid links many smaller grids at many universities
around the world, enabling them to spread load between them for analyz-
ing big data from millions of particle physics experiments, as needed to find
subtle statistical evidence of the Higgs boson.

Decentralized Computing
As we get even looser in our types of parallelism, we get to decentralized
computing. This is somewhat like multi-site grid computing, but the connec-
tion between devices is weaker still. A grid is a stack of the same machines
kept running, healthy, and operating identically by a professional IT techni-
cian. By contrast, decentralized computing takes a lot of consumer-grade,
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non-identical computers, possibly all owned by different people in differ-
ent countries, and connects them to each other, typically via the public in-
ternet. The machines have no shared memory, aren’t treated as trusted,
and have even less communication across nodes. There’s no professional
maintaining the machines, nor is there a large setup cost for buying identical
components.

Decentralized computing became popular in the 1990s with the famous
Search for Extraterrestrial Intelligence (SETI) project. SETI collected big
data from large radio telescopes pointed at candidate parts of the night sky,
then analyzed it to look for alien communications signals. You could down-
load the SETI program on your desktop, which ran as a screensaver (see
Figure 15-8) when your computer was powered on but not otherwise busy.

Figure 15-8: The SETI software analyzing radio telescope data for alien communications
on a home computer

The program would connect to the main SETI server to register, and
be sent one or more chunks of data to analyze. It would return the results
to the server, which collected them together with the results from other
computers.

HTCondor is modern software that enables arbitrary compute jobs to
run decentralized in the background on regular desktop PCs, for example
turning unused desktops in an office or classroom into a grid.

Unlike grid computing, the worker machines are no longer under the
control of the central manager, so trust and reliability can’t be assumed. The
manager might send work to workers that don’t return a reply or that return
fraudulent results. A standard mitigation is to send the same work to three
workers and check that they all return the same result—or if two agree, then
the third is cheating.
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Cloud Computing
The logical evolution of decentralized computing would have been, and
might still be, for ordinary computer users around the world to routinely
connect together and trade their unused CPU cycles with each other. This
way, when you need to run your giant machine learning model, you can run
it on one million CPUs all around the world that are otherwise sitting idle
apart from displaying screensavers, instead of having to buy your own per-
sonal grid. Then, for the other 99.9 percent of the year, you would similarly
allow other people to use your own CPU for parts of their large computation
when it isn’t otherwise being maxed out. Why this still hasn’t happened is an
interesting social and economic question.

Instead, we’ve seen—as with other aspects of the internet—a few big com-
panies move in to dominate the market for distributed computing by main-
taining their own collections of loosely connected machines, known as clouds
or cloud computing. These remove some of the trust, reliability, and payment
issues from open distributed computing, but at the cost of concerns around
privacy and loss of control and freedom.

Compute and Storage
A long-standing debate in distributed computing asks whether it’s better
to store data on the same machines that are doing the computations, or on
separate machines.

Separating computation from storage means having two different types
of machines in your distributed network: some specialized for storing data
and others specialized for computing power. This has the advantage that any
available compute node can be used to perform computation on any data.
Typically, a software filesystem is used on the storage nodes, which makes
them appear and function as if they were a single, very large hard drive. The
separation enables the two types of machine to be better specialized for their
purposes and to be upgraded independently of one another; it also makes it
easy to balance the ratio of storage to computing power. When computation
isn’t needed, the compute nodes can be switched off to save energy, or made
available to other users. When stored data isn’t accessed for long periods, it
can be relocated down the memory pyramid to tertiary or offline memory,
then brought back as needed. The disadvantage of this approach is that it
requires lots of network communication to constantly move data around
from where it’s stored to where it’s used, which may become a bottleneck.

Co-location, on the other hand, means having a single type of machine
that stores a small part of the data on a local hard drive and also performs
computation on it. A big dataset can be split across many such machines,
each of which performs the required computations on the data that it hosts
locally, with networking used only to transmit the results and to update the
data. The advantage here is that network communications are minimized,
but the disadvantage is that the computation for a data chunk can be per-
formed only by the single machine that hosts it, making machines easily
over- or under-used.
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Which approach works best depends on the relative speed and costs of
networking, storage, and computing technologies, which change over time,
providing much employment for IT consultants swapping between them.
Traditional clusters tended to use separation, relying on fast networking
such as InfiniBand to move the data around quickly. However, program-
mers would sometimes switch to co-location, taking local cache copies of
data from storage for applications requiring the data to be reread quickly,
many times. In the 2000s, co-location became more popular, with the map-
reduce algorithm used by search engines finding broader applications
through the open source software Hadoop and Spark. Map-reduce uses the
map replacement for loops discussed earlier, but in a recursive manner, with
jobs recursively subdividing their work to pass to other machines, then col-
lating and merging (that is, reducing) their results.

More recently, the move to cloud computing has seen gains in net-
working speeds in data centers, clearer cost savings from separating storage
and computation, and the need to dynamically reallocate users and work to
different physical machines, which has all made separation more attractive
again. Some systems try to combine elements of both styles, allowing data to
be transported over networks to available compute nodes, but preferring the
data to be computed on its original node if possible. Any future move from
clouds to decentralized computing, which has slower networking than cloud
data centers, would likely encourage another swing back to co-location.

Instructionless Parallelism
SIMD and MIMD both extend the classical CPU concept of fetching, decod-
ing, and executing a sequential program of instructions. But there are many
ways to use digital logic in parallel that don’t involve creating CPUs and pro-
grams of instructions at all. Let’s look at some of them here.

Dataflow Architectures
Unlike computer scientists, engineers never got hung up on Turing machine
serialism in the first place. As they deal with the physical world, engineers
tend to view electronic information processing systems, both analog and
digital, as physical groups of devices connected together and all operating
at all times according to the laws of physics, as in a mechanical machine.
For them, such systems have always been parallel and designed using cir-
cuit diagrams, such as Figure 15-9, rather than as sequential programs of
instructions.
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Figure 15-9: A diagram showing parallel information processing in an analog guitar distortion pedal

Rewriting structures like the one in Figure 15-9 as sequential programs
would often appear to engineers to be bizarre, inefficient computer science
madness. These circuits are composed of hardware components each do-
ing their thing, all at the same time, with data flowing continually around
connections between them. Working with digital logic presents a similar
view of the world, until we reach the level of Chapter 7, where we choose to
use such logic to implement a serial CPU. But digital logic doesn’t have to
be used just for that purpose. It can also be used in the engineering style of
just continuing to design higher- and higher-level parallel machines, running
together, with connections between them. Most of the engineers’ circuit
designs, both analog and digital, can be translated to LogiSim (or Verilog,
VHDL, or Chisel) networks of this form. Analog data values can be con-
verted to one of the digital representations we’ve seen, and analog oper-
ations on them converted to digital arithmetic simple machines. As with
CPUs, these designs can be burned onto ASIC or FPGA silicon.

This approach can be especially efficient for signal processing compu-
tations, in which a pipeline of processing steps is required. For example, a
guitar effects unit might require steps of compression, distortion, delay, and
reverb. Rather than implement these steps in a sequence, they can all exist
together in a pipeline, as is the case when a guitarist chains together several
analog hardware pedals implementing one effect each.

Dataflow Compilers
Dataflow languages such as PyTorch, TensorFlow, and Theano, and MAT-
LAB’s Simulink, are higher-level languages for specifying parallel informa-
tion processing. These languages enable the programmer to represent the
elements of symbolic mathematical calculations and their dependencies on
one another, and then use specialist compilers targeting various types of
parallel hardware to order and parallelize them. For example, Figure 15-10
shows a graphical dataflow description of a neural network calculation.
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Figure 15-10: The dataflow of a PyTorch
neural network calculation

Like hardware description languages, these aren’t programming lan-
guages, but instead are declarative languages, more like writing XML or
databases than writing traditional imperative programs as sequences of in-
structions. (SPIR-V can also be considered as a mid-level dataflow language
due to its abstraction of registers to identifiers.) Compilers may also exist
from dataflow languages to hardware description languages such as Verilog
and VHDL, as well as to GPU, CPU SIMD, or serial CPU instructions.

An ongoing research area is how to automatically compile a regular, se-
rial, C-like language into a dataflow language. OOOE is perhaps just the first
tip of the iceberg here, optimizing machine code instructions only in small
windows of time, but we can imagine a day when entire programs are trans-
formed similarly and automatically into Verilog or perhaps SPIR-V by using
advanced parallel algorithms and complexity theory to extract the most par-
allelized form of the program. Modern compilers can do this for “trivial”
cases such as converting loops to maps when iterations of the loops clearly
don’t affect one another. In general, however, this is difficult work, not least
because so much computer science theory is built on serial machines; it may
be that big future ideas are needed to rebuild the subject with parallelism as
a more fundamental starting point. Functional programming languages may
form part of the solution, as they limit the amount of visible state, making it
easier to split work into independent and parallelizable pieces.

Hardware Neural Networks
A particular application of dataflow architectures is to enable fast hardware
implementations of the backpropagation neural network algorithm. We’ve
known since the 1960s that this algorithm is able to recognize and classify
any pattern, given enough data and computing time. We’ve also known that
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it’s highly parallelizable, with its neural network being constructed from
many “neuron” units that can compute independently and pass messages
to their neighbors.

During the 2010s, GPU architectures first enabled these computations
to be implemented cheaply in parallel, and were found to enable successful
and accurate recognition of complex patterns such as faces in images and
words in speech. This created a huge commercial demand for even faster,
specialized architectures to implement the backpropagation algorithm even
more efficiently than on GPUs.

There are two main approaches to hardware neural networks in current
use: FPGAs and NPUs. Let’s consider them now.

Backpropagation on FGPAs
Researchers have been building backpropagation neural networks on paral-
lel FPGAs for many decades. FPGA designs may try to physically lay out cir-
cuits in terms of component modules for each neuron, or they may just leave
the layout to a Chisel or Verilog compiler, which tends to produce random-
looking circuits that implement the same logic, sometimes more efficiently.
During the 2010s, these systems were built at larger scales for commercial
use, especially by “big tech” companies for use in training neural networks to
make predictions about their big data.

Backpropagation on Neural Processing Units
A recent architecture trend has been the production of similar parallel neu-
ral network hardware on ASICs, which run faster than FPGAs. Such chips
are known as neural processor units (NPUs) or tensor processor units (TPUs).

Some of these are designed as high-power systems for use in training
neural network models, typically deployed in clusters in racks in comput-
ing centers. Others are designed as low-power embedded systems for use in
running pretrained networks for real-time pattern recognition, and are in-
cluded in smartphones and IoT devices (for example, Intel Neural Compute
Sticks and the Arduino-based Genuino). These units can power applications
such as Snapchat’s real-time face recognition and filtering. The difference
between Moore’s law for clock speed and for transistor size has been a major
driver of these systems, with phone designers having lots of spare silicon to
use up and looking for things to do with it. NPUs were initially “pushed” by
manufacturers onto phones, looking for applications, rather than “pulled”
by consumer demand.

Summary
We’ve seen several forms of parallelism in previous chapters, beginning
with Babbage’s parallel arithmetic instructions and register-level parallelism
(ripple-carry adders), then instruction-level parallelism such as pipelining
and OOOE. At those levels, the programmer still writes a serial program
and doesn’t need to know or care that parallelism is making the program
run faster.
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In contrast, the parallelisms seen in this chapter, SIMD and MIMD, do
affect the programmer, who needs to understand their details and write pro-
grams to best take advantage of them. We looked at architectures in order
of the tightness of their parallelism, beginning with systems that are clearly
single computers and gradually making the parallel executions more inde-
pendent until the systems look more like multiple computers connected by
networks.

SIMD is where a single instruction is executed multiple times in parallel,
on multiple different data items. It can be found in CPUs and GPUs. Typ-
ically, user assembly programming for CPU requires thinking in terms of
parallel SIMD instructions with fixed, power-of-two parallel copies, while on
GPU the ISAs may be structured in terms of instructions for a single thread,
allowing more variation in the number of threads launched. The CPU style
doesn’t easily enable programs with branches, while the GPU style does so
via masking or serial split subgroup execution.

MIMD is a looser form of parallelism that can enable different pro-
grams to run on different machines. This includes shared-memory systems,
in which all processors can load and store in the same address space. These
systems can be multicore CPUs located in the same physical box as RAM,
or large NUMA supercomputers in which memory in physically further
away boxes takes longer to access than nearby memory. Distributed sys-
tems are looser still, as each processor or small group of processors has
its own address space, and communication between nodes occurs only via
network I/O.

The boundary between a single versus multiple computers seems blurry.
Most people would consider that a CPU with SIMD instructions is a single
computer. It’s harder to classify a NUMA supercomputer or a grid system.
Decentralized systems such as SETI and Bitcoin combine resources from
machines around the world to behave in similar ways to grids. Today, almost
every computer has been connected to the internet at some point, where
it has communicated with others, perhaps becoming part of a single global
computation and computer.

There are still many programmers untrained in parallel algorithms who
see them as the exotic stuff of graduate research degrees. The traditional
view of parallel programming was that “by the time you’ve finished writ-
ing your fancy parallel thing, Intel will have made a faster processor that
makes my serial C code go faster than yours.” This doesn’t work anymore.
Programming now has to be done in parallel because the serial silicon-based
architecture has reached its limit. This may require some quite foundational
change to computer science as a whole.

Will you as a programmer have to care about parallel programming?
There are several possible futures here. In one, you go on writing serial pro-
grams as you do now, with clever programmers writing compilers to turn
those into parallel systems. Another scenario, happening now, involves a few
programmers creating specific libraries to do parallel computing operations,
and you calling single functions in your serial program to run each one. A
third scenario is that you’ll need to write more and more SIMD programs by
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yourself, requiring a significant change to your programming style. A fourth
is that you’ll need to become an MIMD programmer, which is likely a larger
style change. Along the way, you might switch your loops to maps, and per-
haps from imperative to functional programming. Or perhaps you’ll stop
programming altogether and, like engineers, just design hardware circuits
to perform computations using a declarative language. This is now a big
open question, with many programmers placing their career bets by choos-
ing which styles to learn.

Exercises
x86 SIMD
Try running the x86 MMX, SSE, and AVX codes shown in this chapter. You
can run them on bare metal using .iso files as in Chapter 13. Or, if you have
some understanding of operating systems, see the Appendix for how to
run them from inside your operating system. This is a faster way to do x86
assembly development.

Nvidia PTX Programming
1. If you have access to an Nvidia GPU—either on your own PC or via

a free cloud service with GPU options such as https://colab.google—
you can compile, edit, and run the chapter’s PTX examples. We
assumed in the examples that someone or something will be call-
ing the kernels and sending inputs to them. To create that linkage,
create a file mykernel.ptx with the following code in it:

// directives to tell the assembler what versions to use

.version 7.1

.target sm_75

.address_size 64

// this describes how the code will interface with C code on the host

.visible .entry _Z8myKernelPdS_S_(

.param .u64 _Z8myKernelPdS_S__param_0,

.param .u64 _Z8myKernelPdS_S__param_1,

.param .u64 _Z8myKernelPdS_S__param_2

)

{

// directives to say how many registers we will be using

.reg .pred %p<2>; // predicate reg

.reg .b32 %r<5>; // regs of 32-bit ints

.reg .f64 %fd<5>; // regs of 64-bit (double) floats

.reg .b64 %rd<10>; // regs of 64-bit (double) ints

// generic part to load argument pointers to rd1-3 and jobID to r1

ld.param.u64 %rd4, [_Z8myKernelPdS_S__param_0]; //rd1:=pointer arg0

ld.param.u64 %rd5, [_Z8myKernelPdS_S__param_1];

ld.param.u64 %rd6, [_Z8myKernelPdS_S__param_2];

// convert address of pointers, generic to global memory
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cvta.to.global.u64 %rd1, %rd4; // rd1 stores global address of x

cvta.to.global.u64 %rd2, %rd5; // re2 stores global address of w

cvta.to.global.u64 %rd3, %rd6; // rd3 stores global address of out

//------put your chosen example code below------

}

2. Paste in the code from any of the examples below the indicated
line to wrap them up. Then assemble to Nvidia executable (cubin)
code with:

> ptxas -arch=sm_75 --opt-level 0 "mykernel.ptx" -o "mykernel.cubin"

Here, the -arch argument is the code for the Nvidia model you’re
using—for example, sm_75 is the real name for Turing.

3. If you’d like to inspect the executable as human-readable hex and
SASS, this can be done with:

> cuobjdump -sass -ptx mykernel.cubin

4. You now need some code to run on the host CPU to manage the
process of sending this executable to the GPU. You also need to
send data inputs for it to run on, as well as commands to launch the
desired number of kernels and print out their results. The follow-
ing code will do all this, and can be used with any kernel that’s been
wrapped the way we’ve discussed.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "cuda.h"

int main(int argc, char* argv[]) {

cuInit(0); CUcontext pctx; CUdevice dev;

cuDeviceGet(&dev, 0); cuCtxCreate(&pctx, 0, dev);

CUmodule module; CUfunction vector_add;

const char* module_file = "mykernel.cubin"; int err;

err = cuModuleLoad(&module, module_file); // load cubin executable

const char* kernel_name = "_Z8myKernelPdS_S_";

err = cuModuleGetFunction(&vector_add, module, kernel_name);

int n = 100000; // size of vectors

double *h_x, *h_w, *h_out; // host in and out vectors

double *d_x, *d_w, *d_out; // device in and out vectors

size_t bytes = n*sizeof(double); // size, in bytes, of each vector

h_x=(double*)malloc(bytes); // allocate memory for vectors on host

h_w=(double*)malloc(bytes);h_out=(double*)malloc(bytes);

// allocate memory for each vector on GPU

cudaMalloc(&d_x,bytes);

cudaMalloc(&d_w, bytes);
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cudaMalloc(&d_out, bytes);

int i; for(i = 0; i < n; i++) // init host vecs to arbitrary values

{h_x[i] = sin(i)*sin(i); h_w[i] = cos(i)*cos(i);}

cudaMemcpy(d_x, h_x, bytes, cudaMemcpyHostToDevice); // device<-host

cudaMemcpy(d_w, h_w, bytes, cudaMemcpyHostToDevice);

// set arguments and launch the kernels on the GPU

int blockSize, gridSize; // threads in block, blocks in grid

blockSize = 1024; gridSize = (int)ceil((float)n/blockSize);

void *args[3] = { &d_x , &d_w, &d_out };

cuLaunchKernel(vector_add, gridSize,1,1, blockSize,1,1, 0,0,args,0);

cudaMemcpy(h_out,d_out,bytes,cudaMemcpyDeviceToHost); // host<-result

for(i=0; i<10; i++) printf("out: %f\n", h_out[i]); // print result

cudaFree(d_x); cudaFree(d_w); cudaFree(d_out); // free device mem

free(h_x); free(h_w); free(h_out); return 0; // free host mem

}

5. Compile and run this with Nvidia’s nvcc tool:

> nvcc myptxhost.cu -lcuda

> ./a.out

You should see the result printed on the host terminal.

More Challenging
1. If you’d like to try programming in SASS, or even Nvidia machine

code, third-party SASS assemblers are available and documented for
many of the Nvidia architectures. At https://github.com/daadaada/
turingas you can find a SASS assembler for Volta, Turing, and
Ampere; this site also has SASS assembly code examples and links
to similar assemblers for Fermi, Maxwell, and Kepler. Nvidia pro-
vides a SASS debugger tool at https://docs.nvidia.com/gameworks/
content/developertools/desktop/ptx_sass_assembly_debugging.htm, and a
GPU emulator at https://github.com/gpgpu-sim/gpgpu-sim_distribution.
Nvidia lists the meaning of SASS mnemonics, but not their argu-
ments and semantics, at https://docs.nvidia.com/cuda/cuda-binary
-utilities/index.html. Some of the third-party SASS assemblers include
useful example SASS programs.

2. If you have access to a non-Nvidia GPU, find its make and model
and see if there’s a public ISA and assembler available for it, simi-
lar to PTX or SASS. Assemblers are sometimes created and docu-
mented by third-party reverse engineers, even if a GPU manufac-
turer doesn’t make or document one itself. How does it compare to
the CPU ISAs you’ve seen?

3. Simulate a cluster of PCs by running multiple instances of Virtual-
Box, as used in Chapter 13. Research how to install and run SGE,
MPI, or HTCondor across them.
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4. If you know neural network theory, add backpropagation to the
GPU neuron. Add code to create and run several layers of several
neurons each to learn and run some pattern recognition.

Further Reading
• For a reverse engineering of, and third-party open source assem-

bler for, the Nvidia Kepler architecture, see X. Zhang et al., “Under-
standing the GPU Microarchitecture to Achieve Bare-Metal Perfor-
mance Tuning,” in Proceedings of the 22nd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (New York: Associa-
tion for Computing Machinery, 2017).

• For a fully open source hardware GPU architecture, see MIAOW,
https://raw.githubusercontent.com/wiki/VerticalResearchGroup/miaow/
files/MIAOW_Architecture_Whitepaper.pdf.

• For more on SPIR-V, see J. Kessenich, “An introduction to SPIR-V,”
https://registry.khronos.org/SPIR-V/papers/WhitePaper.pdf.

• For an example of compiling Python into CPU-less dataflow digi-
tal logic, see K. Jurkans and C. Fox, “Python Subset to Digital Logic
Dataflow Compiler for Robots and IoT,” in International Symposium
on Intelligent and Trustworthy Computing, Communications, and Net-
working (ITCCN-2023) (Exeter, UK: IEEE, 2023).
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16
FUTURE ARCHITECTURES

Historically, looking at academic research
that’s close to transitioning to industry

tends to accurately predict what will happen
over the next decade. At present, research is

still mostly done on semiconductor-based technolo-
gies, but there are some researchers looking at alter-
natives. While it’s hard to predict much further than
a decade ahead, we’ll look at some current ideas that
might one day go somewhere beyond the present
electricity-based computing age. We’ll go roughly in
order of uncertainty, starting with some close-to-
market developments associated with the current “new
golden age” of architecture, then traveling through re-
search labs studying optical and DNA architectures,
neural architectures, and quantum computing, and
finally moving on to speculative ideas based on more
distant theories of physics.



The New Golden Age

Architecture is cool again! In the 2010s, trends like the maker, open source,
and “mindful design” movements helped drive the resurgence of interest
in architecture. Rebelling against the prepackaged black-box interfaces sold
to them, artists, innovators, hipsters, and steampunks instead chose to gain
greater understanding, control, and satisfaction over the technology in their
lives by opening up these boxes and looking at and modifying what’s inside.
In the professional world, commercial architecture careers over the next
decade seem likely to focus on low-cost, low-power embedded and smart sys-
tems rather than desktops, laptops, and servers.

The 2010s was also a decade of parallelization and centralized comput-
ing, with computation moving off the desktop into the “cloud” of dedicated
centralized computing and data centers. It’s widely expected that the next
step in computer evolution will be the disappearance of desktops and even
laptops, replaced by a multitude of small, low-power devices all around the
real world that are in constant communication with the cloud, relaying data
to the cloud for processing. Smartphones and tablets are early versions of
this, but we expect to see even cheaper and smaller devices all over the real
world, enabling smart homes, smart farms, and smart cities.

A recent trend identified by Hennessy and Patterson is the demand for
custom, domain-specific architectures. In this view, GPUs and NPUs are
only the beginning of a new wave of custom silicon designed to accelerate
specific, single tasks. It’s likely that architects will work on these designs
as part of larger teams—for example, working more closely with machine
learning engineers and cryptographers to understand and accelerate their
algorithms. This would create a cultural shift in computer science, bringing
architects back into the mainstream, and requiring everyone else to under-
stand and interact with their work as they did in the 1980s.

Open Source Architectures
For the first time in architectural history, open source thinking has extended
into the creation of fully open source hardware and software tooling stacks—
RISC-V, BOOM, and Chisel—for professional-quality, state-of-the-art chip
design. Along with new affordable FPGAs, these enable anyone to access
equipment that was previously only available to a handful of secretive and
elite architecture companies. Now almost anyone can be the creator of any-
thing and see and hack the entire stack, from the level of transistors to op-
erating systems. Now is thus the best time to be involved in architecture—
even better than the 8-bit days, when hackers could see the ISAs but were
still only customers of their chipmakers.

Open source hardware designs have even started to appear for entire
consumer PCs, such as the ARM-based Olimex TERES laptop, which users
often modify through PCB design software and 3D printing. Open source
interest is also being driven by end users, who are feeling increasingly un-
easy about the proprietary architecture of individual CPUs that may be back-
doored at the digital logic level. For example, Intel has been accused of
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hiding and running an entire operating system based on MINIX inside its
processors, which can communicate with its Intel home to say potentially
anything about what the machine is doing. Open source architectures may
become standard and expected—an architectural revolution analogous to the
open source software revolution of the 2000s.

While large-scale fabrication is only possible in expensive fab plants, a
few companies are large enough to make new masks and fabricate experi-
mental chips on a fairly regular basis. These big companies sometimes now
allow researchers and hobbyists to fabricate their own real ASICs for free or
low cost by including their designs in an otherwise unused corner of their
masks and wafers (for example, https://developers.google.com/silicon). There’s
also been recent progress allowing makers to fabricate their own simpler
chips in their garages using open source hardware methods. Sam Zeloof
pioneered this approach and in 2021 was able to place and connect 1,200
transistors on a chip—about half the number used in the Intel 4004.

Openness is also becoming an issue in the cloud. There are currently
significant concerns around moving from desktop computing—where
everyone owns their own computer—to the 2020s cloud, where the com-
puters are owned by a small number of large, powerful companies. This has
raised some questions: who will control these computers and the data on
them, and how can users be sure that their computations and data aren’t
being spied on or resold by these companies or other actors?

These concerns might drive new architecture trends. The open cloud
concept calls for replacing corporate clouds hosted in dedicated comput-
ing centers with a shared, loose, decentralized, federated network of ordi-
nary citizens’ machines, in their homes. Everyone will have a small, always-
on server in their home, a cross between a high-end router, NAS drive, and
Intel NUC. These servers will enable non-technical home internet users to
easily host their own websites and media streams. They’ll also enable fully
open source search engines (YaCy), social media (Mastodon), video storage
and streaming (PeerTube), video conferences (Matrix), and physical goods
marketplaces (OpenBazaar) to replace big tech equivalents by distributing
their computations and using cryptographic methods and currencies to
ensure trust. The FreedomBox website already has a working software dis-
tribution that you can run today on your Raspberry Pi to do some of this.
New architectures may be needed to optimize for these use cases.

While hackers and makers can now get their hands on these nice
tools, big companies with big resources aren’t standing still. They continue
to develop smaller and more advanced systems to try to stay ahead, as we’ll
see next.

Atomic-Scale Transistors
We saw in Chapter 4 that Moore’s law for clock speed is over, but Moore’s
law for silicon transistor density is still holding up. The density law can’t go
on forever either, though, because we’ll hit a point where a transistor is the
same size as an atom, and then it will be impossible to go any smaller with

Future Architectures 399

https://developers.google.com/silicon


semiconductors. Quantum effects will also kick in as we approach this point,
leading to inherent uncertainties about where things are and what they rep-
resent. Moore’s law for density suggests this will occur around 2060.

IBM can currently manipulate single atoms into simple shapes. For ex-
ample, Figure 16-1 shows an electron microscope image of a copper surface
in which each dot is a single atom, placed and read with their technology.

Figure 16-1: IBM manipulates single atoms to create images

The fuzzy, wave-like quality of this image is due to quantum effects. At
this scale, it becomes inherently uncertain where the atoms are and how
they’re moving around. These atoms don’t yet function as transistors or
computers, but they can, for example, be used for data storage, and IBM
would eventually like to develop the technology toward single atom–based
computation.

Before we get to this scale, but after conventional semiconductors hit
fundamental size limits, nanotechnologies such as carbon nanotubes and
graphene might be used to build smaller transistors; this is a current re-
search area. In 2022, researchers at Tsinghua University fabricated a graph-
ene transistor about the size of a single carbon atom, running millions of
times faster than silicon.

3D Silicon Architectures
Classical chip layouts were 2D, with a good bit of graph theory and com-
plexity theory needed to optimize the design and minimize the wiring. As
we saw in Figure 4-19, current CPUs can be made with a few layers of overlap-
ping copper wires, whose 3D structure greatly reduces the wiring. Modern
chips still place transistors in a single layer, on the base of the chip, but allow
several (typically 2 to 10) layers of wires to be formed on top, insulated from
one another by filler materials.

It’s possible that today’s basic layering technologies will grow incremen-
tally to add more and more layers of wires and transistors, culminating in a
move from 2D silicon chips to fully 3D silicon cubes.

However, silicon cubes will create issues around power supplies and
heat, requiring something analogous to the brain’s blood supply system
mixed around the computing elements to get energy in and heat out of the
dense 3D structure. We don’t currently know how this should be done. The
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chip design community has, for living memory, been so focused on 2D lay-
out concerns that it’s not clear how it could move to thinking in 3D.

RAM usually has lower usage and heat requirements than processing
because most of the time it just sits there doing nothing in a serial computer.
Therefore, it’s easier to make 3D RAM than it is to make 3D CPUs. There
have been recent commercial attempts at 3D RAM, such as Micron’s Hybrid
Memory Cube.

One source of inspiration for 3D CPU design might come from today’s
Minecraft gaming community. Minecraft can act as a Church-powerful com-
puter, using its redstone elements as switches. Fans have already constructed
several functioning CPU components inside it, looking similar to Figure 4-19,
and even whole CPUs such as “ANDROSII.” Unlike previous generations,
these players have grown up with Minecraft’s inherent three-dimensionality,
so instead of laying out their processors on 2D circuit boards or ICs, they’ve
instinctively evolved inherently 3D architectures to optimize their layouts,
completely free from manufacturing constraints and the 2D thinking built
into the silicon industry.

10,000-Year Memory
What will happen to your data when you die? Will anyone be able to read
your files or view your videos thousands of years into the future? Or even
10 years into the future?

The clay tablets from 4,000 years ago that we saw earlier (Figure 1-5) are
still perfectly readable. Paper was an advance over clay tablets in terms of
speed and capacity, but it doesn’t survive as long. As memory technology
has advanced and miniaturized, it’s gotten faster and increased its capacity,
but at the expense of robustness, both to physical decay and to “bit rot” or
other technological incompatibilities. All the tertiary and offline storage
options we’ve seen will decay in 100 years. Commercial data centers keep
data “alive” by continually copying it to new physical media. Spinning hard
disks break and are replaced; tapes and optical discs decay and are replaced.
But this relies on continual attention by human maintainers, employed by a
company that continues to exist and doesn’t go bankrupt or get bought out
by new owners who don’t want to continue maintaining it.

Research efforts are currently underway to find longer-term storage
options as durable as clay tablets, but at modern data sizes. M-disc is a re-
cent optical disc format, backward compatible with Blu-ray, that is claimed
to store 100GB for 1,000 years. In 2018, the Arch Mission Foundation de-
posited a DVD-sized nickel disk onto the moon’s surface, containing a full
backup of Wikipedia and other documents deemed useful for rebooting hu-
manity in the event of total data loss on Earth. They claim it will last for at
least 10,000 years. Glass laser nanostructuring, as developed at the Univer-
sity of Southampton, may store 350TB in a 1-inch cube of very hard glass,
with a 14 billion–year lifetime. It’s a similar idea to the 3D markings you see
in glass trophies, etched deep inside their structure with lasers.

Lasers might also be used to perform computations, as in optical archi-
tectures; we’ll turn to these now.
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Optical Architectures
We’ve mostly looked at computers that are based on the flow of electrons.
Electrons have mass, so they must travel slower than the speed of light. En-
ergy is also required to give momentum to their mass so that they can move
around. Light, on the other hand, has no mass, so it moves faster than elec-
trons, at the speed of light (about 300 million meters per second). As this
is the physical speed limit of everything in the universe, since the 1960s
researchers have asked whether we can compute with light instead of elec-
trons. Like electrons in electricity, light comes in discrete units called pho-
tons, and the engineering field that studies how to manipulate them is called
photonics.

Optical Transistors
The speed of electric current is different from the speed of electrons them-
selves; current usually flows with each electron only moving a small distance,
pushing the next electron forward in the circuit. Electrons moving through
wire are in a complex environment with many collisions as they bump around,
backward and forward, in random walks. The speed of individual electrons
drifting along wire is thus very slow, around 1 meter per hour, while the
speed of the current in copper wire can be around 90 percent of the speed
of light in a vacuum. Thus, a naive expectation that light will compute much
faster than electrons seems overly optimistic; switching over our entire hard-
ware technology for just a 10 percent speedup, from 90 percent to 100 per-
cent of light speed, seems not so useful.

However, optical systems have different advantages: there’s higher
throughput and lower energy consumption than when using electrons be-
cause of the lower noise in light propagation. That’s why we already use light
for routine high-bandwidth, long-distance networking—that is, fiber optics.
Optical computing doesn’t seem so far-fetched when you remember that
most of your internet and phone traffic is already sent around the world via
fiber optics.

The difference between mere information transfer and actual compu-
tation is that in computation, data elements need to physically interact with
one another via some kind of device analogous to a transistor, which in turn
would build up logic gates and the rest of the architectural hierarchy. The
key problem for optical computing, however, is that photons don’t natu-
rally interact with one another. In physics terms, they’re bosons rather than
fermions, which means that if two of them “collide” they just go straight
through each other instead of bouncing off each other. This is great for op-
tical communication, but not for optical computing.

To make an optical transistor, we thus need some form of electro-optical
hybrid technology, in which photons can interact with electrons and vice
versa to perform computation. Transferring energy between photons and
electrons is slow, however, and uses up energy. Such devices currently ex-
ist in large photonics labs, made of lasers and precision equipment on opti-
cal tables. These systems fill whole rooms and implement only a few hybrid
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optical-electronic transistors. Their scale is reminiscent of early electronic
computers of the early 20th century. But like those large electronic com-
puters, research also aims to miniaturize them once the basic principles are
worked out, probably via photolithography (chip masking) processes simi-
lar to the ones used to make conventional electronics; current plans involve
using silicon as the electronics substrate, similar to conventional chips.

Optical Correlators
An optical correlator (or 4f system) is a special case of optical computation that
has become very practical in the last few years. Rather than being Church
powerful, an optical correlator is used for a single purpose: to implement
and speed up a single algorithm, the discrete Fourier transform (DFT). The
DFT converts streams of spatial and time-series data, such as in sound and
video codecs, into frequency-based representations. It uses this equation:

X[k] = DFT(x[t]) = 1√
N

N – 1
∑
n=0

x[n]e
–i2πkn

N

For audio signals, the DFT results correspond roughly to the underlying
frequencies that generated the signals. For images and video, they corre-
spond roughly to different textures useful in recognition and compression.
This is such a basic operation, and used so heavily, that it’s worth optimiz-
ing it with dedicated hardware, as is currently done by many CISC and DSP
instructions.

A key computational property of the DFT is that it speeds up the com-
mon operation of convolution (or filtering). For one-dimensional signals,
convolution is defined as:

(x ∗ y)[t] =
N – 1
∑
i=0

x[t]y[t – i]

Here, N is the length of the signal y. Implementing this equation directly re-
sults in an O(N2) algorithm, though the fast Fourier transform (FFT) is a faster
O(N logN) algorithm based on a mathematically equivalent rearrangement
of the equation. The FFT is the fastest known implementation of DFT for a
serial computer; it’s been described as “the most important numerical algo-
rithm of our lifetime.”

Convolution in the source domain is equivalent to multiplication in the
Fourier domain. So rather than convolve two raw signals in the raw domain,
it can be faster to Fourier transform them both, multiply these transforms
together, and use a final DFT to convert back into the raw domain:

(x ∗ y)[t] = DFT(DFT(x[t]) ×DFT(y[t]))

When a single ray of laser light goes through a single tiny hole, it’s
diffracted to produce a diffraction pattern of light on the other side. It can
be shown that if this light signal is passed through a lens, positioned at its
focal length f from the image, then at the same distance f on the other side
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of the lens, an image is formed that happens to be the DFT of the original
image. This was an unexpected and coincidental property of the mathemat-
ics of diffraction and lensing, but once discovered it provided an ultra-fast,
O(1) physical device to compute DFTs at the speed of light.

Once we have this Fourier image, X, we can implement convolution in
O(1) by multiplying pointwise by the DFT of our filter, Y. We precompute
Y offline and manufacture a physical filter—just like the colored filters put
in front of theater stage lights to change their properties. For most DSP ap-
plications, such as video processing, we’ll want to apply the same filter y to
many images x in a rapid sequence, so we have to compute Y only once. Pass-
ing the light image X through this physical filter has the effect of multiplying
it by Y, equivalent to convolution x ∗ y in the raw domain. The DFT is self-
inverse, so to obtain the final convolution we pass this image through a sec-
ond lens, of the same focal length, again positioned at distance f from both
its input and output. The final result can then be viewed as an image at dis-
tance 4f from the original input (hence the name 4f system). The complete
system, illustrated in Figure 16-2, computes the entire convolution for fixed
Y in O(1) time, at the speed of light.

SLM Lens Filter Lens
Camera

sensor

f f f f

Figure 16-2: A 4f filter structure

This structure has been known since the 1960s but has only recently be-
come practical by piggybacking off well-funded commercial smartphone
screen technology. It requires a way to filter laser light through very small
but high-resolution images, both to create the initial input image x, and to
create changeable filter patterns Y. Spatial light modulators (SLMs) are a sim-
ilar display technology to 4K smartphone displays, originally developed for
use in high-end digital overhead projectors. SLMs from these projectors can
be taken almost off the shelf and used to create fast, efficient input and filter
displays for 4f filters. To complete the setup, an image sensor is also needed
to read off the final convolved image. Smartphone digital camera CMOS
sensors have been developed, almost symmetrically with display technology,
to provide similar resolutions and frame rates required, and can again be
used almost off the shelf. Systems built from these components at the time
of writing might use 4 megapixels at 15 kHz frame rates.
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Optical Neural Networks
Practical optical correlators have become available at the same time that
deep learning has revolutionized commercial machine learning. Deep learn-
ing has so far consisted of running 1970s neural network algorithms on fast,
parallel GPU architectures. In many cases, however, it could be massively
accelerated using optical correlators. This is because many problems, es-
pecially object recognition in images and video, have a spatially invariant
structure, meaning the properties of images don’t vary significantly based
on which part of the image is being looked at; similar objects are found at
all locations around the image. This structure enables convolutional neural
networks (CNNs) to use the same weights in all nodes within each layer of the
network. Mathematically, the effect of this is that each network layer can be
viewed as performing a convolution of the layer’s inputs with a single weight
vector. Computing these convolutions thus becomes the main workhorse
operation of these neural networks.

The first practical demonstration of an optical CNN was in 2018, and
UK company Optalysys is now commercializing this technology by produc-
ing prototypes of consumer optical correlators, as shown in Figure 16-3.

SLMs

Glass

Laser

PCIe interface

Cameras

Figure 16-3: An optical correlator PCIe card

This device can now be plugged into a desktop PCIe slot to replace GPUs
for deep learning and other applications.

DNA Architectures
Beginning around 2000, labs have investigated DNA computing as a way to
solve hard computation problems using massive biological parallelism. DNA
molecules, as found in living cells, may be viewed (depending on one’s con-
ception of representation) as performing computations, and it’s been shown
that they can encode and efficiently solve computationally NP-hard prob-
lems such as the traveling salesperson problem. To understand DNA com-
puting, we’ll need a bit of background information.

DNA (deoxyribonucleic acid) is the “source code” for life on Earth. In
cellular organisms, every cell contains a complete copy of the whole organ-
ism’s code (genome) in a set of large double-helix molecules (chromosomes)
inside the cell nucleus.
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Small parts (genes) of the information encoded in the DNA molecule
are copied (transcribed) onto RNA (ribonucleic acid) molecules, which then
move out of the nucleus and form construction sites for particular protein
molecules to be built. These protein molecules build up the actual body of
the organism. This process is known as the central dogma of molecular biol-
ogy: DNA makes RNA; RNA makes proteins.

Each rung of DNA’s double-helix ladder is formed from a matching pair
of nucleotides, small (around 20 atoms) organic molecules of which there are
four types: A, T, C, and G. Each has one partner to make pairs: A and T go
together; C and G go together. Humans have 23 chromosomes containing a
total of about 3 gigapairs of nucleotides. DNA thus uses a base 4 data repre-
sentation with symbols A, T, C, and G, and the source code for the human
genome is about 6 gigabits. This is a similar size to an operating system, and
like an operating system, the human genome has been distributed on a sin-
gle CD-ROM.

DNA technology used to be expensive; for example, it took $100 mil-
lion to sequence the first human genome in 2001. But it has recently rapidly
fallen in price, reaching $1,000 in 2015 and $100 in 2023. This decline in
price means the time is ripe to consider DNA as a medium for computation.

Synthetic Biology
Rather than using DNA to store source code for making proteins, as in na-
ture, synthetic biologists can use DNA to represent, edit, select, and copy ar-
bitrary data. This enables Church computers to be constructed using DNA
data representation and processing.

ATCG strings of DNA can be edited via cutting, splicing, and insert-
ing symbols, as in an ASCII text editor. This is done using custom enzymes
that promote the desired reactions. A small set of these enzymes is now well
known and can be used routinely to perform these operations.

As for the strings themselves, it’s now surprisingly easy to produce
your own arbitrary sequences of DNA, which can then be used to store and
compute in base 4 as a string of ATCG symbols. It can almost now be done
at home using a modified consumer inkjet printer, with its usual cyan, ma-
genta, yellow, and black (CMYK) inks replaced by solutions of ATCG mole-
cules. DNA manufacturing can also be performed on industrial-chemistry
scales, making huge numbers of identical or related molecules in a liquid the
size of a swimming pool. Consider that just a glass of water contains around
1024 water molecules, more than all the bits of data in the world.

Information can be read back from physical DNA using electrophore-
sis, the same technique used for DNA fingerprinting in crime scene inves-
tigations. The polymerase chain reaction (PCR) also provides a method to
select and copy one particular strand of DNA from a large solution of dif-
ferent strands, the equivalent of extracting a substring from a string.
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DNA Computing
Computationally, PCR provides a fast search algorithm. If we can make a
liquid containing billions of strands, each encoding a different candidate
answer to a computational problem, then we can use PCR to quickly pick
out and read off the correct answer.

PCR is a chain reaction, meaning it continues to run and to expand its
effects exponentially over time. If the mixture contains just a single DNA
strand containing the search string, then that strand will be copied, then
each of the copies will also be copied, and so on, until almost the whole liq-
uid ends up full of billions of copies of the answer. This means that a sample
of the liquid analyzed by electrophoresis will almost certainly show the de-
sired result.

In 1994, Leonard Adelman successfully used DNA computations to
solve a seven-city traveling salesperson problem. The traveling salesperson
is a classic NP-hard problem that asks for the shortest route someone can
take to visit each of N cities and return home, given a matrix of distances
between them. Adelman represented the identity of each city with a short
DNA string, then represented routes as strings concatenating these
identifiers.

As in standard traveling salesperson formulations, the shortest route
question was reformulated as an O(n) series of Boolean questions of the
form “Does there exist a route with length less than n?” This question, along
with the distance metrics between the cities, was encoded as a primer, which
binds only to DNA strands representing routes with the desired property
(having a length less than n). For each n, a chemical solution was prepared
consisting of many copies of strands of every possible route, in a human-
scale vat. The primer was mixed in, then PCR applied to amplify any success-
ful result. Electrophoresis was used to read off the results. This was able to
find shortest routes for N = 7 cities.

This doesn’t mean that P = NP for DNA computers; in time, this is O(n),
but it still requires exponential resources in the number of molecules. It’s
just that with DNA there are a lot of molecules available. DNA is thus able to
solve much larger instances of NP-hard problems than other technologies,
but like all technologies, there will exist problem sizes that are still too large
due to the nature of NP-hardness.

Current research is trying to move DNA computing architectures out of
vats in biology labs and into miniaturized biochemical chips that will oper-
ate more like normal silicon computers. DNA computing seems unlikely to
replace electronics for day-to-day computing tasks, such as running desktop
applications, but it might become useful as co-processing in scientific com-
puting for solving large, hard computational problems.

Neural Architectures
Neuroscience has been an important influence on architecture since at least
John von Neumann’s Draft Report on the EDVAC, which used many neural
ideas as direct inspiration. Hardware neural networks have been researched
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for many decades, but the 2010s saw them take off spectacularly with the
GPUs used for deep learning. In the 2020s, NPUs began to appear on mo-
bile phones and in the cloud for machine learning. Computational neuro-
science research continues and may inspire radically different computer
architectures, beyond current neural networks used in deep learning. As
with all computer architectures, we’ll here consider the brain’s architecture
on multiple levels of hierarchy, from its equivalents of transistors, through
neurons (brain cells), up to its equivalent of computer design.

Transistors vs. Ion Channels
Recall that a transistor is a digital switch, about 10 nm in diameter in mod-
ern chips. It has an input and output, and if you activate the switch, current
flows between them. We’ve seen that transistors work by balancing several
chemical and physical forces, and the switch tips this balance to allow the
current to flow. Transistors (and chips in general) are made from semicon-
ductors based around silicon, which makes four chemical bonds with neigh-
boring atoms. Really understanding transistors needs chemistry and quan-
tum mechanics.

The brain analog of the transistor isn’t the neuron but the ion channel,
which is a subcomponent of a neuron, as shown in Figure 16-4.

3
2

1

Figure 16-4: An ion channel, in closed (left)
and open (right) states. Ligands (3) bind
to the channel (1) to open it, allowing
ions (2) to flow through it.

Ion channels are single-molecule digital switches, also about 10 nm in
diameter, made from proteins and built into the membranes of neurons.
Depending on their switching state, they either allow or don’t allow certain
chemicals to flow between the inside and the outside of the neuron. Their
switching states are determined by the balance of electrical and chemical
forces, which can be tipped when another chemical binds to the ion channel,
or when a voltage is applied to it.

Ion channels (and brains in general) are based around carbon, which
makes four chemical bonds with neighboring atoms. As with transistors, re-
ally understanding ion channels needs chemistry and quantum mechanics.
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Logic Gates vs. Neurons
Neurons (Figure 16-5) are usually considered as the basic unit of computa-
tion in brains.

Cell body

Axon

Axon hillock

Dendrite

Nucleus

Synaptic terminals

Dendritic branches

Figure 16-5: A neuron

Neurons are about 1 µm in diameter. Computationally, they’re built
from many ion channels. They also have many other cellular structures
needed to support their existence and power requirements. They function
as boxes that take a number of digital inputs and give one digital output,
somewhat like the multi-input AND gate seen in Figure 6-2. A multi-input
AND gate’s function can be written mathematically using a Boolean algebra
equation:

output = b
⎛
⎝

N
∑
i=0

inputi
⎞
⎠

Here, b is the Boolean “sum squashing function”:

b(x) = (x ≥ N)

Logic gates such as a multi-input AND are clocked, so their inputs and
outputs are considered valid only for short periods of time, until the next
computation begins.

In simple computational models, as typically used in current machine
learning neural networks—and coded as a GPU kernel as in Chapter 15—a
single neuron’s function is assumed to be given by the equation:

output = f
⎛
⎝

N
∑
i=0

wi × inputi
⎞
⎠

Here the ws are adjustable weight values modified during learning, and f is
the same squashing function:

f(x) = (x ≥ N)
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This notation assumes that one of the inputs is set permanently to 1, rather
than containing any actual data. This special input is known as a bias or affi-
nating input; it’s needed to make most neural network models work.

Neurons typically “fire” for short periods of time, so their inputs and
outputs are considered valid only for short periods of time until the next
computation begins. Unlike logic gates, there is typically a lot of noise in
neurons, which can be modeled by adding random numbers to their inputs.
Some models consider this noise to be an important probabilistic aspect of
their computation.

This is a very simple model of neuron function, and close relations of
it work well for current machine learning applications, such as the f = reLU
GPU neuron we built in Chapter 15. However, real biological neurons come
in hundreds of different shapes and sizes that may have much more com-
plex behaviors, and these have been argued to include more complex com-
putations such as summations, multiplications, divisions, exponentiation,
logarithms, temporal memory, and filtering. This school of thought empha-
sizes the complexity of neurons as whole living and computing cells in them-
selves, and reminds us of the complex computations performed by other
single cells such as bacteria and sponge cells.

Copper Wires vs. Chemical Signals
Let’s compare the wiring in the brain with the wiring in a chip. In a chip, we
use photolithography to first lay down layers of transistors on a 2D plane.
In modern chips, we then lay down a few overlapping layers of copper wire
on top of the transistors to make connections between them, as we saw in
Figure 4-19. Communication over these wires is very fast and accurate, as it’s
purely electrical. Messages are digital, meaning the wire is either high or low
voltage, which can be viewed as representing 1 or 0.

Neurons are usually long, extended cells, including a long axon compo-
nent that functions as a wire to carry information around the physical brain.
Human axons range from 1 µm to 2 m long—the longest are the axons in
the neurons connecting your toe to your brain. Communication is slow and
noisy, as messages travel along axons via a complex biochemical process in-
volving ion channels opening and closing to move chemicals in and out of
the cell. When the end of the axon connects to another neuron (at a joint
called a synapse), there’s a second biochemical process in which chemicals
released from the first cell travel into the second one. Messages are digital:
the axon is either firing or not firing, which can be viewed as representing 1
or 0. Architecturally, a whole neuron is thus analogous to a logic gate with a
single long output wire.

Simple Machines vs. Cortical Columns
The next architectural level is the simple machines level. In human-designed
computers, simple machines are made from several logic gates that together
perform some single useful function. There are many different standard
simple machines, such as adders, decoders, and registers, each specialized
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for a particular task. Typical simple machines can be laid out with TTL chips,
as we saw in Figure 5-13.

This is the least understood level of brain architecture, and therefore the
most exciting topic for scientific research. Some researchers argue that the
human cortex consists entirely of repeated cortical column microcircuits, each
composed of a few hundred or thousand instances of a handful of different
types of biological neuron, occupying a cylinder around 20 µm in diameter
and 2 mm in depth.

The neurons forming the cortical column microcircuit are arranged
across six distinct layers of cortex and always connected in the same spe-
cific way, as shown in Figure 16-6. We know the connectivity between the
populations of the different types of neurons here, but not the connectivity
between individual neurons or the weights of the connections. There’s at
least some superficial similarity between the structure in Figure 16-6 and the
RAM seen in Figure 6-22.

Higher-order cortex

L1

L2/3

Lower-order cortex

L4

L5

L6

TRN

Sensory
thalamus

Figure 16-6: The cortical microcircuit architecture

Some computer scientists have speculated that these microcircuits might
function as building blocks of probabilistic or other calculations. The pre-
cise wiring of the module circuit remains unclear and requires advances
in brain imaging technology before we can run a “debugger” on it to learn
what it’s actually doing. Unlike with digital logic microcircuits, there ap-
pears to be only this one cortical microcircuit, which is used all over the cor-
tex. Reverse engineering the cortical microcircuit is one of the biggest sci-
ence challenges of the 21st century. It needs computer architects and their
experience to help suggest computational functions, alongside biological
neuroscientists to collect data and link to their biological knowledge, and
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physicists to design new experimental equipment able to see this data.
Nobel Prizes seem likely for those who crack its code.

Chips vs. Cortex
At the highest level of structure, the cortex is surprisingly similar to chips.
This is because they’re both laid out in 2D planes, and composed of tens
of fairly independent modules with connections between them. For chips,
we’re used to seeing 2D layouts such as in Figure 11-5. For brains, it’s less ob-
vious because the 2D sheet of the cortex is crumpled like a discarded piece
of paper into three dimensions. It can easily be uncrumpled, though, and
spread out across a 2D surface to show its true structure (Figure 16-7). It’s
this sheet that contains the six-layer microcircuits discussed earlier.

Figure 16-7: The cortex appears three-dimensional (left), but uncrumpled it
becomes a 2D sheet, like a paper page or silicon chip (right). The modules,
known as Brodmann areas, are labeled with numbers.

The modules of cortex are known as areas, and most have been associ-
ated with particular functions and activities, such as vision, hearing, touch,
and planning. Within each module, connectivity always follows the cortical
microcircuit architecture and (arguably) a columnar structure, (arguably)
with strong connectivity within each column and weaker connectivity be-
tween columns. Most modules have large bundles of axons that send output
information to other modules. Projections are always from and to the same
layers within these modules, as part of the microcircuit. We know which
modules send outputs to which others, but not the detailed connectivity of
which neurons connect to which within them.

This is all very like chip architectures, which also often have tens of mod-
ular components, each having strong connections within them, and more
limited bundles of connections flowing between them. Modern chips have
several layers of 3D-printed copper wires to connect components together,
sharing the brain’s basic plan of a 2D layout with 3D connections linking dif-
ferent areas. A big difference, though, is that all the component areas of the
brain share the same internal architecture of layers and columns, while the
component areas of chips usually contain completely different designs.
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Parallel vs. Serial Computation
Consider how modules are connected together in a CPU or a cortex. CPUs
are inherently serial machines, designed to execute programs of instructions
in sequence. As such, a CPU has a clearly defined “top” of its design hierar-
chy, the control unit, that acts as the executive telling all the other modules
what to do and when to do it; we saw this in Figure 7-13.

A cortex also has a hierarchy, with frontal areas thought to be involved
in executive control and posterior (rear) areas more involved in running per-
ception and action. Perception and action for each sense (vision, touch, and
so on) are known to consist of hierarchies of areas; for example, lower visual
areas process edges and corners, and higher ones detect faces and named
people. These areas all run in parallel, and they’re composed of columns
that also all run in parallel. The frontal areas seem to coordinate the over-
all activity, but the perception and action areas can function by themselves
when the frontal areas are damaged.

None of these modules are active unless triggered by the thalamus, which
in this context looks and acts somewhat like a CPU control unit, and can be
seen in the lower part of Figure 16-6.

While the modules relay information directly to one another, they also
communicate with regions of the thalamus that appear to mirror their struc-
ture and act to turn them on and off and resolve conflicts between them.

When you introspect your own subjective experience of computing solu-
tions to complex high-level perception and action-planning problems, it may
appear that your brain is operating like a serial machine, imagining and test-
ing out different hypotheses and actions in a sequence. This observation can
be supported by the more objective evidence that other humans take O(N)
time for such tasks when timed in a lab. Internally, however, we also think of
the brain as a massively parallel system, with all its neurons potentially in use
simultaneously. This is similar to thinking of the CPU first as a serial proces-
sor, then thinking of it as a massively parallel digital logic circuit in which all
its billions of transistors are potentially in use simultaneously. Outside the
brain and CPU, both have external modules, whether connected by a spinal
cord or a bus.

The hippocampus is a special part of the cortex: it sits right at the top of
the hierarchy, and its microcircuit is a little different from the rest. Instead
of having cortical layers that process data to send up to higher regions, the
hippocampus has different layers, called DG, CA1, and CA3, that include
feedback connections, connecting what would usually be outputs back into
themselves. Rather than send computations up to more abstract layers of
processing, they’re sent through time to the same, functionally highest, area
of the cortex. Computational architectures have been developed based on
the hippocampus, on the assumption that it’s used as a form of spatiotem-
poral memory. These architectures enable robots to navigate and map the
space and objects around them.

Architects have been intrigued and inspired by the brain throughout
the electronic era. Current interest in deep learning has brought some of
these links into mainstream architectures, such as the neural processing

Future Architectures 413



units now found in many phones. These architectures are loosely based on
models of neurons and on hierarchical cortical areas. But we’ve seen here
that real brains include much additional complexity—ion channels, cortical
microcircuits, and emergent serial computation from parallel structures—
that may provide inspiration for further developments. It’s common for
philosophers to debate whether any silicon-based simulation of brain struc-
tures could fully replicate human intelligence or consciousness. Those argu-
ing against typically invoke properties of physics that don’t usually appear in
silicon, such as quantum effects. However, computer scientists have begun
to explore computing with some of these effects too, as we’ll see in the next
sections.

Quantum Architectures
Quantum computing is based on the physics of quantum mechanics, which
is famously strange and counterintuitive. In quantum mechanics, objects
no longer have precise locations or velocities; rather, they exist in wave-like
states that range over many possible locations and velocities. These states de-
fine the probabilities of actually seeing the object at one of these locations
or velocities when you look at it. Quantum concepts are genuinely mind-
blowing, and will radically change your whole view of reality, causation,
and time.

A full presentation of quantum mechanics or quantum computing is be-
yond the scope of this book. Here I can only give a flavor of the concepts
and a glimpse at what the basic equations look like. It’s worth pointing out,
however, that modern quantum computing can be studied with little or no
reference to the usual presentation of quantum mechanics given in physics,
making the field somewhat easier to approach. In particular, computer sci-
ence is a mostly discrete subject, dealing with 0s, 1s, and sums, rather than
the continuous real numbers and integrals typical of quantum mechanics.
The discretized mathematics used in quantum computing requires only high
school linear and matrix algebra, complex numbers, and probability.

A Cartoon Version of Quantum Mechanics
The following is not a correct presentation of quantum mechanics and is in-
tended only as a cartoon to introduce some key concepts.

Suppose that objects in the world don’t just exist in a single state at a
time. For example, a cat inside a box may at the same time be both stand-
ing up, being alive, and also lying down, being dead. This famous example
is known as the superposed cat. Suppose that the cat is locked inside the box
along with a piece of radioactive material. Radioactive material decays com-
pletely at random: its behavior can’t be predicted in any way. A radiation de-
cay detector is placed next to it, and connects to a mechanism that releases
poison gas into the box, killing the cat if radiation is detected and leaving it
alive if not.
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You leave this experimental apparatus alone for, say, 10 minutes. You
might know something about the strength of the radiation, so you can say
that after 10 minutes there’s some probability, say 20 percent, that a decay
has taken place and the cat is dead, and some other probability, say 80 per-
cent, that it hasn’t taken place and the cat is alive. We might represent the
current “state” of the cat by a distribution such as:

Cat = {alive ∶ 0.8,dead ∶ 0.2}

Classically—that is, without considering quantum mechanics—you would nor-
mally think of this distribution as being a property of your own knowledge
rather than a property of the world. You would assume that the cat is actually
in only one state or the other, either alive or dead. It’s just that your brain
doesn’t know which, so it (your brain) contains a model carrying the two
states and the probabilities.

In quantum mechanics this is absolutely and demonstrably not the case.
The two versions of the cat aren’t only in your head but are also both actu-
ally out there in the world in some sense. Roughly, we imagine two versions
of reality—one where the cat is alive and one in which it’s dead—existing to-
gether until the moment you open the box. When that moment comes, re-
ality “decides” which state will be the actual one, randomly but according
to the probabilities, and the other state goes away forever. We say that your
act of observing the cat changes its state, from existing as two versions with
probabilities to existing as a single version.

Now that we have the basic idea, let’s take a look at the math version.
You aren’t expected to understand all of the math symbols, technical terms,
or commands used in the rest of this section. If you happen to be familiar
with linear algebra and complex numbers, then you can follow the details,
but otherwise it’s okay just to glance over them to get a flavor of the field.

The Math Version of Quantum Mechanics
The correct presentation of quantum mechanics consists of four rules;
superposition, observation, action, and combination.

Rule of Superposition
Objects exist in a superposition of states, each with a complex number ampli-
tude whose squared moduli sum to 1. For example:

|ϕ⟩ =
⎡⎢⎢⎢⎢⎣

1√
5

2i√
5

⎤⎥⎥⎥⎥⎦

Here, i =
√
–1 and the rows of the vector represent the amplitudes of the cat

being dead (binary state 0) and alive (binary state 1), respectively.
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Rule of Observation
When you observe states in a basis, they collapse to one of the basis states of
the observation basis, at random, according to the moduli of their squared
amplitudes. For example:

P(dead) = | 1√
5
|2 = 1

5
, P(alive) = | 2i√

5
|2 = 4

5

These results are always real numbers between 0 and 1, representing the
probabilities of observing each possibility.

Rule of Action
Any physical action, including computation, performed on the system—
apart from observation—is modeled by a unitary matrix. The matrix oper-
ates on the state by ordinary matrix multiplication. For example, the action
of a NOT gate is modeled by a matrix that swaps the dead and live states’
amplitudes:

NOT|ϕ⟩ = [ 0 1
1 0 ]

⎡⎢⎢⎢⎢⎣

1√
5

2i√
5

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

2i√
5
1√
5

⎤⎥⎥⎥⎥⎦
Here, the NOT matrix, like all unitary matrices, preserves the property

of state vectors that the sum of their probabilities, from the rule of observa-
tion, is 1.

Rule of Combination
The state of two objects considered together is the joint state formed by the
tensor product of the individuals:

|ϕ1ϕ2⟩ = |ϕ1⟩⊗ |ϕ2⟩

The |⟩ notation used in quantum mechanics and quantum computation
is called ket notation. For discrete computer scientists, this simply denotes a
column vector, which in other subjects is sometimes denoted by underlining,
using an arrow, or using bold. The name comes from a pun on the word
bracket. Inner products are sometimes written ⟨a|b⟩ = aTb, which is called
a “braket.” If we write ⟨a| = aT and |b⟩ = b, then we can call these two new
symbols the “bra” and the “ket,” which together make a “braket.”

Quantum Registers of Qubits
Could we exploit the apparent existence of interacting parallel realities as a
form of parallel computation? If we could distribute computational work
across the parallel realities, as we would more normally distribute across
multiple CPUs in a single reality, and then somehow find a way to combine
the results into the single reality in which we happen to be ourselves, then
we could exploit the vast additional computational resources in those other
realities. We could build a single CPU and have it compute many things at
once across the parallel realities, instead of needing to build many CPUs.
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This idea, first proposed by Richard Feynman in 1988, is the beginning of
quantum computing.

Consider the superposed cat. We could use the cat’s aliveness and dead-
ness as a 1-bit data representation via the encoding dead = 0 and alive = 1.
Call this a qubit, for quantum bit. We could then build an N-bit register by
placing N of these cats-in-boxes in a row, to store words, as in a classical reg-
ister based on flip-flops. Until we open the boxes in the register, there are
multiple realities in which the cats inside them are alive and dead. When we
open them, we see just one version of reality and that becomes the reality we
experience ourselves.

Like a classical register, an N-qubit quantum register has 2N possible
states. Each of these states of the whole register can exist at the same time
in a “parallel world.” This is a much larger set of states than just the N cats.

You can play with this using a quantum computer simulator such as
QCF (Quantum Computing Functions). In QCF, you can begin by creating
non-superposed register states, such as:

>> phi_1 = bin2vec('011')

[0 0 0 1 0 0 0 0]

The resulting output shows a state vector for a 3-bit register that’s entirely in
the 011 state (representing the decimal number 3). There’s zero amplitude
of being in the zeroth state 000; zero amplitude of being in the first state,
001; zero amplitude of being in the second state, 010; full amplitude, 1, of
being in the third state, 011; and zero amplitude of the other states, up to
the seventh, 111.

QCF also has a command to create similar, non-superposed states di-
rectly from the decimal numbers being represented; for example, to create a
3-bit register entirely in the state representing decimal 5, use this command:

>> phi_2 = dec2vec(5, 3)

[0 0 0 0 0 1 0 0]

So far, these are only the same single states that a classical 3-bit register
could exist in. Next, we can simulate a register in a superposition of both of
these states at the same time, such as:

>> psi = [1/sqrt(2)*phi_1 + 1/sqrt(2)*phi_2]

[0 0 0 0.7071 0 0.7071 0 0 ]

To simulate a measurement (observation) of this register, we can do this:

>> psi = measure(psi)

This will randomly produce one of the following two outputs, with probabili-
ties given by the squared amplitudes:

[0 0 0 0 0 1 0 0]

[0 0 0 1 0 0 0 0]
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The individual qubits’ states aren’t independent; they’re entangled. In
our QCF example, the first two observed bits must read either 01 or 10; they
can’t read 11 or 00. Therefore, if you look at the first bit initially and see a
0, it means you’ll see a 1 if you later look at the second bit, and vice versa.
This remains the case even if the qubits are physically transported millions
of miles apart before either observation.

The register in our example may be modeled as existing in eight (that
is, 2 binary digits ^ 3 bits) states at the same time, across a set of eight “par-
allel worlds.” The number of worlds grows exponentially with register size;
for example, a 64-bit quantum register has 264 ≈ 2 × 1019 states, the same
number as the number of addresses in the entire address space of a 64-bit
machine, existing all at the same time in a single register.

Physicists usually don’t like to talk in terms of “parallel worlds.” Instead,
they prefer to “shut up and calculate” to predict the outcome of a particular
scenario: it’s all just math once they’ve been given a system to analyze. To
create new quantum programs, however, it’s useful for computer scientists
to think of each state of the register existing in a parallel world. Thinking
in this way helps you to visualize what you’re creating and suggests ideas for
what to create next.

Computation Across Worlds
The amplitudes, but not the contents, of the states can affect one another
in certain ways that are very limited by the rules of quantum mechanics, en-
abling interaction between the parallel worlds during computation. The
billion-dollar question in quantum computing is always: how do we read
back the results? We observe only one of the parallel worlds, and the one
we get is random, so we need to find mechanisms that ensure either that the
result we want to see exists in all of the worlds, or that the world we observe
happens to be the one with a single copy of the result in it.

For example, we might try to parallelize the traveling salesperson prob-
lem by superposing a register so that each world has part of the register
encoding a different possible route. Within each world, we then calculate
the length of that route and store it in another part of the register. Then we
answer a question such as “Does this route have a length less than 5?” and
store the result as a single bit in a third part of the register. But our task is to
answer a question about the whole set of possible routes, such as “Does any
route have length less than 5?” This is a function of the information stored
in all of the worlds.

Finding ways to get that information all into one place that we’re guar-
anteed, or even just likely, to see when we make an observation forms the
hard part of quantum algorithm design, and as far as we know, these ways all
introduce large computational complexity overheads. As a result (again, as
far as we know), quantum computers aren’t able to make P = NP, but they are
able to speed up NP problems to lower complexities within NP. Most quan-
tum algorithms, such as Grover’s algorithm, work by gradually updating state
amplitudes so that all worlds that we don’t want to see cancel each other out,
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and only the world that we do want to see remains with a large probability
of appearing in the actual world. This is a similar approach to DNA comput-
ing’s PCR, which also performs computing over time to amplify the desired
solution at the expense of the others. Some researchers believe that quan-
tum computers will provide a general speedup of O(

√
N) via this approach,

but theory is still needed to confirm this.
There are a few particular problems, such as breaking public key cryp-

tography, that are known to have larger speedups due to their structures be-
ing especially close matches to the quantum laws. Finding and classifying
these special cases is a current research topic.

Practical Quantum Architectures
Small-scale quantum computers, having just a few qubits, have been success-
fully constructed and demonstrated to prove that the concept works. The
main barrier to larger practical quantum computers is decoherence. This is the
problem that any interaction between a superposed system and anything in
the rest of the world tends to spread out the superposition into that thing
and then into the rest of the world. The amount of superposition behaves
roughly like a fixed resource, so once it leaks out of your computer it’s gone
and it can’t be used in your computation anymore. Quantum engineers are
working hard to design ways to isolate quantum systems from all outside in-
fluence. This is a somewhat similar problem to nuclear fusion, in which we
set off a nuclear explosion and then try to use magnets to keep it controlled
and contained from its surroundings.

Adiabatic quantum computing is sometimes reported in the media—
notably by the company D-Wave Systems, which has successfully sold devices
to Google and the US government—as successfully performing quantum
computing with 1,000 bits or more. However, adiabatic quantum computing
isn’t quantum computing in the sense we’ve discussed. It’s a different physi-
cal process based on a very different mathematical model that assumes time
is continuous rather than discrete, so that an infinite number of observa-
tions can be made in any given time interval. Completely opposite to quan-
tum computing, it relies on observations (or decoherence, in some views)
taking place continually, rather than trying to shield the system from them;
the observations form the essential part of the actual computation. Many
quantum computing researchers are highly skeptical of these claims, noting
that there’s a long history of cranks in normal computer science claiming
to have made P = NP via models that similarly assume infinite amounts of
computation performed in finite time intervals.

Rose’s law has been proposed as a quantum version of Moore’s law,
hypothesizing that the number of qubits in working quantum computers
is currently doubling every two years.
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Future Physics Architectures
Beyond what’s currently called quantum computing, we might more gener-
ally turn to modern physics and ask what else it’s discovered that might also
be made into computing machinery.

Our best current theory of physics, the Standard Model, is based on quan-
tum field theory (QFT), which combines quantum mechanics with special (but
not general) relativity to model reality as comprising a set of fields that each
cover space and interact with one another. Each field corresponds roughly
to one type of particle, and as in basic quantum mechanics, its amplitudes
are those of finding a particle there if we look for it. Unlike basic quantum
mechanics, the fields are also able to represent probabilities of finding mul-
tiple particles at locations, and it’s possible for these particles to interact and
transform into one another in various ways.

The Standard Model specifies particular fields and interactions to make
a quantum field theory with 17 types of particle. (More accurately: the fields
are a gauge quantum field containing the internal symmetries of the unitary
product group SU(3) × SU(2) × U(1), and the 17 particle types emerge as
patterns across several of these fields.) The Standard Model has been tested
experimentally since the 1960s and hasn’t changed since then. CERN con-
firmed the final Higgs field in 2012. A few anomalies are now known that
suggest a better model might one day be found.

Particle accelerators such as CERN have perfected the ability to not only
observe but also control individual particles of the fields. Beams of different
types of particles can be reliably produced, collided with each other or with
test objects, and the individual particles flying out of the collision observed.

Particle physics has thus given rise to particle engineering, in which this
technology is reused not to do science but to build practical engineered
systems for other purposes. Governments have funded particle physics for
many decades, not for inherent interest in what the world is made of, but
because of weaponization potential. The beams firing around CERN can
kill anything in their path. American 1980s BEAR experiments put an ac-
celerator in space, able to produce and fire beams over huge distances, try-
ing to destroy satellites—and eventually ground targets—with laser-like preci-
sion. Accelerators and detectors are also being repurposed for treating brain
cancer. By firing proton beams through the brain and detecting changes in
their speeds, we can infer tumor structures with higher accuracy and less
damage than other methods. Once these are known, beam strength can
be turned up to destroy the tumors, again more accurately than with other
methods.

Now that particle engineering has begun to develop, it’s natural to ask
if, like mechanical, electrical, and electronic engineering before it, it can be
used to construct new computer hardware. It might one day be possible to
use particles other than electrons and photons from the Standard Model to
store and compute with data—for example, creating a Higgs boson–based
computer. Such computers might be constructed by accelerating particles,
then using their interactions to form computations, perhaps as microscopic
billiard ball logic gates, such as seen in Chapter 5.
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QFT isn’t a complete theory of physics, because it omits gravity, which is
instead modeled by Einstein’s general relativity (GR). GR is incompatible with
QFT because, unlike QFT, it allows space and time to change shape, bending
around mass. We rely on relativistic engineering every day—for example, for
time correction among GPS satellites, to correct for warping of telescope im-
ages, and to correct paths for missions to Mars and elsewhere. As predicted
by Einstein, gravitational waves were observed in 2016, and are now becom-
ing a new tool for astronomy. These effects are small and subtle. In contrast,
while engineering systems to actively manipulate and exploit bending space-
time is possible in theory, it requires astronomical scales of energy and mass.
It may take centuries or millennia, or be impossible, to obtain these. Gödel’s
“closed timelike curves” can occur in GR if space-time loops around on itself
to form a “wormhole” shortcut path between perhaps engineerable points in
time and space, including backward time travel.

Observers in GR may see events occur in different temporal orders de-
pending on where they are and how they move. The notion of a sequential
program becomes problematic if observers can’t agree on the order in which
instructions are executed, with later stages of execution appearing to cause
earlier ones. Time runs at different speeds for different GR observers, so if
we live on a large mass, we could make a computer run faster by sending it
far away from this mass. However, accelerating and decelerating it for this
journey have the opposite effect of slowing its time, which would need to be
balanced against any gains.

Hypercomputation theorists have claimed theoretical machines with for-
mal powers stronger than Church computers. They could use GR to predict
their own future behavior by looking at their own past in a closed timelike
curve, and thus solve the halting problem. This would require a radical up-
date of our concept of computation.

QFT and GR famously don’t fit together, so we have no working “Grand
Unified Theory” (GUT) to explain the structure of reality. Current attempts
include “string theory/M-theory,” “loop quantum gravity,” and “twistor the-
ory,” but none actually work yet. Some of these theories postulate the exis-
tence of extra dimensions. Some theories try to model a “graviton” as an ad-
ditional particle, to treat gravity similarly to the other forces in the Standard
Model. This might be of interest for computation, because any gravitons
must have zero mass and travel at the speed of light, like photons, but must
also be able to interact with each other, unlike photons. This would avoid
the non-interaction problem of speed-of-light photonic computers.

Meanwhile, discoveries about galaxy and galaxy supercluster structure
and motion are challenging both QFT and relativity. Observations appear to
require either the invention of new “dark matter” and “dark energy” parti-
cles, such as “axions,” or the replacement of relativity with a new theory. If
we find that the world is made from superstrings, twistors, gravitons, or ax-
ions, then we can also look for ways to use their properties to represent data
and perform computation.
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Summary
A new golden age of architecture is upon us. There’s never been a better
time to get involved in architecture, both as a user and as an architect. Open
source hardware and software now enables you to design and build serious
CPUs at home, and to contribute them to the community.

Taking the long view of computing history, as in Chapter 1, suggests
that modern ICs are just one of many possible computing technologies that
come and go. The end of Moore’s law for clock speed has already forced us
to move to parallel architectures, but Moore’s law for transistor density must
also end as we reach scales of single atoms and quantum effects. This may
force us to switch to entirely new technologies.

Optical computing is limited by photons’ non-interactivity with one an-
other, though at least in the special case of convolution filters it’s possible to
make use of interactions within their waves, which are a coincidentally good
fit to current deep learning computations.

DNA computing seems unlikely to appear on consumer desktops, but
may have a niche for solving large one-off NP-hard problems. Your univer-
sity or public transportation timetable might one day be optimized by a
swimming pool full of DNA.

The human brain continues to inspire new architecture ideas. Going
beyond current deep learning architectures, it could lead to ideas for micro-
circuit-based simple machines and the emergence of serial behavior from
massively parallel systems.

Quantum computing is now a well-understood theory, but with re-
search still progressing around its difficult implementation and only a the-
oretical understanding of what speedups it can provide. Quantum comput-
ing is based on quantum mechanics, which has been superseded by QFT
and perhaps by attempts at GUTs. Some of these theories are still glints
in physicists’ eyes, but as with every other technology, from rocks to gears
to silicon chips, they may also one day form the basis for future computer
architectures.

Exercises
Crank Speedups
You could solve any computation problem in 1 second of wall clock time
using an Analytical Engine if you assume that you can turn its crank at arbi-
trary higher and higher speeds. Why would that not work? What might this
tell us about adiabatic quantum computing claims?

Challenging
1. Download QCF from https://github.com/charles-fox/qcf and work

through the examples shown in the “Quantum Architectures”
section on page 414.

2. QCF comes with a longer tutorial that builds up to running Grover’s
algorithm; work through this.
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3. Which technology do you think will yield practical new computers
first: quantum, optical, DNA, neural, or other? Write a blog post
articulating why.

Further Reading
• For DIY fabrication, see Stephen Cass, “The Garage Fab,” IEEE

Spectrum 55, no. 1 (2018): 17–18.

• For graphene transistors, see F. Wu et al., “Vertical MoS2 Transis-
tors with Sub-1-nm Gate Lengths,” Nature 603 (2022): 259–264.

• An example of 3D integrated circuits is Vasilis Pavlidis, Ioannis
Savidis, and Eby Friedman, Three-Dimensional Integrated Circuit
Design, 2nd ed. (Burlington: Morgan Kaufmann, 2017).

• For details of 10,000-year storage, see J. Zhang et al., “5D Data Stor-
age by Ultrafast Laser Nanostructuring in Glass,” paper presented at
CLEO: Science and Innovations, San Jose, June 2013.

• For a general introduction to optical computing, see Jürgen
Jahns and Sing H. Lee, eds., Optical Computing Hardware (Boston:
Academic Press, 1994).

• For details of deep learning with optical correlators, see J. Chang
et al., “Hybrid Optical-Electronic Convolutional Neural Networks
with Optimized Diffractive Optics for Image Classification,” Scien-
tific Reports 8, no. 12324 (2018).

• For a popular science introduction to DNA computing, see Martyn
Amos, Genesis Machines: The New Science of Biocomputation (London:
Atlantic Books, 2006).

• For details of the traveling salesperson problem with DNA com-
puting, see J. Lee et al., “Solving Traveling Salesman Problems with
DNA Molecules Encoding Numerical Values,” BioSystems 781, no. 3
(2004): 39–47.

• For details of DNA inkjet printing, see T. Goldmann and J. Gonza-
lez, “DNA-Printing: Utilization of a Standard Inkjet Printer for the
Transfer of Nucleic Acids to Solid Supports,” Journal of Biochemical
and Biophysical Methods 42, no. 3 (2000): 105–110.

• The definitive text on quantum computing is Michael A. Nielsen
and Isaac L. Chuang, Quantum Computation and Quantum Informa-
tion (Cambridge: Cambridge University Press, 2000).

• For the origin of quantum computing, including links to heat, en-
ergy, and information issues in computing, see Richard Feynman,
The Feynman Lectures on Computation (London: Westview Press, 1996).

• For an overview of biological neural architectures, see Larry Swan-
son, Brain Architecture: Understanding the Basic Plan (Oxford: Oxford
University Press, 2011).
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• For the definitive guide to the many complex computations by sin-
gle neurons, beyond simple models, see Christof Koch, Biophysics of
Computation (Oxford: Oxford University Press, 1999).

• For examples of advanced computations performed by single-cell
organisms, see R. Lahoz-Beltra, J. Navarro, P. Marijuan, “Bacterial
Computing: A Form of Natural Computing and Its Applications,”
Frontiers in Microbiology 5, no. 101 (2014).

• See https://ai.googleblog.com/2021/06/a-browsable-petascale-reconstruc
tion-of.html for an interactive 3D view of human cortical microcircuit
connectivity.

• For a popular science introduction to future physics, see Brian
Greene, The Elegant Universe: Superstrings, Hidden Dimensions, and
the Quest for the Ultimate Theory (New York: Vintage, 2000).

424 Chapter 16

https://ai.googleblog.com/2021/06/a-browsable-petascale-reconstruction-of.html
https://ai.googleblog.com/2021/06/a-browsable-petascale-reconstruction-of.html


APPENDIX

OPERAT ING SYSTEM SUPPORT

We’ve avoided discussing operating sys-
tems in this book in order to see “bare

metal” architecture more clearly. Operating
systems are a distinct area of study with their

own books. It’s common to study architecture first,
then operating systems. However, demand from op-
erating systems has led to several features being added
at the architectural level, and these do belong in an
architecture book.

This appendix is designed for you to come back to later, during your
study of operating systems, as it covers the areas in which the two fields over-
lap. We’ll review some basic features of operating systems, then look at how
recent architectures have developed in order to support them at the hard-
ware level.



Concurrency
The most basic function of an operating system is to create the illusion of
multiple user programs running simultaneously on a single CPU. The op-
erating system program that does this is usually called the kernel. The user
programs being run by the kernel are called processes.

The kernel runs each process in turn for a short period of time, before
switching to the next one; this is called a cycle, and this form of execution is
called concurrency. This means that processes appear to be running in paral-
lel, but are actually being time-sliced, with the slices run in series. Concur-
rency is roughly the opposite of parallel computing. Parallelism usually takes
many CPUs and uses them to execute a single program at the same time.
Concurrency takes a single CPU and uses it to execute multiple processes at
the same time.

The kernel typically uses architectural timers, IRQ lines, and IRQ call-
backs to control switching between processes and kernel code itself. At start-
up, the kernel sets up a hardware timer that creates a regular IRQ to the
CPU. The kernel also has a subroutine, which we’ll call a callback, that’s set
up to be called when this IRQ appears. The kernel is given a set of processes
to run. It loads all of them into memory, at different locations. It then jumps
to the first process’s main subroutine, passing control to it to run as normal.

The first process will run for a while, then the timer that was previously
set will activate an IRQ. The IRQ hardware detects this, makes a copy of the
program counter somewhere (such as in a dedicated internal register), and
then sets the program counter to the address of the callback.

The callback is usually programmed to first save a copy of each of the
registers and the previously copied program counter in an area of RAM
reserved for use by the kernel (that is, not used by any of the processes).
It then decides (schedules) which process to run next. The simplest way
to do this is for the processes to take turns in a fixed order. The saved reg-
ister and program counter states for the new process are loaded into the
registers and program counter. The updated program counter thus trans-
fers control to the new process until the timer triggers the next IRQ and
calls the callback again.

Kernel Mode and User Mode
The kernel will work well as long as the processes can be trusted to play
nicely with one another—that is, as long as they access only separate indi-
vidual areas of memory. It won’t work well if processes are malicious. The
obvious security problem is that any process could read and write to mem-
ory intended for use by the other processes, and by the kernel itself. This
could include stealing data, overwriting data, or overwriting code, including
overwriting kernel code to take full control of the machine.

Modern CPUs prevent this at the architectural level by providing two (or
more) CPU modes, called kernel mode and user mode. In kernel mode, all of the
CPU’s features are available for the kernel to use. This includes full access to
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RAM. In user mode, restrictions are enforced that prevent access to instruc-
tions and memory locations outside the region of memory allocated to the
user process.

Virtual Memory
A modern operating system doesn’t allow user processes to access each
other’s data, or the kernel’s own data. Each user process is presented by the
operating system with a virtual memory space, which appears to the process
as if it were memory in a bare metal machine, isolated from the other pro-
cesses. For example, all processes might think they’re using memory loca-
tions 0x00000000 to 0xffffffff. The physical addresses of memory are thus
unavailable to the user program, and processes are separated from one an-
other and can’t read and write each other’s memory. The load and store
instructions in user programs work entirely using virtual memory addresses.

Virtual memory can also be made substantially larger than physical
RAM by making use of swap space with secondary and primary memory.
Here, both primary and secondary memories are divided into standard-sized
chunks called pages. Caching is used to move whole pages between primary
and secondary memory according to how recently they were used.

Unlike the hardware CPU and RAM caches we saw previously, this is a
slower process that’s usually managed at least partly in software by the oper-
ating system. A hardware memory management unit (MMU) may be added to
the architectural level to perform translations between physical and virtual
addresses as configured by the operating system.

Different CPU and operating system combinations will use virtual mem-
ory in different ways. For example, a key architecture design decision is
whether to use physical or virtual addresses in the different CPU-RAM
caches.

A translation lookaside buffer (TLB) cache is a dedicated cache designed at
an architectural level for the operating system to use to implement its vir-
tual memory. It can exist as a third specialist L1 cache along with the in-
struction and data L1 caches seen in Figure 10-12. When a user program
mentions a virtual address, the TLB cache looks up and converts it to a phys-
ical address, invisible to the user. If the virtual address is missing from the
TLB cache, the TLB then calls back to the operating system code using an
IRQ, asking it what to do. The operating system will either find the required
virtual-physical mapping and add it to the TLB cache, or it will give an access
violation error—often known as a segmentation fault—if it’s not available or al-
lowed. If you’ve ever run into a segmentation fault in your C code before, it
arises here, when you try to access memory that isn’t allocated to you.

Device Drivers
A modern operating system also doesn’t allow user processes to access I/O
addresses directly. Instead, they must call operating system subroutines
called device drivers to politely request I/O functionality, via the operating
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system’s API. As with other processes’ memory, user mode prevents pro-
cesses from loading or storing outside their designated address space, and it
will raise an exception—such as a segmentation fault—if this is attempted.

I/O modules and device drivers are different concepts. I/O modules
are hardware connected to the bus. A device driver is a higher-level concept,
a piece of software that takes sole responsibility for all communications with
the I/O module or with one (of the many) devices connected using it; it also
provides higher-level interfaces (such as C or C++ libraries) that wrap the
memory-mapped instructions. In the 8-bit era, these were simple programs
located in ROM or loaded into RAM that were accessible to user programs.
Today, they’re usually implemented as kernel modules that are accessible
only to the operating system, and user programs will request their use via
the operating system.

ARCHITECTURAL OPERATING SYSTEM SECURITY

Studying the architectural level opens up many interesting opportunities for
operating system security. The operating system generally tries to restrict user
program access to most parts of the computer, but if you have access to the
architectural level, you may be able to circumvent this. What could you do, for
example, if you could physically control the IRQ line used by the operating
system timer callback, by opening up your computer, attaching a wire to the
IRQ pin, and applying voltages to it at times of your choosing?

An ongoing security question is whether device drivers should run in kernel or
user mode. Often they’re made part of the operating system and given full
access to the machine, but this may be dangerous, as it enables any of the
writers of the drivers to access your entire machine. This was considered okay
in the days when there were just a few reputable printer manufacturers asking
to install their own drivers from a CD in the printer box, but it’s more worrying
now that there are many more international and untrusted hardware manufac-
turers in operation, not to mention the unbranded websites claiming to host
drivers for their products.

Loaders
On an 8-bit machine with no operating system, running an executable file
simply requires copying its contents to some location in memory, then set-
ting the program counter of the CPU to point to its first line. This is done by
a simple program known as a loader stored in ROM. On a modern machine
with an operating system, loaders are more complicated: the executable will
be running alongside other processes in an area of virtual rather than real
memory. A loader thus has to do some work to set this up and alter the ex-
ecutable to use virtual addresses rather than the physical ones the program
thinks it’s using. On Linux, the loader is invoked with a command such as
./myexecutable, where the ./ is technically required for security reasons but in
practice functions as the loader command.
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Let’s try writing, loading, and running a “Hello, world!” program from
inside an operating system. (We previously did this on the BIOS.) In partic-
ular, the following program is able to run inside a window system such as
the X Window System and arrange for the text to be displayed in a terminal
rather than directly lighting up ASCII patterns of screen pixels. It does this
by calling a kernel function—rather than a BIOS function—to request the text
display. The operating system’s loader assumes there’s an externally visible
(global) label called _start, to which it jumps after loading in the code:

global _start

_start: mov rax, 1 ; system call for write

mov rdi, 1 ; file handle 1 is stdout

mov rsi, message ; address of string to output

mov rdx, 13 ; number of bytes

syscall ; invoke OS to do the write

mov rax, 60 ; system call for exit

xor rdi, rdi ; exit code 0

syscall ; invoke OS to exit

message: db "Hello, Kernel!", 10 ; note the newline at the end

This code runs on 64-bit Linux only. To assemble and run, use this
command:

> nasm -felf64 hellok.asm && ld -o hellok hellok.o && ./hellok

This should write Hello, Kernel! to the console using only system calls.

Linkers
When an operating system–hosted executable calls to subroutines in other
libraries, virtual memory addresses need to be further relocated. This is to
ensure the executable machine code for each library is loaded into mem-
ory at a suitable location, meaning one that doesn’t conflict with the others.
Tweaking these addresses also ensures the libraries can find one another. If
one program or library calls a function in another, the address of the target
subroutine needs to be changed in its executable machine code to the cor-
rect location where the target has actually been loaded. Making these tweaks
is called linking and is performed by a linker program, usually called invisibly
by the loader.

As an example of linking, here’s another way to write to the terminal,
this time by calling the standard C library’s printf subroutine:

global main

extern printf

msg: db "Hello libC!", 0 ; 0 = ASCII endofstring

fmtstr: db "%s", 10, 0 ; ASCII newline and endofstring
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fmtint: db '%10d', 10, 0 ; ASCII newline and endofstring

main:

mov rdi,fmtstr

mov rsi,msg ; pointer to msg

mov rax,0 ; num of extra stack args used (none)

call printf ; call C function

mov rdi,fmtint

mov rsi,124 ; 124 is an int to print out

mov rax,0 ; num of extra stack args used (none)

call printf ; call C function

ret

With this style, you can call any C libraries from your assembly pro-
grams, as long as you respect their calling conventions. Because it’s part of
a C compiler stack, the gcc compiler looks for an externally visible (global)
subroutine named main, as in C. It will create its own lower-level _start sub-
routine and set it to call main; it will also set up any structures needed by the
C libraries.

Note that because printf can take a variable number of arguments, we
have to tell it how many extra arguments are used and should be expected
on the stack; we set this number in RAX. This is standard in most x86 calling
conventions for variable arguments.

To assemble, link, and run on 64-bit Linux, use this command:

> nasm -felf64 helloc.asm ; gcc -no-pie -o helloc helloc.o ; ./helloc

You can see what extra code the linker has added by disassembling—that
is, converting the machine code back to human-readable assembly. You can
do this with a tool like objdump:

> objdump -d helloc

Some operating systems make use of x86 segments—or, at least, their
assembler directives—to enforce a read-only .text section in the code. They
typically allow writes in the .data section.

Extra Boot Sequence Stages
Most systems can’t boot an operating system directly at power on. Operating
systems are responsible for loading and configuring device drivers, which
aren’t available when the operating system still needs to be loaded. Instead,
they’re gradually brought into being during later stages of the boot process.

We met BIOS and UEFI previously in Chapter 13. Usually only two pro-
grams ever get run on your BIOS: an operating system loader and an op-
erating system loader selector program, such as GRUB2 (Grand Unified
Bootloader version 2). PCBIOS runs the first such program from a specific
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hard disk location called the master boot record. UEFI now has a higher-
level view of the filesystem than this, and it includes a specific path on the
hard disk to look for and run the first of these programs. GRUB2 provides
a text-based user interface, displaying a list of operating systems available on
a hard disk and allowing the user to input their selection using their cursor
and other keys. GRUB2 checks what kind of BIOS is available, then calls the
available subroutines from that BIOS to write the characters on the screen
and read the keyboard. When the user makes a selection, it loads that oper-
ating system loader and passes control to it.

The operating system loader is thus the first program that’s part of the
operating system. It will initially rely on the BIOS libraries to access the com-
puter, especially the hard disk that contains the code for the rest of the op-
erating system. An operating system may have its own drivers, hopefully bet-
ter than those of the BIOS, and it will progressively load and switch over to
them. For example, BIOS graphics are by design low resolution so that they
work on any monitor, but once the operating system loads it can consider
the precise make and model of the monitor and load a new custom driver
that can make use of all its features.

Modern boot processes have been controversial for security reasons.
The boot process occurs before the operating system kicks in, meaning it
has access to the entirety of the computer. UEFI keeps running in the back-
ground once the operating system has started, allowing the operating sys-
tem to call its subroutines. But this means that any malicious code built into
UEFI firmware could potentially retain access to the whole machine during
regular operating system operation.

UEFI was designed by a committee whose members included propri-
etary operating system vendors who successfully lobbied for the introduc-
tion of a “secure boot” part of its standard. This allows the boot process to
be locked down so that buyers of preinstalled machines can’t install GRUB2
and other operating systems. It’s possible to fix this bug in the standard if
you’re able to reset the secure boot system itself. This is usually done by sol-
dering two wires to the UEFI chip and applying a voltage to factory-reset it.

Since around 2008, rumors have circulated that Intel motherboards
have included an entire additional operating system, based on MINIX3, run-
ning somewhere in the boot process between UEFI and the main operat-
ing system, as the “Intel Management Engine.” If true, these rumors would
suggest a major security loophole, as this operating system would have full
access to the entire machine, including internet communications and au-
tomatic update systems, which would enable Intel or others to push code
at any time over the network to run with full read and write access to your
computer. These rumors would also suggest that MINIX is now the most
widely run operating system in the world—this would be somewhat ironic, as
MINIX was created as an educational operating system, with Linux consid-
ered to be the more “real world” evolution of it.
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Hypervisor Mode, Virtualization, and Containers
Kernel mode is sometimes known as supervisor mode, the supervisor being
the kernel that controls the switching of the processes being run. Hypervisor
mode is a related but higher-level concept in which—rather than switching
between multiple processes within an operating system—the CPU switches
between multiple operating systems running concurrently. This concept
has become especially important in current cloud computing, in which the
many machines in a computer center are shared in this way to provide each
user with the experience of being on a scalable group of machines as their
root user.

Similar operating system sharing can also be achieved using software
only: there are programs that emulate or simulate virtual machines. How-
ever, these incur performance hits, while hypervisors don’t. With a hypervi-
sor, each operating system really is running directly on the hardware. Dedi-
cated hypervisor architecture is used to manage the swapping of state in and
out of the hardware, in a similar style to how a software supervisor swaps
processes in and out of execution. Some virtual machine programs, such as
the VirtualBox program used in Chapter 13, can make use of the hypervisor
to run their virtual machines on hypervised processors.

Containerization is an alternative to virtualization. Rather than creating a
set of completely isolated virtual machines, it works together with additional
software to create the appearance of many such machines, while having them
all actually share a single operating system and other components such as
software libraries. (This is arguably what operating systems were intended
to do in the first place. But unlike operating systems, containers enable dif-
ferent users to experience different installations and versions of the system,
libraries, and installed software.) This is a lighter-weight solution than virtual
machines, and it can enable thousands of containers to run together, for
different users, on a single computer. Containerization is especially useful
for cloud computing, in which thousands of users want to run isolated pro-
grams and providers want to minimize costs by having them share a single
physical machine.

Real-Time Operating Systems
Most embedded systems run just a single small, simple program, so they
have no need for an operating system. However, as the needs of some em-
bedded systems grow in complexity, it’s becoming easier and more common
to program them as multiple processes. At this stage it can make sense to
start running a small operating system on the embedded system, to manage
these multiple processes.

Embedded environments typically have special requirements for an
operating system, most commonly the need for what’s called hard real time.
Regular operating systems may switch between processes in a way that, from
the programs’ point of view, seems random; their device drivers will of-
ten use buffering and interrupts to read and write data also at apparently
random times. Such behaviors would be catastrophic for, say, a precision
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industrial robot controller, working in microseconds and micrometers, as
they would interfere with its required level of precision motion in the real
world. A hard real-time operating system (RTOS)—such as SMX, QNX,
FreeRTOS, or Zephyr—is an operating system specifically designed from the
ground up to absolutely guarantee the timing of such tasks. This requires
different approaches to scheduling and I/O. Typically, an embedded mi-
crocontroller is a much lower-power machine than a desktop, so operating
system design requirements must also include low computational overheads.

To be used in safety-critical environments, an RTOS, like the microcon-
troller it runs on, will typically go through an expensive and rigorous safety-
assurance process based on either extensive testing or, in the most hardcore
cases, formal specification and verification, using mathematics and logic to
prove it will always work under various assumptions.

RTOSes are distinguished from soft real-time operating systems, such
as variants of Linux modified for tasks like computer audio production. In
these systems, real time is desirable but not strictly necessary—it won’t, say,
explode a nuclear power station if it can’t be absolutely guaranteed every
time—and so occasional slips are tolerated.

Speculative Execution Vulnerabilities
In our study of architecture, we’ve seen that your computer takes your pro-
gram and converts it to thousands of different instructions, messes with the
order these instructions are run in, tries to execute parts of multiple instruc-
tions at once, passes incomplete results between instructions, and secretly
updates its microcode to execute in new ways.

Each of these behaviors, and the interactions between them, creates
enormous complexity in chip design and function. The resulting chip de-
signs are thus some of the most complex systems known to humanity, with
no individual human able to fully understand everything taking place in a
CPU. It’s natural to ask whether we can thus be confident that our CPU de-
signs are safe and secure when there are so many parts that could go wrong.

The answer to this question was recently found to be “no”—this is why
we now have speculative execution vulnerabilities, architecture bugs that can
enable a process to read the data belonging to another process, such as pass-
words and bank details. In most cases, this includes the ability for hyper-
vised systems belonging to different users on physical cloud machines to spy
on one another. This has been considered a catastrophic security threat to
many manufacturers; some consider it the most serious hardware problem
of all time. Software patches for the vulnerabilities cause a 5 to 30 percent
slowdown in performance, while architects are currently working to redesign
hardware to avoid them in their next-generation processors.

Speculative execution vulnerabilities were first discovered in 2018 as
bugs called Spectre and Meltdown, and new variants continue to be found at
the time of writing. To give a basic understanding of this large class of bugs,
we’ll examine the Meltdown variant here.
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Meltdown is caused by a complex unintended interaction between mul-
tiple modern architectural features: speculative execution, virtual memory,
CPU kernel mode switching, cache timing effects, and a race condition in in-
direct addressing. Suppose the target process is running alongside our own
process under an operating system. The operating system defines separate
areas of memory for the two processes and restricts each process’s access to
only its own memory space. The memory spaces look like this:

Address Data
1
2

3=BASE
4=TEST1 FOO
5=TEST2 FOO
6=TEST3 FOO

Address Target’s Data
7

8=TARGET PASSWORD
9
10
11
6

Here, we assume we have access to the source code of the target pro-
gram that tells us where the user password will be stored in its memory, so
the contents of address TARGET, written as *TARGET, is PASSWORD, which we’ll as-
sume is known in advance to be an integer from 1 to 3. We want to read this
password from our own process. Our own process’s address space contains a
series of addresses marked TEST1, TEST2, and TEST3. We can store any dummy
data at these locations, marked as FOO. We’ll be reading this data as part of
our attack, but we don’t actually care what its values are. Let’s call the ad-
dress just before these BASE, because it will act as a base address from which
we can use offsets to refer to each of the TEST addresses.

To attack, we first execute an indirect offset addressing instruction to-
gether with a conditional:

if (0) LOAD BASE+(*TARGET) else LOAD 1

Although the semantics of if (0) mean that the condition will never
be true—meaning the LOAD BASE+(*TARGET) won’t be completely performed
in the program—eager execution (as in Chapter 8) initially begins to run
both branches at the same time. When it does this, BASE+(*TARGET) will be
evaluated, giving an address that must be one of 4, 5, or 6. The content of
the data at this address (one of the three FOO items) will then be loaded into
cache. (The FOO from address 1 is also loaded to cache from the other side of
the branch.) While this is happening, the condition is tested and found to be
false. At this point the LOAD BASE+(*TARGET) instruction is aborted, but its value
has already been loaded into cache even though it won’t be used any further.

Note that if the condition were true instead of false, the LOAD BASE+(*TARGET)

would then attempt to complete and at that point, and only at that point, a
security exception would occur as the TARGET address is tested for security
and found to lie in another process’s address space. But because the condi-
tion is actually false, this test is never performed.
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Once the value is loaded into the cache, we run a cache timing attack:

for (i=1:3) time(LOAD BASE+i)

All three of the instructions in the loop succeed, loading the three FOO

values into registers from their three memory locations. But if we time each
of these three LOADs, we’ll find that one of them is faster than the others be-
cause it was cached during the speculative execution. If PASSWORD=i, then LOAD

BASE+i is fast, because (BASE+i) was cached. Measuring these times and find-
ing the fast one reveals the value of i, which is equal to PASSWORD, as required.

The Meltdown vulnerability existed undetected in almost all major com-
mercial CPUs for 20 years! It may have been known and exploited by secret
state actors during this time, but it hasn’t yet been exploited by any other
malware as far as we know.

The public disclosure sequence of Meltdown in 2017 was a model of
how ethical security bug disclosure can and should work. Following public
discovery by security researchers, the manufacturers were first informed in
secret. Researchers, CPU manufacturers, and operating system program-
mers then worked together to patch the bug at the operating system soft-
ware level for all major operating systems. These operating systems were
updated in the field by pushing automatic updates to users.

The operating system level software patch is called KAISER. Here, the
operating system randomizes process memory locations to prevent a Melt-
down attack from knowing which addresses to search for target data. This is
still not completely secure but makes the bug much harder to exploit. After
user machines had been patched with KAISER, the discoverers of Meltdown
published their findings in 2018, first immediately on the pre-print arXiv
server, then submitted for formal academic peer review, which completed
and published in 2020.

CISC processors are constructed using microcode that enables their
hardware to be “rewired” to some extent by CPU firmware updates; this pro-
vides a stronger fix for CISC users. Pushing microcode updates is a more
difficult and dangerous procedure than patching operating system software,
and developing hardware patches also takes longer, in part because of the
extensive testing required before allowing a patch to be pushed out. The
cost of “bricking” millions of users’ processors is higher than damaging their
operating system, which could be more easily reinstalled in the event of a
bad update. Microcode patch development thus continued after publication
of the Meltdown paper and was later pushed out as firmware updates for
CISC users.

The new microcode adds logic to clear cache following all speculative ex-
ecutions, removing the vulnerability. However, this has a cost of a significant
performance hit, typically producing a 5 to 30 percent slowdown. Pushing
such a performance hit onto users—usually automatically, without telling or
asking them—led to some lively debate, especially between the operating sys-
tem programmers whose work on software-level patches was being replaced
by the microcode patches.
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At the time of writing, CPU architects are working to redesign their
basic architectures to fix Meltdown properly at the hardware level. In 2022,
some of these fixes for Meltdown were reported by researchers to have intro-
duced a new speculative execution bug, which they named Retbleed. This
may become an ongoing game of whack-a-mole, providing employment for
architects for many years to come.

Exercises
A 6502 Kernel
Read the assembly code for Joachim Deboy’s minimal 6502 kernel at http://
6502.org/source/kernels/minikernel.txt. Explain where the IRQs, saves, and
restores occur. Try to make an x86 or RISC-V version of the same idea.

Speculative Execution Vulnerability Audit
Find out if and how your own computer has been patched for specu-
lative execution vulnerabilities. For Linux, lscpu may show some relevant
information.

Further Reading
• The definitive textbook on operating systems is Andrew Tanen-

baum and Herbert Bos, Modern Operating Systems, 4th ed. (Hoboken:
Pearson, 2014).

• For a list of all the subroutines Linux provides for you to call from
your x86 code, see R.A. Chapman, “Linux System Calls for x86,”
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/.

• For more on the Meltdown vulnerability, see M. Lipp et al., “Melt-
down: Reading Kernel Memory from User Space,” Communications
of the ACM 63, no. 6 (2020): 46–56.
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GPU, 375
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optimizing, xxii
with SIMD, 364
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compression, 69, 403
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computation theory, 77
computer
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definition of, 4
design, xxxiii
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inventor of, 41
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concurrency, 426
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connectors
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MIDI, 277
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serial port, 276

containerization, 432
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6502, 255
68000, 268
Analytical Engine, 84
Manchester Baby, 167
RISC-V, 346
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CPU. See central processing unit
cryptanalysis, 24
cryptography, 24
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device drivers, 427
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x86, 379

Difference Engine, 16
differential analyzers
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discrete Fourier transform  
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floppy, 238
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distributed computing, 383
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DNA computing, 405
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floating point
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in x86, 317
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flow control, 175–176, 314
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FPGA. See field programmable gate array
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Meltdown, xxiii, 433
Rowhammer, 224
Spectre, xxiii, 433

segmentation, 317
semiconductors, 97
sequencer, 149
sequential logic, 144, 146
serial port, 276

embedded, 286
Serial Storage Architecture (SSA), 323
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