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Abstract

Multimodal large language models (MLLMs), initiated with a trained LLM, first
align images with text and then fine-tune on multimodal mixed inputs. However,
the MLLM catastrophically forgets the text-only instructions, which do not include
images and can be addressed within the initial LLM. In this paper, we present
WINGS, a novel MLLM that excels in both text-only dialogues and multimodal
comprehension. Analyzing MLLM attention in multimodal instructions reveals that
text-only forgetting is related to the attention shifts from pre-image to post-image
text. From that, we construct extra modules that act as the boosted learner to
compensate for the attention shift. The complementary visual and textual learners,
like “wings” on either side, are connected in parallel within each layer’s attention
block. Initially, image and text inputs are aligned with visual learners operating
alongside the main attention, balancing focus on visual elements. Textual learners
are later collaboratively integrated with attention-based routing to blend the outputs
of the visual and textual learners. We design the Low-Rank Residual Attention
(LoRRA) to guarantee high efficiency for learners. Our experimental results
demonstrate that WINGS outperforms equally-scaled MLLMs in both text-only and
visual question-answering tasks. On a newly constructed Interleaved Image-Text
(IIT) benchmark, WINGS exhibits superior performance from text-only-rich to
multimodal-rich question-answering tasks.

1 Introduction

Large Language Models (LLMs) [22, 34, 52, 90, 112, 113] are making significant strides toward
Artificial General Intelligence (AGI) systems. Multimodal Large Language Models (MLLMs),
as a visual expansion of LLMs, have demonstrated astonishing performance in vision-related
captioning [15, 17, 66, 68], understanding [8, 19, 33, 91, 100, 106, 118, 141], and reason-
ing [1, 114, 122, 126, 133]. Common MLLMs build upon powerful pre-trained LLMs that take
mixed textual and visual tokens as inputs. The visual ones are acquired using an image encoder and a
projector. We describe instructions processed by the LLM without images as text-only instructions.
In comparison, multimodal instructions incorporate visual feature tokens into text-only sequences.
Modality fusing at the token level provides a flexible and effective pipeline for training MLLMs to
comprehend visual information [76, 79, 80, 125]. However, training on multimodal instructions seems
to impair the pre-existing profound knowledge, especially making MLLM forget how to respond
to text-only instructions like the initial LLM [85, 87]. MLLM experiences a drastic performance
decline on text-only evaluation. We term it as the text-only forgetting of MLLM.
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User: Let's pick out a better watermelon.
MMLU

CMMLU

RACE-M

RACE-H

ARC

HellaSwag

WinoGrande

GSM8K
MBPP MMMU-VAL

MMMU-TEST

MMBench-EN

MMBench-CN

MME

ScienceQA

SEED-Bench

AI2D

HallusionBench

LLaVA-Next DeepSeek-VL WINGS (Ours)

WINGS (Ours): Both watermelons appear to be good 
quality, but  the left one has a smoother rind and 
more splited color, indicating potential sweetness and 
freshness due to the intact green stem. And …

User:You make a good point, but I haven't 
tasted it yet. You know what that
thing is? It is Beautiful.

Text-only QA v.s. Multimodal QA
User: What are some refreshing fruits 
to beat the summer heat?

User: Oh wow! I just found two 
watermelons in the garden:
They're gonna
be super refreshing.

WINGS (Ours): (…)  watermelon , strawberries, 
blueberries, raspberries, peaches, and oranges.

1 2
WINGS (Ours): The object in the
image is a  watermelon , which has 
been carved and decorated to resemble the heart. The 
heart shape is formed by the watermelon‘s natural  rind , 
and the roses are made from the watermelon’s  flesh .
The initials "K & M" are inscribed on…

WINGS (Ours): The
image shows  two watermelons, one labeled as 
“1” and the other as “2.” They are placed next to 
each other, and both are ripe. The watermelons 
are green and have a striped pattern…

Text-only Instruction

Interleaved Image-Text Context Multimodal Instruction

Figure 1: Examples of text-only and multimodal conversations. From left to right: Interacting
with MLLM through text-only and interleaved instructions; Performance radar charts for WINGS,
LLaVA-Next [80], and DeepSeek-VL [85] in text-only and multimodal QA tasks, with dark green
indicating WINGS with the comprehensive performance; Interacting with multimodal instructions.

In practical applications, MLLMs also require engaging in text-only or interleaved conversations.
As demonstrated in Figure 1, users often start with text-only inquiries and then, if not fully satisfied
with the response, proceed to supplement questions with image content. For multimodal instructions,
MLLMs are still prompted to capture critical elements from text within a multimodal instruction,
as images may provide redundant cues [16, 18, 84]. The first existing approaches replay extensive
text-only or interleaved [59, 142] training data to mitigate catastrophic forgetting in MLLMs [14,
71, 85, 87]. However, increasing training data incurs additional computational overhead and data
collection challenges. Secondly, switching between LLM and MLLM based on whether images are
included, as an intuitive solution, inevitably demands more deployment memory [2, 3] and is less
cache-friendly in long vision-and-language interleaved conversations [41, 75, 99, 101]. Therefore, it
is crucial to train MLLM while preserving the text-only performance efficiently.

Given that the image feature tokens can be inserted at any position within the text sequence, we begin
by examining the text before and after the inserted position. Considering that MLLM’s attention
weights reflect the focus on tokens and influence the decision-making process, we first analyze
the attention weights across each layer of the MLLM. Specifically, for each layer, we compute
the attention weight proportion on all text tokens before and after the inserted image, termed as
Layer-level Attention Weights (LAWS) of the before and after image text. From this, we examine
the dynamic of attention across all layers as MLLM-Laws. Through training and sampling over
100 diverse MLLMs, we find that a well-trained one with superior text-only performance shows a
positive correlation of MLLM-LAWS between before and after image. Given the similarity of feature
space in the text surrounding the image, an MLLM’s attention to both front and rear parts should be
correspondingly similar. A closer similarity indeed suggests a more minor disruption to the essential
attention of MLLM. Conversely, a negative correlation implies a shift in token attention across the
image content, i.e., an MLLM overly concentrates on visual tokens and neglects textual ones.

Based on this observation, we propose WINGS, which introduces an extra module that acts as the
boosted learner to compensate for the attention shift. We integrate complementary visual and textual
learners in parallel at each layer’s attention block, with visual learners enhancing focus on visual
tokens and textual learners on text, respectively. In the first stage, visual features align with textual
feature tokens, with all visual learners operating parallel to the main branch attention. The visual
learners allocate some attention to visual tokens, mitigating the attention shift in the main branch.
Subsequently, textual learners are integrated in parallel. We implement soft routing based on shifted
attention weights to harmonize the learning on visual and textual tokens. We design the Low-Rank
Residual Attention (LoRRA) as the architecture for learners to ensure high efficiency. Figure 3
shows that the visual and textual learners on either side, like light feathers woven into “wings”.
Experiments show that our WINGS comprehensively achieves superior performance in text-only
under the same training condition and exceeds other equal-level MLLMs on multimodal benchmarks.
In addition, we construct the Interleaved Image-Text (IIT) benchmark with multi-turn evaluations
towards a general mixed-modality scenario. The samples are from text-only questions to strongly
image-related conversations. WINGS achieve leading performance across various vision-relevance
partitions. Overall, our contributions are as follows: (1) We claim and verify the text-only forgetting
phenomenon of MLLM is related to the attention shift of cross-layer MLLM-LAWS before and after
the image. (2) WINGS construct the visual and textual learners and introduce a router based on shifted
attention weights for collaborative learning to compensate for attention shifts. (3) Experiments on
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text-only, visual-question-answering, and newly constructed Interleaved Image-Text (IIT) benchmarks
demonstrate the comprehensive and versatile performance of WINGS.

2 A Closer Look at Attention Shift in Multimodal LLMs

In this section, we introduce the development from initialized LLM to MLLM. Next, we devise the
MLLM-LAWS metric for representing attention shift and discuss the insights in building WINGS.

2.1 Granting Sight to Large Language Models

Large Language Models (LLMs). Even though existing Transformer-based [117] models [21,
82, 98, 127] like BERT [56] and OPT [136] have demonstrated profound language understanding
capabilities, there has been a recent surge in powerful Generative Pre-trained Transformers (GPT) [11]
under the auto-regressive language modeling paradigm. Both public [52, 53, 112, 113] and private [4,
90, 92, 110] solutions show remarkable progress in language comprehension and generation [88,
121]. These LLMs generally exceed a billion parameters, including pre-training [23, 32, 48, 54],
supervised fine-tuning with instructions [27, 103, 109, 120], and reinforcement learning from human
feedback [24, 93, 107, 143] on massive training data.

Multimodal LLMs (MLLMs). Integrating visual inputs into foundational LLMs to create MLLMs
is becoming increasingly popular [19, 20, 61, 71, 129]. Unlike vision-centric multimodal frame-
works [67, 130] such as CLIP series [97], MLLMs aim to align new modality features as the input
of LLM with an additional encoder [74, 79, 80, 123, 135, 140]. As illustrated in Figure 2 (a), it
enables the combined training of mixed multimodal tokens, facilitating rapid deployment across
various applications [25, 26, 43, 81, 118]. One example of this pipeline is the LLaVA [79] series,
which integrates a CLIP vision encoder with a linear projection to Vicuna [22] and innovatively
introduces instruction-following training data. Following this, some methods consider the richness
of the vision-related training context [15, 44, 60], the scaled visual backbone [50, 72, 78], or the
enhanced connectors [12, 119] to boost the visual effectiveness of MLLMs. With commonplace
text-only challenges in conversations, it is essential to enhance the language abilities of MLLMs [87].
The training process of MLLMs, as continued learning on newly introduced visual features, causes
competitive modality shift [38, 73, 96] and catastrophic text-only forgetting. Recent studies acknowl-
edge this issue, e.g., DeepSeek-VL [85] suggests that supplementing additional text-only training
data can mitigate this forgetting. Others [77, 87] try to incorporate interleaved visual-textual data
into training to retain language knowledge. However, these methods are limited by training resources
and data collection costs. We aim to preserve or even boost performance with text-related training
data as little as possible. Some studies [53, 64, 76, 105, 111, 128, 137] also consider expanding
the scalability of LLM, such as using Mixture-of-Expert (MoE) with numerous parallel FFNs in
the Transformer block alongside a sparse gating network for efficient selection. These methods,
however, require a massive increase in training parameters. In WINGS, the newly designed parallel
learners of Low-Rank Residual Attention (LoRRA) are similar to MoE but with at least three orders
of magnitude less in resource consumption.

2.2 Capturing the Attention Shift with MLLM-LAWS

The significant decline in text-only performance is closely linked to the observed related shift during
the training process. Research on cross-modal learning [35, 65, 73] shows that transferring to new
modalities affects feature distribution, output values, and activation levels. Considering attention
weights highlight where MLLM’s focus depends on visual or textual tokens for decision-making [95],
we investigate how attention shifts among different parts of the sequences, mainly where divided by
the visual feature tokens. Specifically, we study over 100 diverse MLLMs to uncover how attention is
allocated to each part for a text-only better MLLM. We take a closer look at the cross-layer dynamic
curve of attention proportion on all text tokens before and after the inserted image.

For a instruction x and its hidden states in MLLM as h = [h1,h2, · · · ,hs] consisting of s mixed
visual and textual tokens. Let alij represent the attention weight between the ith and jth tokens in
the lth of the L-layers MLLM. We have, for ∀i,

∑s
j=0 a

l
ij

(
hl−1

)
= 1. As shown in Figure 2 (a),

since the sequence of flattened visual tokens is continuously interleaved with the textual sequence,
we denote the index set of the visual tokens as Vitself = {vstart, vstart + 1, · · · , vend}. We refer to the
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watermelon?
In

this
0.048

VLLM Layers

0.173

0.162

0.821 0.584 0.688

ℓ = 1

e.g., 0.821 is the attention weight proportion (sum)
of the visual feature tokens for the first layer.

Input Features

𝜌	 																																																																								 		=	,

• Correlation of MLLM-LAWS Before Image v.s. After Image

VLLM w/ Better Text-Only Perf.
VLLM w/ Worse Text-Only Perf.

1

2

3

1 3

𝜌	 																																																																								 		=,
1 3

1 3 −0.723

0.255

what
kind of

it
is?

(a) The mixed visual and
textual feature inputs.

(b)Multimodal LLMs’
Layer-level Attention Weights (MLLM-LAWS). (c)MLLM-LAWS Correlation Illustration

Te
xt
-o
nl
y
Pe
rf
or
m
an
ce

Correlation of MLLM-LAWS
Before and After image

Attention
Sum of Tokens

Attention
Sum of Tokens

Attention
Sum of Tokens

−0.723 0.255

More positive correlation 𝝆 suggests better text-only performance.

Figure 2: Illustration of mixed visual-and-textual inputs and the Layer-level Attention Weights
(LAWS) with its properties. (a) The visual feature tokens from the visual encoder and projector
are inserted into the textual feature sequence. (b) The attention weight proportion on textual tokens
before-image, image-itself, and after-image across layers. The red curve is from the superior text-only
MLLM, while the blue curve is from the inferior one. (c) Experiments on over 100 MLLMs show a
positive correlation from the ρ for MLLM-LAWS before and after the visual tokens (x-axis) to the
text-only performance of the MLLM (y-axis).

textual sequence before the visual tokens as Vbefore, and similarly, after the visual part as Vafter. For an
MLLM with L layers, we define the Layer-level Attention Weights (MLLM-LAWS) as:

LAWS V∗ =
[
a1V∗

, a2V∗
· · · , aLV∗

]
, alV∗

=

s∑
i=0

∑
j∈V∗

alij
(
hl−1

)
, (1)

where token index set V∗ can be Vitself, Vbefore, or Vafter as mentioned above, and for simplicity, we
omit hl−1 in LAWS V∗ . In practice, LAWS V∗ characterizes the MLLM’s attention on the current
sequence V∗ regarding the dynamic curve over all MLLM-layers. As shown in Figure 2 (b), the
attention to the textual part initially increases and then decreases, while the trend for the visual one
is often the opposite. We find that when the MLLM forgets the text-only instructions, the LAWS of
the textual sequence after the visual ones show a deviation from the initial trend of rising and then
declining. This implies a shift in the text following the image Vafter compared to that preceding the
image Vbefore. The dynamics labeled as 3⃝ in Figure 2 (b) show the red curve for better text-only
performance towards the worse blue one. To quantify this, we compute the Pearson Correlation
Coefficient [89] between LAWS before and after the visual sequence. Formally,

Attention Shift = Ex [−ρ (LAWS Vbefore , LAWS Vafter)] + 1 .

Studying the attention shift of over 100 diverse MLLMs, we find a positive correlation between the
shift and the text-only performance degradation. In Figure 2 (c), each point represents a trained
MLLM, and we demonstrate how the attention shift influences the text-only performance with the
correlations. Next, We focus on how to mitigate the shifted attention weights. Starting with LAWS
we give the MLLM “wings”.

3 WINGS: Flying to Generality with Low-Rank Residual Attention Learners

From the attention shift, we seek a sufficiently reliable and convenient mechanism to address text-only
forgetting. The WINGS architecture is intuitive – we construct visual and textual learners to mitigate
shifted attention. An attention-weight-based router dynamically adjusts the outputs of visual and
textual learners to compensate for the main branch’s attention outputs. WINGS aims to excel in
text-only and visual question-answering tasks with high generality. In this section, we start with
the typical training pipeline for MLLM (subsection 3.1). Following this, we explore the motivation
behind employing parallel modality learners and explain its implementation (subsection 3.2). Finally,
we describe the training process for WINGS (subsection 3.3).
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Multi-Head
Self-Attention

Norm & FFN

Multi-Head
Self-Attention

Norm & FFN

Multi-Head
Self-Attention

Norm & FFN

···

What are the types of watermelon?
In this <image>, what kind of it is?

Mixed Feature Inputs

Visual Features Language Features

Learner
V

The types of watermelon include:
Red or Yellow, Seeded or Seedless, …

Weighted
Element-wise Add

· · ·

Visual Textual

Weighted
Element-wise Add

Learner
V

Learner
V

Learner
T

Learner
T

Learner
T

Figure 3: The WINGS - model architecture. We introduce extra modules parallel to the main
attention, serving as boosted learners to compensate for the attention shift. We train the visual
learners on one side, alleviating some shifted attention. Then, we collaboratively learn visual and
textual learners based on routing shifted attention weights. They are like light feathers woven “wings”.

3.1 Revisit the Training Pipeline of the MLLM

Following the mainstream architecture of MLLM, we take mixed visual and textual features as inputs.
For a one-turn conversation, the sequence of the visual feature tokens may appear at any position in
the input x. We represent the feature tokens as:

x = [xV,xT] =

h1, · · · ,hvstart ,hvstart+1, · · · ,hvend︸ ︷︷ ︸
visual features

, · · · ,hs

 , (2)

where we omit the superscript of layer-index l for the 0th layer. The vstart and vend represent the
starting and ending indices of the visual feature tokens, usually obtained through the vision encoder
ψ and projector Wproj, as xV = Wproj · ψ (ximage). Correspondingly, xT = the remaining 0 to
vstart and vend to length s denote features of the textual instruction. We consider the posterior of the
ground-truth answer as:

Pr (xa | x) =
s∏

i=1

1[1,vstart)∪(vend,s] ·φ (hi | [h1, · · · ,hi−1]) . (3)

Here, φ represents the main branch LLM, which consists of Transformer decoder layers [116].

3.2 Visual and Textual Learners Weave WINGS

Motivation: Learning to mitigate the attention shift with modality-specific auxiliary structures.
As mentioned in subsection 2.2, MLLM-Laws demonstrates the attention shift in the sequence
following the visual features. The shift results from excessive dependency on visual features. This
issue may stem from the insufficient alignment within mixed inputs [8, 16], where new modalities
can obscure existing knowledge. It suggests adding a small, adjustable factor to the shifted mixed
modality features and regulating unnecessary fluctuations in MLLM-LAWS. Consequently, we aim
to adopt an efficient, learnable module as the visual “wing”. Compared to the image-text mixed
feature inputs of the main branch, it should focus on extracting visual information to share the burden
of overly shifted attention. The interaction between the current hidden state and visual features is
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(b) Training Paradigm
Stage-1: align projector and learn visual learners

Stage-2: tune LLM with routing visual and textual learners

Attention
mainLearner

V
Learner

T

xV xV

hℓ

xV xV

Router

Hidden States

Scaled Dot-Product Attention

Concat

h

hℓ

Attention
V

Initialization:
: Random Gaussian

: Zero

weights

Visual Features

xV xV

LLM

Add

Le
ar
ne
rT

Visual
Encoder

Projector

LLM

Router

Visual
Encoder

Projector

Le
ar
ne
rV

Le
ar
ne
rV

Le
ar
ne
rT

(a) Low-Rank Residual Attention

QueryKey Value

Figure 4: Illustrations of the detailed WINGS structure, and training strategies. WINGS is
constructed by the Low-Rank Residual Attention (LoRRA) module where the previous hidden state
acts as the query and the visual/textual features serve as the key and value. Training starts with
visual learners and projectors, followed by the dynamic attention-based routing.

conducted within this module. Similarly, to balance the auxiliary function of the visual learner, we
also construct a symmetrical textual learner. Moreover, we should appropriately distribute the two
learners across both modalities to operate collectively.

Structure: parallel learner & router of attention outputs. To capture key information in shifted
modalities while ensuring efficiency, we design a multihead Low-Rank Residual Attention (LoRRA)
learner at every layer. It takes input from the hidden state and interacts with the initial visual
or text-only feature. The learner facilitates cross-cascading with the initial projected information.
Specifically, for the lth layer, the visual/text-only learner is formulated as:

Learner∗
(
Q=hl,K,V=x∗

)
∗∈{V,T}

= Softmax

(
hl
(
1+WQ

)
·
(
x∗
(
1+WK

))⊤
√
dhead

)
x∗

(
1+WV

)
WO ,

(4)
where the matrix WQ, WK, WV, and WO is low-rank and is obtained by the dot product of
Wa ∈ Rd×d and Wb ∈ Rd×d, and d is relatively small enough. 1 is represented as the identity
matrix. Following LoRA [45], LoRRA learners also employ random Gaussian initialization for Wa

and sets Wb to zero. Given that WQ lacks a residual, the learner’s output is zero at the beginning of
training. Multihead LoRRA preserves the effectiveness of the cross-attention structure and employs
efficient low-rank mapping to reduce computational demands. As shown in Figure 3, the visual and
textual features are fed into their respective side learners, like two “wings” woven together. The
outputs of two learners from each layer are then weighted sum to the attention of the main branch.
As illustrated in the left part of Figure 4, a router receives attention weights to generate the balance
weights of the visual and textual learners. In summary, we formulate the WINGS block as:

AttWINGS = Attmain +
∑

∗∈{V,T}

Router (a) · Learner∗
(
hl,x∗

)
, (5)

where a ∈ Rs×s represents the attention weights of the current main branch. The router receives the
attention weights a and then processes through a single-layer MLP with Softmax.

3.3 Stable Training Recipe

The architecture of WINGS comprises four elements: vision encoder, projector, initialized LLM, and
the learners with a router. During the training process, the vision encoder is consistently fixed. Firstly,
we only fine-tune the projector and visual learners. We primarily employ image-text pairs for visual
alignment, while the outputs of visual learners are directly added to the main branch. Subsequently,
the LLM branch is updated with small steps. Concurrently, textual learners are paralleled with visual
learners on the attention block of LLMs. The router learns to allocate visual and textual learners from
the attention weights of the main branch. At this stage, the textual and visual learners work better
together to direct attention to the key tokens. To summarize, WINGS prioritizes enhancing visual
learners first. Subsequently, it “spreads its wings” by concurrently learning and routing visual and
textual learners based on shifted attention weights.

6



Dataset

Model Vicuna Vicuna LoRAVicu.Vicuna Qwen Qwen LoRAQw. Qwen WINGS Text-only Our
LLM +

CLIP
+

CLIP
+

SigLIP
LLM +

CLIP
+

CLIP
+

SigLIP
(Ours) Forgetting

( - )
Impro.

( - )

Exam

MMLU 51.18 51.12 48.89 50.63 60.86 50.83 59.67 51.16 60.53 9.70 9.37
CMMLU 38.60 38.29 37.24 38.73 69.37 62.58 67.87 60.46 69.82 8.91 9.36
ARC-E 57.62 53.63 55.82 53.95 59.96 56.93 59.35 55.87 54.29 4.09 -1.58
ARC-C 33.75 34.60 34.68 35.17 38.90 39.14 38.64 39.50 43.39 -0.60 3.89

Under-
standing

Winogrande 68.01 64.97 67.83 65.21 71.38 69.82 71.03 69.05 69.28 2.33 0.23
OpenbookQA 77.10 73.28 77.15 72.12 81.73 78.31 81.29 77.51 81.05 4.22 3.54
Race-Middle 63.99 60.10 62.84 59.45 74.82 68.25 72.06 68.34 74.24 6.48 5.90
Race-High 58.74 53.24 54.91 52.69 71.05 59.20 65.67 57.72 69.62 13.33 11.90
WSC 51.30 47.21 51.06 47.72 56.17 54.18 57.30 55.23 66.35 0.94 11.12
CHID 39.05 49.66 45.26 53.49 71.94 71.82 72.92 74.29 74.06 -2.35 -0.23

Reasoning

HellaSwag 63.11 63.08 62.58 63.02 65.70 61.90 64.32 63.24 65.12 2.46 1.88
SIQA 42.37 44.06 43.27 44.52 45.57 50.20 46.83 51.71 49.64 -6.14 -2.07
PIQA 71.92 71.95 70.35 71.84 76.59 74.60 73.77 75.19 78.06 1.40 2.87
OCNLI 33.89 37.74 39.41 40.46 49.73 48.31 48.07 50.29 50.39 -0.56 0.10

Math GSM8K 25.19 23.72 22.68 23.05 56.77 50.10 54.25 51.37 52.08 5.40 0.71
Code MBPP 13.80 11.29 13.92 10.80 37.50 34.82 36.72 33.20 38.92 4.30 5.72

Multimodal

MMMU-VAL – 35.67 30.78 35.56 – 34.56 32.33 35.11 39.89 – 4.78
MMMU-TEST – 34.40 30.90 35.33 – 34.90 31.80 35.10 37.30 – 2.20
MMBench – 63.18 59.83 65.14 – 66.05 62.84 70.94 70.53 – -0.41
ScienceQA – 67.72 64.49 71.50 – 74.26 69.09 74.89 78.76 – 3.87

Table 1: Performance comparisons of WINGS and the baseline MLLMs under the same training
data. We consider 8 baseline MLLMs, including LLMs as Vicunav1.5 & Qwen1.5, visual encoders as
CLIP [97] & SigLIP [134], and training strategies as full-parameter & LoRA fine-tuning. The first
entry represents the initial LLM, upon which each MLLM is trained. Our evaluation spans 6 domains
with 20 datasets. WINGS is based on the Qwen1.5 and SigLIP, and the column “Our Improvement”
highlights how much WINGS surpasses its baseline with the same backbones.

4 Experiments

In this section, we first introduce the benchmarks for evaluating WINGS, including Table 1: text-only
forgetting on the same multimodal training data, Table 2: comparison with general MLLMs, and
Figure 7: analysis on the Interleaved Image-Text (IIT) benchmark with varying levels of vision-related
conversation. Following that, we outline the training details and configurations of the WINGS, and
delve into experimental analysis across each benchmark. Moreover, we perform an ablation study on
various learning rates with different training parts.

Evaluation Setups. We aim to assess through MLLM how much visual information is required for
evaluation. For example, generic multimodal instructions require MLLMs to strongly capture image
aspects, whereas text-only instructions focus on the text. We introduce three types of benchmarks:

• Standard text-only benchmarks. We are particularly interested in the text-only performance
improvement of WINGS under the same training data and resource conditions. Different
datasets including interdisciplinary exams like MMLU [42], CMMLU [63], ARC-Easy, ARC-
Challenge [28], language understanding and knowledge such as WinoGrande [102], Open-
bookQA [9], Race-Middle, Race-High [58], WSC [124], CHID [138], reasoning such as Hel-
laSwag [132], SIQA [104], PIQA [10], OCNLI [46], and math and code-related tasks such as
GSM8K [29] and MBPP [5] are comprehensively evaluated.

• General multimodal benchmarks. We evaluate on MMMU [131], MME [37], MMBench [83]
(MMB) in English (EN) and Chinese (CN), ScienceQA [86] for test (SciQA), SEED-Bench [62]
for image part (SEED), AI2D [55] for test, and HallusionBench [40] (HallB).

• Our Interleaved Image-Text (IIT) benchmark with diverse text-only, interleaved, and image-
ralated multi-turn conversations. It includes sampling for MMLU, CMMLU, OpenbookQA,
HellaSwag, MMMU, MMBench, SEED-Bench, and AI2D datasets.

Model Summaries & Implementation Details. We release the WINGSbase and WINGSpro, with
Qwen1.5-7B LLM [7] and SigLIP [134] visual encoder as the foundations. We also introduce the
WINGS1.8B version, adapted to Qwen1.5-1.8B LLM for edge device compatibility. As illustrated
in Figure 4, we only optimize the projector and the image learners of WINGS for the first alignment
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Method
Dataset Text-Only QAs Multimodal QAs

MMLU/C* RACE-M/H ARC HellaSwag Winog. GSM8K MBPP MMMU-V/T MMB-EN/CN MME SciQA SEED AI2D HallB

Equal-Scale Open-Source 7B Multimodal LLMs

O-Flamingov2 [6] 26.9 / 27.1 40.3 / 32.6 31.0 55.4 58.3 10.2 9.1 29.1 / 28.7 10.9 / 13.3 803.9 55.8 30.2 32.6 30.4

IDEFICS [49] 33.0 / 26.4 38.2 / 36.9 33.2 58.9 60.2 11.7 8.1 17.6 / 20.2 49.6 / 27.3 1239.3 62.4 44.8 43.4 24.6

InstructBLIP [30] 43.2 / 35.7 52.8 / 49.7 39.5 55.7 54.9 18.3 10.3 32.7 / 32.1 38.5 / 26.8 1425.6 61.3 45.7 41.1 33.3

ShareGPT4V [15] 47.6 / 36.9 55.9 / 51.0 41.6 54.7 60.1 18.0 8.9 35.5 / 35.2 67.4 / 63.1 1915.3 68.9 68.1 58.2 26.6

Qwen-VL [8] 49.7 / 58.3 65.2 / 64.8 34.4 58.2 61.0 49.0 34.6 36.4 / 35.9 60.3 / 57.4 1806.2 69.6 62.0 61.9 34.1

Monkey [72] 52.8 / 66.9 65.6 / 62.1 38.2 60.6 59.3 51.8 37.1 40.3 / 37.1 71.9 / 67.8 1815.4 78.3 69.1 62.5 42.1

LLaVAv1.5 [79] 51.1 / 38.3 60.1 / 53.2 34.6 63.1 65.0 23.7 11.3 35.7 / 34.4 63.2 / 57.7 1518.6 67.7 63.7 56.4 29.7

LLaVANext [80] 50.2 / 39.7 65.1 / 58.3 36.0 63.7 68.9 30.3 23.0 37.6 / 35.8 67.8 / 61.8 1760.3 70.1 69.1 66.4 29.6

DeepSeek-VL [85] 53.9 / 64.0 70.6 / 63.8 39.2 65.1 67.2 55.3 43.1 37.6 / 35.3 72.7 / 72.5 1716.8 80.6 70.0 66.5 36.2

WINGS (Ours) 60.5 / 69.8 74.2 / 69.6 43.4 65.1 69.3 52.1 38.9 39.9 / 37.3 70.5 / 68.3 1753.8 78.8 69.5 62.7 45.8

WINGSpro(Ours) 61.3 / 68.5 82.8 / 76.3 46.3 69.2 70.9 56.3 39.3 38.2 / 36.9 73.1 / 69.0 1786.1 83.1 70.2 65.8 47.3

Advanced Private Multimodal LLMs

GPT-4 [92] 83.5 / 71.2 93.2 / 87.8 93.6 88.4 75.6 91.6 56.2† – – – – – – –

GPT-4V [91] 79.3 / 69.4 93.7 / 89.2 92.9 84.7 76.1 88.4 72.4 58.9 / 56.8 77.0 / 74.4 2153.6 68.4 73.7 75.5 46.5

Geminipro vision [100]85.9 / 73.7 88.9 / 83.2 85.0 78.8 71.5 86.4 61.5 60.6 / 62.2 73.6 / 74.3 2193.2 58.3 70.8 70.2 45.2

Efficient Multimodal LLMs with WINGS1.8B

DeepSeek-VL1.3B [85] 31.7 / 38.2 63.6 / 58.4 35.8 52.9 45.7 17.6 16.3 33.8 / 32.3 65.1 / 60.7 1483.4 65.4 63.3 50.1 25.0

MiniCPM-V2.4B [47] 42.4 / 40.9 68.8 / 62.6 37.0 48.3 51.7 32.5 24.2 37.2 / 34.4 65.7 / 64.1 1584.1 64.9 64.7 54.9 31.8

WINGS1.8B(Ours) 44.9 / 50.9 68.5 / 63.2 37.1 50.5 53.0 40.6 28.5 35.7 / 33.9 64.2 / 61.2 1527.3 67.5 62.8 55.2 30.2

Table 2: Performance comparisons of the equal-scale MLLMs and the efficient multimodal
LLMs on text-only and multimodal datasets. We evaluate the open-source, efficient, and private API
MLLMs. We select 18 representative evaluation datasets. C* represents the CMMLU dataset.

stage. The LLM branch adaptation is incorporated during the second instruction tuning stage. We
train for 1 epoch with the AdamW optimizer and the Cosine learning schedule. Typically, the learning
rates for the first and second stages are set at 1e−3 and 2e−6 (with the projector part as 1e−5),
respectively. For WINGSbase, approximately 1m training data to align image learners and about 0.6m
supervised fine-tuning instructions for the next stage (the same as LLaVAv1.5 [79]). In the WINGSpro,
we use the same aligned data and approximately 2m training data for learning image-text learners.
These two types of MLLM require about 1.5 and 6 days of training on 8× A100 GPUs, respectively.
The training datasets for WINGSmini are consistent with the WINGSpro. It takes approximately 5 days
to run on 4× A100 GPUs.

4.1 Toward Comprehensive Text-only and Multimodal Performance

Text-only Comparison in Fair Data and Resource Environments. As shown in Table 1, “Vicuna-
v1.5 + CLIP” corresponds to LLaVAv1.5, and “Qwen1.5 + SigLIP” serves as the foundation for WINGS.
When comparing LLM itself and the rest of MLLMs, we observe that fine-tuning with multimodal
instructions, compared to the “Qwen LLM”, there is text-only forgetting in 12 out of 16 datasets, with
notable decreases of up to 9.70, 8.91, and 13.33 in MMLU, CMMLU, and RACE-High, respectively.
WINGS significantly improve performance on datasets such as MMLU, CMMLU, RACE-High, and
WSC, despite the potential for severe text-only forgetting on baselines. Additionally, we find that
the forgetting effects of CLIP and SigLIP are similar. In contrast, parameter-efficient fine-tuning
methods like LoRA result in less text-only forgetting but underperform on multimodal questions.
Overall, WINGS’ visual and textual learners are credibly demonstrated to retain performance on
text-only tasks while also performing well on visual-related questions. In datasets like CHID, OCNLI,
and SIQA, MLLMs show improved text-only performance due to increased language diversity (e.g.,
Chinese context) or semantic similarity in their fine-tuning data.

General Evaluation in Text-Only and Multimodal Tasks. We present the performance of 9,
roughly 8B open-source MLLMs, 2 roughly 2B, and 2 private API ones evaluated in the general
text-only and multimodal tasks. Table 2 shows that WINGS series can perform better on text-only
and multimodal question-answering datasets. It achieves state-of-the-art performance on 13 out of
18 datasets, significantly surpassing LLaVAv1.5 with the same architecture. We find that WINGS is
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(a) Comparison of LLaVA-v1.5 Series and WINGS (b) Comparison of Various Learning Rate on WINGS (c) Comparison of Different Training Parts of WINGS

Figure 5: Performance comparison on the newly constructed Interleaved Image and Text (IIT)
Benchmark of the LLaVA series, different learning rate and fine-tuning parts. The horizontal axis
represents different multimodal question settings. The horizontal axis shows different multimodal
setups, e.g., (T, T, I) represents a visual question after two text-only QAs. The three subfigures
represent different ablation settings, with the violet color representing our WINGS.

equally effective for more efficient foundations, as shown in the “Efficient Multimodal LLMs” parts.
WINGS can still capture key elements and demonstrate good scalability as the parameter increases.
Although WINGSbase does not receive additional training for the text-only component, it is still able
to achieve comparable performance.

4.2 Interleaved Image-Text (IIT) Benchmark

To finely evaluate MLLMs, we construct a series of text-only and multimodal mixed multi-turn
conversations. We extract instructions from MMLU, CMMLU, OpenbookQA, HellaSwag, MMMU,
MMBench, SEED-Bench, and AI2D datasets with similar semantics by chroma [39]. We then polish
the connection between some instructions using GPT-3.5 Turbo to make them closer to real-world
conversations. We set up 6 vision-content configurations, categorized by the multi-turn content as:
(T), (T, T), (T, T, T), (T, T, V), (T, V), and (V). For instance, (T, T, V) indicates two consecutive text-only
queries followed by a visual question requiring a response.

4.3 Ablation Studies

Referencing Figure 7, we address three questions to comprehensively analyse WINGS:

• Can WINGS sustain performance with interleaved evaluation? We find that part (a) highlights
WINGS surpassing LLaVAv1.5 and the same-backbone as LLaVAv1.5 (Qwen-SigLIP) for each
multi-turn setting, especially in text-centric dialogues.

• How do WINGS fare with different learning rate settings? Part (b) demonstrates that using a lower
learning rate maintains proficiency in text-only tasks but falls short in multimodal questions, while
a higher rate boosts multimodal abilities but not text-only. Applying a higher learning rate to the
projector and a lower one to the others achieves the optimal.

• Are all components of WINGS equally effective? In part (c), we examine that incorporating visual
learners alone slightly preserves text-only abilities, likely by minimizing disruption to the LLM,
but diminishes performance on multimodal tasks.

In the diverse IIT bench, which ranges from text-rich to multimodal contexts, the effectiveness of
WINGS is particularly evident. As shown in Figure 1, within real-world applications, textual content
offers insights for following visual tasks. WINGS excels in handling text-only tasks while improving
performance on visual-related instructions.

5 Conclusion

We propose WINGS, which includes visual and textual learners, to alleviate text-only forgetting. The
learner is composed of efficient Low-Rank Residual Attention (LoRRA). We start by considering
the shifted attention weights in MLLM and, in the first stage, focus on learning the visual learner.
Then, we co-train the visual and textual learners with routing based on the shifted attention weights.
WINGS demonstrates remarkable performance on text-only, visual-question-answering, and newly
constructed Interleaved Image-Text (IIT) benchmarks. WINGS allows for maintaining text-only
performance with limited resources and further enhances performance in well-resourced settings.
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Supplementary Material

A Experimental Setups and Implementation Details

Training Datasets. The training datasets for the first and second stage of WINGSbase are consistent
with LLaVAv1.5 [79]. For the second stage, WINGSpro extends the training dataset to include some
visual QA datasets as ALLaVA [14], SynthDog [57], and ArXivQA [69], and text-only QA datasets
as Stanford Alpaca [108], Alpaca GPT-4 [94], LIMA [139], UltraChat [31], WebQA [13], and
BELLE-0.5M [51]. WINGS1.8B shares the same training set as WINGSpro.

Model Structures. We employ Qwen1.5 [7] and SigLIP [134] as our foundations.

Training Hyperparameters. We utilize a batch size of 32, along with the AdamW optimizer and a
cosine schedule. For all WINGS-series, the learning rate is set at 1e−3 for the first stage and adjusts
to 2e−6 for the second stage, except for the projector as 1e−5.

Training Environment. WINGSbase and WINGSpro are trained over approximately 1.5 or 6 days on
8× A100 GPUs. WINGS1.8B require approximately 5 days of training on 4× A100 GPUs.

B Additional Experimental Results
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(a) Comparison of Parameter Efficient Modules and WINGS

Figure 6: Performance comparison on the newly constructed Interleaved Image and Text (IIT)
Benchmark of the Parameter Efficient Modules. The horizontal axis represents different mul-
timodal question settings. The horizontal axis shows different multimodal setups, e.g., (T, T, I)
represents a visual question after two text-only QAs.

Should we only add additional modules on top of an LLM branch or, like WINGS, create two distinct
learners for visual and textual modalities? We delve into the low-rank adaptation (LoRA) [45]
and Prefix-tuning [70] for minimally adapt to the LLM component. These techniques introduce
optimization parameters beyond the primary branch. These lightweight adjustments align with
extensive modifications, effectively minimizing text-only forgetting but concurrently curbing cross-
modal positive transfer.

C Discussion

WINGS is a universal plugin that can be integrated with any multimodal mixed-input MLLMs.
Notably, it introduces a new concept of competitive reuse among multiple expert groups: we may not
require the experts to the Transformer block’s MLP layer at a scale three orders of magnitude larger;
instead, a minor update in the attention for better allocation may suffice. This idea is also found in
some variants of LoRA [36, 115]. In the future, we will gradually explore the future of MLLMs.

D Limitation & Broader Impact

Despite WINGS’ strong adaptability for embedding auxiliary attention learners in various MLLMs,
integrating visual learners requires restarting the feature alignment training, incurring extra costs.
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Additionally, its deployment on edge devices faces limitations, with WINGS1.8B offering a solution at
the expense of performance. Furthermore, WINGS still requires some text-only data to replay and
enhance overall performance, aiming for integration into more generic AI systems in the future.

Figure 7: Dynamics of Attention Weights from Shallow to Deep Layers. We calculate the
proportion of attention weights for the image-before (yellow), the image-itself (red), and the image-
after (green) in each layer. From left to right, top to bottom, from shallow to deep layers.

User: There is a single choice question about Sociology. 
Answer the question by replying A, B, C or D.
Question: Which of the following did the post-war welfare 
state of 1948 not aim to provide:
A. free health care and education for all
B. a minimum wage
C. full employment
D. universal welfare

User: Sociology studies <image> and governmental 
relationships as.

QA1: Text-only Instruction (from MMLU)

QA2: Multimodal Instruction (from MMMU)

Figure 8: An Example of an Interleaved Image-Text Benchmark. This dialogue is represented as
(T, V), consisting of a text-only QA from MMLU [42] and a visual QA from MMMU [131]. It can be
observed that, due to the sampling, both include questions from the Sociology category.
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