

PRAISE FOR THE COMPLETE DEVELOPER

“Modern Full Stack Development . . . takes you through the crowded JavaScript
landscape and teaches you how to build a modern sample application with
containerization, authentication, and tests—a great resource for anyone
starting out in web development.”

—bradley smith, author of devops for
the desperate

“It’s really quite astounding how many different complementary technologies
you’ll understand by the end of this book!”

—nick morgan, author of javascript
crash course

®

T H E C O M P L E T E
D E V E L O P E R

M a s t e r t h e F u l l S t a c k w i t h
Ty p e S c r i p t , R e a c t , N e x t , j s ,

M o n g o D B , a n d D o c k e r

by Mart in Krause

San Francisco

[E]

THE COMPLETE DEVELOPER. Copyright © 2024 by Martin Krause.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

First printing

28 27 26 25 24 1 2 3 4 5

ISBN-13: 978-1-7185-0328-1 (print)
ISBN-13: 978-1-7185-0329-8 (ebook)

Published by No Starch Press®, Inc.
245 8th Street, San Francisco, CA 94103
phone: +1.415.863.9900
www.nostarch.com; info@nostarch.com

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-González
Production Editor: Jennifer Kepler
Developmental Editor: Frances Saux
Cover Illustrator: Gina Redman
Interior Design: Octopod Studios
Technical Reviewer: Quentin Hartman
Copyeditor: Audrey Doyle
Proofreader: Sharon Wilkey
Indexer: BIM Creatives, LLC

Library of Congress Control Number: 2023033924

For customer service inquiries, please contact info@nostarch.com. For information on distribution,
bulk sales, corporate sales, or translations: sales@nostarch.com. For permission to translate this work:
rights@nostarch.com. To report counterfeit copies or piracy: counterfeit@nostarch.com.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

®

To true friends and partners. We run on caffeine and gasoline.

About the Author
Martin Krause has been making websites professionally for more than two
decades. He has served as an engineering manager at Publicis Sapient and
as a senior frontend architect at Razorfish, creating cutting-edge microsites
and leading frontend teams on large-scale projects for Fortune 500 compa-
nies. As a certified scuba diving professional and avid traveler, he goes on
frequent adventures above and below sea level. You can find him at https://
mkrause.info, and he is @martinkr.xyz on Bluesky.

About the Technical Reviewer
In his nearly 25-year career in technology, Quentin Hartman has managed
telecom systems, data centers, and public and private clouds and has acted
as a sysadmin, a database administrator, a network engineer, and an inci-
dent responder. As a leader, he has advised tiny startups and Fortune 500
companies and run DevOps, QA, and development teams. He is passion-
ate about social-impact projects that use open source tools. He lives near
Denver with his family and can often be found building things, cooking, or
wandering the woods. He is @qhartman on X.

https://mkrause.info
https://mkrause.info

B R I E F C O N T E N T S

Acknowledgments . xix

Introduction . xxi

PART I: THE TECHNOLOGY STACK . 1

Chapter 1: Node.js . 3

Chapter 2: Modern JavaScript . 15

Chapter 3: TypeScript . 33

Chapter 4: React . . 53

Chapter 5: Next.js . 69

Chapter 6: REST and GraphQL APIs . 93

Chapter 7: MongoDB and Mongoose . 115

Chapter 8: Testing with the Jest Framework . 129

Chapter 9: Authorization with OAuth . 157

Chapter 10: Containerization with Docker . 173

PART II: THE FULL-STACK APPLICATION . 183

Chapter 11: Setting Up the Docker Environment . 185

Chapter 12: Building the Middleware . 195

Chapter 13: Building the GraphQL API . 207

Chapter 14: Building the Frontend . 215

Chapter 15: Adding OAuth . 231

Chapter 16: Running Automated Tests in Docker . 253

x Brief Contents

Appendix A: TypeScript Compiler Options . 259

Appendix B: The Next.js app Directory . 263

Appendix C: Common Matchers . 289

Index . . 295

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS	 xix

INTRODUCTION	 xxi
Who Should Read This Book? . . xxii
What’s in This Book? . xxii
The Parts of a Full-Stack Application . xxiv

The Frontend . xxiv
The Middleware . . xxv
The Backend . xxv

A Brief History of JavaScript and Full-Stack Development . xxvi
Setting Up . xxvi

PART I: THE TECHNOLOGY STACK	 1

1
NODE.JS 3
Installing Node.js . 4
Working with npm . . 4
The package.json File . 4

Required Fields . 5
Dependencies . 6
Development Dependencies . . 6

The package-lock.json File . 6
Creating a Project . 8

Initializing a New Module or Project . 8
Installing the Dependencies . 8
Installing the Development Dependencies . 9
Auditing the package.json File . . 10
Cleaning Up the node_modules Folder . 11
Updating All Packages . 11
Removing a Dependency . 11
Installing a Dependency . 11
Using npx to Execute a Script Only Once . 12

Exercise 1: Build a “Hello World” Express.js Server . . 13
Setting Up . 13
Writing the Server Code . 13

Summary . 14

2
MODERN JAVASCRIPT	 15
ES.Next Modules . 15

Using Named and Default Exports . 16
Importing Modules . 17

xii Contents in Detail

Declaring Variables . 17
Hoisted Variables . 18
Scope-Abiding Variables . . 19
Constant-Like Data . 20

Arrow Functions . 20
Writing Arrow Functions . 21
Understanding Lexical Scope . . 21
Exploring Practical Use Cases . 22

Creating Strings . 22
Asynchronous Scripts . . 24

Avoiding Traditional Callbacks . 24
Using Promises . 25
Simplifying Asynchronous Scripts . 26

Looping Through an Array . 27
Dispersing Arrays and Objects . 27
Exercise 2: Extend Express.js with Modern JavaScript . 29

Editing the package.json File . 29
Writing an ES.Next Module with Asynchronous Code 29
Adding the Modules to the Server . 30

Summary . 31

3
TYPESCRIPT	 33
Benefits of TypeScript . . 34
Setting Up TypeScript . 36

Installation in Node.js . . 36
The tsconfig.json File . 37
Dynamic Feedback with TypeScript . 38

Type Annotations . 38
Declaring a Variable . 39
Declaring a Return Value . . 39
Declaring a Function’s Parameters . 39

Built-in Types . . 40
Primitive JavaScript Types . 40
The union Type . 41
The array Type . . 41
The object Type . 42
The tuple Type . 42
The any Type . 43
The void Type . 43

Custom Types and Interfaces . 44
Defining Custom Types . 44
Defining Interfaces . 45
Using Type Declaration Files . 45

Exercise 3: Extend Express.js with TypeScript . 46
Setting Up . 46
Creating the tsconfig.json File . 47
Defining Custom Types . 47
Adding Type Annotations to the routes.ts File . 48
Adding Type Annotations to the index.ts File . 49
Transpiling and Running the Code . 50

Summary . 51

Contents in Detail xiii

4
REACT	 53
The Role of React . 53
Setting Up React . 55
The JavaScript Syntax Extension . 56

An Example JSX Expression . 56
The ReactDOM Package . 57

Organizing Code into Components . . 57
Writing Class Components . 59
Providing Reusable Behavior with Hooks . . 61

Working with Built-in Hooks . 62
Managing the Internal State with useState . 62
Handling Side Effects with useEffect . 62
Sharing Global Data with useContext and Context Providers 63

Exercise 4: Create a Reactive User Interface for the Express.js Server 64
Adding React to the Server . 64
Creating the Endpoint for the Static HTML File . 66
Running the Server . 66

Summary . 67

5
NEXT.JS	 69
Setting Up Next.js . 70

Project Structure . 71
Development Scripts . 72

Routing the Application . 72
Simple Page Routes . 73
Nested Page Routes . 73
API Routes . . 75
Dynamic URLs . 77

Styling the Application . . 78
Global Styles . 79
Component Styles . 79

Built-in Next.js Components . 80
The next/head Component . 80
The next/link Component . 81
The next/image Component . 82

Pre-rendering and Publishing . 83
Server-Side Rendering . 84
Static Site Generation . 86
Incremental Static Regeneration . 87
Client-Side Rendering . 88
Static HTML Exporting . 89

Exercise 5: Refactor Express.js and React to Next.js . 89
Storing Custom Interfaces and Types . . 90
Creating the API Routes . 90
Creating the Page Routes . 90
Running the Application . 91

Summary . 91

xiv Contents in Detail

6
REST AND GRAPHQL APIS	 93
REST APIs . . 94

The URL . 95
The Specification . 95
State and Authentication . 97
HTTP Methods . 98

Working with REST . 99
Reading Data . 99
Updating Data . . 100

GraphQL APIs . 101
The Schema . 101
The Resolvers . . 103

Comparing GraphQL to REST . 106
Over-Fetching . 106
Under-Fetching . . 107

Exercise 6: Add a GraphQL API to Next.js . 108
Creating the Schema . 108
Adding Data . 109
Implementing Resolvers . 109
Creating the API Route . 110
Using the Apollo Sandbox . . 111

Summary . 113

7
MONGODB AND MONGOOSE	 115
How Apps Use Databases and Object-Relational Mappers . . 116
Relational and Non-Relational Databases . . 116
Setting Up MongoDB and Mongoose . 117
Defining a Mongoose Model . 118

The Interface . 118
The Schema . 118
The Model . . 119
The Database-Connection Middleware . 120

Querying the Database . 121
Creating a Document . 121
Reading a Document . 122
Updating a Document . . 122
Deleting a Document . 123

Creating an End-to-End Query . 123
Exercise 7: Connect the GraphQL API to the Database . . 125

Connecting to the Database . 125
Adding Services to GraphQL Resolvers . . 126

Summary . 127

8
TESTING WITH THE JEST FRAMEWORK	 129
Test-Driven Development and Unit Testing . 130
Using Jest . . 130
Creating an Example Module to Test . 131

Contents in Detail xv

Anatomy of a Test Case . 132
Arrange . 132
Act	 . 133
Assert . 133

Using TDD . 135
Refactoring Code . 136
Evaluating Test Coverage . 138

Replacing Dependencies with Fakes, Stubs, and Mocks . 139
Creating a Module with Dependencies . 140
Creating a Doubles Folder . 141
Using a Stub . 142
Using a Fake . 142
Using a Mock . 143

Additional Types of Tests . 144
Functional Tests . 144
Integration Tests . 144
End-to-End Tests . 145
Snapshot Tests . 145

Exercise 8: Add Test Cases to the Weather App . 146
Testing the Middleware with Spies . 146
Creating Mocks to Test the Services . 148
Performing an End-to-End Test of the REST API . 151
Evaluating the User Interface with a Snapshot Test . 153

Summary . 156

9
AUTHORIZATION WITH OAUTH	 157
How OAuth Works . 158

Authentication vs. Authorization . . 158
The Role of OAuth . 159
Grant Types . . 159
Bearer Tokens . 160

The Authorization Code Flow . 161
Creating a JWT Token . 163

The Header . 163
The Payload . 163
The Signature . 166

Exercise 9: Access a Protected Resource . 168
Setting Up the Client . . 168
Logging In to Receive the Authorization Grant . 170
Using the Authorization Grant to Get the Access Token 171
Using the Access Token to Get the Protected Resource 172

Summary . 172

10
CONTAINERIZATION WITH DOCKER	 173
The Containerization Architecture . 174
Installing Docker . 174

xvi Contents in Detail

Creating a Docker Container . 174
Writing the Dockerfile . . 175
Building the Docker Image . 176
Serving the Application from the Docker Container 177
Locating the Exposed Docker Port . 177
Interacting with the Container . 178

Creating Microservices with Docker Compose . 178
Writing the docker-compose.yml File . 179
Running the Containers . 180
Rerunning the Tests . 181
Interacting with Docker Compose . . 182

Summary . 182

PART II: THE FULL-STACK APPLICATION	 183

11
SETTING UP THE DOCKER ENVIRONMENT	 185
The Food Finder Application . . 186
Building the Local Environment with Docker . 186

The Backend Container . . 186
The Frontend Container . . 189

Summary . 193

12
BUILDING THE MIDDLEWARE	 195
Configuring Next.js to Use Absolute Imports . . 196
Connecting Mongoose . . 196

Writing the Database Connection . 197
Fixing the TypeScript Warning . 198

The Mongoose Model . 199
Creating the Schema . 199
Creating the Location Model . 201

The Model’s Services . 202
Creating the Location Service’s Custom Types . 203
Creating the Location Services . 203
Testing the Services . 206

Summary . 206

13
BUILDING THE GRAPHQL API	 207
Setting Up . 208
The Schemas . 208

The Custom Types and Directives . 208
The Query Schema . 209
The Mutation Schema . 209

Merging the Typedefs into the Final Schema . . 209
The GraphQL Resolvers . 210
Adding the API Endpoint to Next.js . 212
Summary . 214

Contents in Detail xvii

14
BUILDING THE FRONTEND	 215
Overview of the User Interface . 215
The Start Page . 216

The List Item . . 216
The Locations List . 218
The Page . . 219

The Global Layout Components . 222
The Logo . . 222
The Header . 223
The Layout . . 224

The Location Details Page . 227
The Component . 227
The Page . . 228

Summary . 230

15
ADDING OAUTH	 231
Adding OAuth with next-auth . 231

Creating a GitHub OAuth App . 232
Adding the Client Credentials . 232
Installing next-auth . 233
Creating the Authentication Callback . 233
Sharing the Session Across Pages and Components 235

The Generic Button Component . . 235
The AuthElement Component . 238
Adding the AuthElement Component to the Header . 241
The Wish List Next.js Page . 243
Adding the Button to the Location Detail Component . 244
Securing the GraphQL Mutations . 247
Summary . 252

16
RUNNING AUTOMATED TESTS IN DOCKER	 253
Adding Jest to the Project . 254
Setting Up Docker . 254
Writing Snapshot Tests for the Header Element . 256
Summary . 257

A
TYPESCRIPT COMPILER OPTIONS	 259

B
THE NEXT.JS APP DIRECTORY	 263
Server Components vs. Client Components . . 264

Server Components . 264
Client Components . 265

xviii Contents in Detail

Rendering Components . 266
Fetching Data . 266
Static Rendering . . 267
Dynamic Rendering . 268

Exploring the Project Structure . 269
Updating the CSS . 271
Defining a Layout . 273
Adding the Content and Route . 275
Catching Errors . 277
Showing an Optional Loading Interface . 279
Adding a Server Component That Fetches Remote Data 281
Completing the Application with the Navigation . 284
Replacing API Routes with Route Handlers . . 285

C
COMMON MATCHERS	 289
Built-in Matchers . 289
The JEST-DOM Matchers . 292

INDEX	 295

A C K N O W L E D G M E N T S

This book is based on the experience I gained while working as a soft-
ware engineer. Thank you to all who encouraged me to push boundaries
daily, teaching me the skills necessary for performing large-scale, high-
performance frontend and full-stack development. Thank you equally to all
the developers who served as my first students when I started teaching these
skills to others back in 2008, and to the extraordinary friends and partners
who have always had my back. Lastly, I am thrilled to publish a book with
the extraordinary team at No Starch Press. I could not have done it without
the outstanding support and guidance they provided me.

Nearly all programming jobs today require
at least a cursory understanding of full-

stack development, but if you’re a beginner,
you might struggle to find the right entry point

		 to this overwhelming topic. You might not even know
		 what the term means.

Simply put, full-stack web development typically refers to the creation of
complete web applications using JavaScript and the many frameworks built
for it. It requires a mastery of the traditional disciplines of frontend and
backend development, as well as the ability to write middleware and various
kinds of application programming interfaces (APIs).

Lastly, a well-rounded full-stack developer can handle databases and
has professional skills, such as the ability to craft automated tests and
deploy their code by themselves. To do all of this, they must understand
HTML, CSS, and JavaScript, as well as the language’s typed counterpart,
TypeScript. For a crash course on some of this terminology, see “The Parts
of a Full-Stack Application” on page xxiv.

I N T R O D U C T I O N

xxii Introduction

If this sounds like a lot, you’ve come to the right place. This book will
introduce you to each component of a modern application and teach you
how to use some of the most widely used technologies to build them.

Who Should Read This Book?
There are two primary audiences for the book. The first includes profes-
sional frontend or backend engineers who want to advance their careers
by mastering full-stack development. The second includes inexperienced,
beginning developers interested in learning about web development.

While the book introduces many technologies from scratch, it assumes
some prior familiarity with HTML, CSS, and JavaScript, as well as the
client/server architecture of most web applications. For a refresher, see
The Coding Workbook by Sam Taylor (No Starch Press, 2020), which teaches
you how to build a website with HTML and CSS, and The Book of CSS3,
2nd edition, by Peter Gasston (No Starch Press, 2014) to sharpen your
CSS skills. To familiarize yourself with JavaScript, I recommend JavaScript
Crash Course by Nick Morgan (No Starch Press, 2024), which is a fast-paced
JavaScript tutorial for beginners, and Eloquent JavaScript, 3rd edition, by
Marijn Haverbeke (No Starch Press, 2018), for a deep dive into JavaScript.

What’s in This Book?
The book is split into two parts. Part I, comprising Chapters 1 through 10,
introduces you to the components of a modern technology stack. Each
chapter focuses on one technology and highlights the topics you need to
know as a full-stack developer. The exercises will encourage you to begin
writing application code from page 1.

Chapter 1: Node.js ​  ​Introduces you to Node.js and its ecosystem, which
let you run JavaScript code outside a browser. Then you’ll use Node.js
and the Express.js framework to create your own simple web server with
JavaScript.

Chapter 2: Modern JavaScript ​  ​Focuses on contemporary JavaScript
syntax useful for full-stack developers, including how to use modules
to write maintainable code packages. We look at the different ways to
define variables and constants, the arrow function, and techniques for
asynchronous code. You’ll use these to rewrite your JavaScript server.

Chapter 3: TypeScript ​  ​Introduces TypeScript, a superset of JavaScript,
and highlights how modern full-stack development benefits from it.
We discuss the shortcomings and pitfalls of JavaScript and how to
effectively leverage TypeScript’s type system through inference. You’ll
conclude the chapter by refactoring your JavaScript server with type
annotations, custom types, and interfaces.

Chapter 4: React ​  ​Discusses React, one of the most common libraries
for creating user interface components. You’ll see how its components
simplify full-stack development and learn how to use its JSX elements,

Introduction xxiii

the virtual DOM, and hooks. You’ll then use React to add a reactive
user interface to your Express.js server.

Chapter 5: Next.js ​  ​Focuses on Next.js, the leading web application
framework built on top of React. You’ll create pages and custom API
routes with Next.js’s file-based routing before learning different ways
to render a page within the framework. Finally, you’ll migrate the
Express.js server to Next.js as an exercise.

Chapter 6: REST and GraphQL APIs ​  ​Teaches you all about APIs, what
they are, and how to use them for full-stack web development. We explore
two kinds of APIs: REST and GraphQL. You’ll conclude the chapter by
adding an Apollo GraphQL server to your Next.js full-stack application.

Chapter 7: MongoDB and Mongoose ​  ​Discusses the differences
between traditional relational databases and non-relational databases
such as MongoDB. You’ll add the Mongoose object data modeling tool
to your technology stack to simplify working with a database. You’ll
then connect the GraphQL API to your own MongoDB database.

Chapter 8: Testing with the Jest Framework ​  ​Explains the importance
of automated tests and test-driven development to full-stack development.
We explore different types of tests, common test patterns, and the con-
cepts of test doubles, stubs, fakes, and mocks. Lastly, you’ll add a few basic
snapshot tests to your Next.js application with the Jest framework.

Chapter 9: Authorization with OAuth ​  ​Discusses authentication and
authorization and how full-stack developers can use the OAuth proto-
col to handle those tasks by integrating with a third-party service. We
walk through this authorization flow and its components. You’ll run
through a complete OAuth interaction on the command line to explore
each step in depth.

Chapter 10: Containerization with Docker ​  ​Introduces you to using
Docker to deploy your application. We cover the concept of a microser
vice architecture, then cover all relevant components of the Docker
ecosystem: the host, the Docker daemon, Dockerfiles, images, contain-
ers, volumes, and Docker Compose. You’ll conclude by splitting your
application into self-contained microservices.

In Part II, you’ll use your newfound knowledge to build a web applica-
tion that applies the concepts, tools, and frameworks introduced in Part I.
The Food Finder application is a location search service that lets users log
in with their GitHub account and maintain a wish list of places to visit.

Chapter 11: Setting Up the Docker Environment ​  ​Create the founda-
tion of your Food Finder application by using your knowledge of Docker
and containerization to set up your development environment. You’ll
use Docker Compose to decouple the application development from
your local system and then add a MongoDB server as its own service.

Chapter 12: Building the Middleware ​  ​Create the first part of the
Food Finder application’s middleware. Here you’ll connect Mongoose
to the MongoDB service and create its schema, model, services, and

xxiv Introduction

custom types. With these pieces in place, you’ll be able to create, read,
update, and delete data from your database.

Chapter 13: Building the GraphQL API ​  ​Use your knowledge of
GraphQL to add an Apollo GraphQL server to your Food Finder appli-
cation, then implement a public GraphQL API. You’ll be able to use
the Apollo sandbox to read and update data with GraphQL on your
MongoDB server.

Chapter 14: Building the Frontend ​  ​Use React components and the
Next.js framework to build the frontend for the Food Finder appli-
cation. At this point, you’ll have implemented a complete modern
full-stack application that reads data from the database through
your custom middleware and renders the data to your application’s
frontend.

Chapter 15: Adding OAuth ​  ​Add an OAuth flow to your app so that
visitors can log in to maintain a personal wish list of locations. You’ll
use the next-auth package from Auth.js to add login options using
GitHub.

Chapter 16: Running Automated Tests in Docker ​  ​Set up automated
snapshot tests with Jest and configure a new service to run the tests
automatically.

Then, in the appendices, you’ll get detailed information on the
TypeScript Compiler options and the most common Jest matchers. Also,
you’ll use your newfound knowledge to explore and understand Next.js’s
modern app directory approach.

Appendix A: TypeScript Compiler Options ​  ​Shows the most common
TypeScript Compiler (TSC) options so that you can customize your
own TypeScript projects to your liking.

Appendix B: The Next.js app Directory ​  ​Explores a new routing pat-
tern using the app directory that Next.js introduced in version 13. You
can then choose to work with either the traditional pages approach cov-
ered in Chapter 5 or the modern app directory in your own upcoming
projects.

Appendix C: Common Matchers ​  ​Shows the most common matchers
for testing your applications with Jest and the Jest DOM.

The Parts of a Full-Stack Application
Throughout this book, we’ll discuss various portions of an application. This
section gives you a crash course on what we mean when we use the terms
frontend, middleware, and backend.

The Frontend
The frontend is the user-facing part of a website or web application. It
runs on the client, typically a web browser. You can think of it as the “front

Introduction xxv

office” of the web application. For example, on https://www​.google​.com, the
frontend is a page with a simple search bar, though of course, frontend
development can be much more complex than this; take a look at Google’s
search results page or the interface of the last website you visited.

Frontend developers focus on user engagement, experiences, and inter-
faces. They rely on HTML for creating the elements of the website’s inter-
face, CSS for styling, JavaScript for user interactions, and frameworks such
as Next.js to pull everything together.

The Middleware
The middleware connects an application’s frontend and backend and per-
forms all of its chores, such as integrating with third-party services and
transferring and updating data. You can think of it as the employees on the
company floor.

As full-stack developers, we often write middleware for routing our appli-
cations, which means serving the correct data for a particular URL, han-
dling database connections, and performing authorization. For example,
on https://www​.google​.com, the middleware asks the server for the landing
page’s HTML. Then a different part of the middleware checks whether the
user is logged in, and if so, which personal data it should show. Meanwhile,
a third part of the middleware consolidates the information from each of
these data streams and then answers the server’s requests with the correct
HTML.

One essential part of a full-stack application’s middleware is its API
layer, which exposes the application’s APIs. Generally, an API is code written
to connect two machines. Often, an API lets the frontend code (or a third
party) access the application’s backend. JavaScript-driven development
relies on two primary architectural frameworks for creating APIs: REST
and GraphQL, both of which are covered in Chapter 6.

You could write the middleware by using any programming language.
Most full-stack developers use modern JavaScript or TypeScript, but they
could instead use PHP, Ruby, or Go.

The Backend
The backend is the invisible part of a web application. In a JavaScript-driven
application, the backend runs on a server, typically Express.js, though oth-
ers might use Apache or NGINX. You can think of it as the “back office” of
the web application.

More concretely, the backend handles any operations involving the
application’s data. It performs create, read, update, and delete (CRUD)
operations on the values stored in the database and returns the datasets
requested by the user through the middleware’s API layer. For https://www​
.google​.com, the backend is the code that searches the database for the key-
words you entered in the frontend, which the backend received through
the middleware. The middleware would combine these search results with
other relevant pieces of information. Then the user would see the search
results page rendered by the frontend.

https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com

xxvi Introduction

Backend development can be done in any programming language.
Full-stack developers usually employ modern JavaScript or TypeScript.
Other options include PHP, Ruby, Elixir, Python, Java, and frameworks like
Symfony, Ruby on Rails, Phoenix, and Django.

A Brief History of JavaScript and Full-Stack Development
All developers should understand the context of the tools they’re using.
Before we begin developing, let’s start with a bit of history.

The full-stack developer position evolved alongside JavaScript, which
began as nothing more than a scripting language that ran in users’ browsers.
Developers used it to add elements to their websites, such as accordions, pop-
up menus, and overlays, that reacted immediately to a user’s behavior, without
requiring requests to the application’s server.

Until the late 2000s, most JavaScript libraries were designed to provide
consistent interfaces to handle vendor-specific quirks. Often, the JavaScript
engines were slow, especially when interacting with, updating, or modifying
the HTML. Hence, JavaScript was considered a quirky scripting language
for the frontend and was frowned upon by backend developers.

Several projects attempted to popularize the use of JavaScript in the
backend, but until the release of Node.js in 2009, these didn’t gain any
traction. Node.js, covered in Chapter 1, is a JavaScript tool for developing
backends. Shortly thereafter, the Node.js package manager npm built the
missing ecosystem for full-stack JavaScript development.

This ecosystem includes a host of JavaScript libraries for working with
databases, building user interfaces, and writing server-side code (many of
which we’ll explore in this book). These new tools allowed developers to use
JavaScript reliably on both the client and the server. Of particular impor-
tance, Google released the Angular framework in 2010, and Meta (known
as Facebook at the time) released React in 2013. The commitment of these
internet giants to building JavaScript tools turned full-stack web develop-
ment into a sought-after role.

Setting Up
Throughout this book, you’ll write code and run command line tools.
You can use any development environment you’d like, but here are some
guidelines.

The most common code editor these days is Visual Studio Code, which
you can download from https://code​.visualstudio​.com. It is Microsoft’s open
source editor and is free for Windows, macOS, and Linux. In addition,
you can extend and configure it through a plethora of third-party plug-ins
and adjust its appearance to your liking. However, if you’re used to a differ
ent editor, such as Vim or Emacs, you can keep using it. The book doesn’t
require a particular tool.

Depending on your operating system, your default command line pro-
gram will be either the Command Prompt (on Windows) or the Terminal (on

https://code.visualstudio.com

Introduction xxvii

macOS and Linux). These programs use slightly different syntax for tasks
like creating, changing, and listing the contents of a directory. This book
shows the Linux and macOS versions of these commands. If you’re using
Windows, you’ll have to adapt the commands for your operating system. For
example, instead of ls, Windows uses dir to list files and folders in the cur-
rent directory. Microsoft’s official command line reference lists all available
commands here: https://learn​.microsoft​.com​/en​-us​/windows​-server​/administration​/
windows​-commands​/windows​-commands#command​-line​-reference​-a​-z.

The most notable difference between operating systems relevant to this
book is the escape character used for line breaks in multiline cURL com-
mands. This escape character is \ on macOS and ^ on Windows. We’ll point
out these differences in Chapter 6, when we first use cURL.

You can download the code listings for the first part of the book and
the complete source code for the Food Finder application from https://www​
.usemodernfullstack.dev/downloads.

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/windows-commands#command-line-reference-a-z
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/windows-commands#command-line-reference-a-z
https://www.usemodernfullstack.dev/downloads
https://www.usemodernfullstack.dev/downloads

PART I
T H E T E C H N O L O G Y S T A C K

Node.js is an open source runtime environ-
ment that executes JavaScript code outside

a web browser. You could, for example, use it
as a scripting language to perform all kinds 	

		 of chores, such as deleting and moving files, logging
		 data on the server side, or even creating your own web
		 server (as we’ll do in this chapter’s exercise).

Knowing how to use Node.js is not really about understanding individ-
ual commands or packages, because it relies on standard JavaScript and you
can refer to the documentation for details about its syntax and parameters.
Instead, all developers should strive to understand the Node.js ecosystem
and use it to their advantage. This chapter will introduce you to it.

1
N O D E . J S

4 Chapter 1

Installing Node.js
Begin by checking whether Node.js is already available on your local machine
by running the node command from your command line. The version flag (-v)
should return the current Node.js version:

$ node -v

If you see an output with a version number, Node.js is installed. If you
don’t, or if the version is lower than the currently recommended stable
release listed on https://nodejs​.org, you should install this stable version.

To install Node.js locally, go to https://nodejs​.org​/en​/download and select
the installer for your operating system. I recommend installing the long-term
support (LTS) version of Node.js because many Node.js modules require this
version. Run the installer package for Node.js LTS and npm, then check the
version number again. It should match the one you’ve just installed.

Next, we’ll review the basic commands and features of the Node.js
runtime environment. If you prefer not to install Node.js, you can run the
Node.js command line examples and JavaScript code in the online play-
grounds at https://codesandbox​.io​/s​/new and https://stackblitz​.com.

Working with npm
The default package manager for Node.js is npm. You can find modules for
every task there, taken from the online registry at https://www​.npmjs​.com.
Verify that npm is available on your local machine by running the following
on the command line:

$ npm -v

If there is no listed version or if the version is lower than the current
release, install the latest Node.js LTS version, including npm.

Be aware that there is no vetting process or quality control on https://
www​.npmjs​.com. Anyone can publish packages, and the site relies on the
community to report any that are malicious or broken.

Running the following shows a list of available commands:

$ npm

N O T E 	 The most popular alternative to npm is yarn, which also uses the https://www​
.npmjs​.com registry and is fully compatible with npm.

The package.json File
The package.json file is a key element of each Node.js-based project. While
the node_modules folder contains actual code, the package.json file holds all

https://nodejs.org
https://nodejs.org/en/download
https://codesandbox.io/s/new
https://stackblitz.com
https://www.npmjs.com
https://www.npmjs.com
https://www.npmjs.com
https://www.npmjs.com
https://www.npmjs.com

Node.js 5

the metadata about the project. Found in the project’s root, it must con-
tain the project’s name and version; in addition, it can contain optional
data, such as the project’s description, a license, scripts, and many more
details.

Let’s take a look at the package.json file for the web server you’ll create in
Exercise 1 on page 13. It should look similar to the one shown in Listing 1-1.

{
 "name": "sample-express",
 "version": "1.0.0",
 "description": "sample express server",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",
 "run": "node index.js"
 },
 "author": "",
 "license": "ISC",
 "dependencies": {
 "express":"^4.18.2"
 }
}

Listing 1-1: The package.json file for the Express.js server project in Exercise 1

The package.json file includes all the information others will need to
install required modules on their machine and run the application. As a
result, you never have to ship or store the node_modules folder in your code
repository, which minimizes the repository’s size. Let’s take a detailed look
at the package.json file.

Required Fields
The package.json file must contain a name field and a version field. All
other fields are optional. The name field contains the package’s name,
which must be one lowercase word but can contain hyphens and
underscores.

The version field must follow semantic versioning guidelines, which sug-
gest this format: major.minor.patch; for example, 1.2.3. We call this semantic
versioning because each number conveys a meaning. A major version intro-
duces an incompatible API change. You should generally be very careful
about switching to another major version, as you won’t be able to expect
that your application will work flawlessly. A minor version change adds new
functionality in a backward-compatible manner and therefore shouldn’t
pose problems for your application. A patch version applies backward-
compatible bug fixes, and you should always keep it up to date.

N O T E 	 You can read more about semantic versioning and how to define different ranges at
https://semver​.org.

https://semver.org

6 Chapter 1

Dependencies
The most important optional fields specify the dependencies and develop-
ment dependencies. The dependencies field lists all the dependencies needed
to run the project, along with their required version ranges, following the
semantic versioning syntax. By default, npm requires only the major version
and keeps the minor and patch ranges flexible. This way, npm can always
initialize your project with the latest compatible version.

These dependencies are part of your bundled application. When you
install a project on a new machine, all dependencies listed in the package
.json file will be installed and placed in the node_modules folder, next to
package.json.

Your application could require all sorts of dependencies, such as frame-
works and helper modules. For example, the Food Finder application we’ll
build in Part II must contain at least Next.js as a single-page application
framework, and Mongoose with MongoDB for the database layer.

Development Dependencies
The devDependencies field lists all the dependencies necessary to develop the
project, along with their versions. Again, only the major version is fixed.
These are required only to develop, and not to run, the application. Hence,
they are ignored by the packaging scripts and are not part of the deployed
application. When you install a project on a new machine, all the develop-
ment dependencies listed in the package.json file will be installed and placed
in the node_modules folder next to package.json. For our Food Finder applica-
tion, our development dependencies will include TypeScript’s type defini-
tions. Other typical entries are testing frameworks, linters, and build tools
such as webpack and Babel.

The package-lock.json File
The npm package manager automatically generates the package-lock.json
file for each project. This lock file resolves a problem introduced by the
use of semantic versioning for dependencies. As mentioned earlier, the
npm default is to define only the major version and to use the latest minor
and patch versions available. While this ensures that your application
includes the latest bug fixes, it introduces a new issue: without an exact ver-
sion, builds aren’t reproducible. Because there’s no quality control in the
npm registry, even a patch or minor version update could introduce an
incompatible API change that should have been a major version change.
Consequently, a slight deviation between versions could result in a broken
build.

The package-lock.json file solves this by tracking the exact version of
every package and its dependencies. This file is usually quite big, but its
entries for the web server you’ll create at the end of this chapter will look
similar to Listing 1-2.

Node.js 7

{
 "name": "sample-express",
 "lockfileVersion": 2,
 "requires": true,
 "packages": {
 "": {
 "dependencies": {
 "express": "^4.18.2"
 }
 },
 "node_modules/accepts": {
 "version": "1.3.8",
 "resolved": "https://registry​.npmjs​.org​/accepts​/​-​/accepts​-1​.3​.8​.tgz",
 "integrity": "sha512-PYAthTa2m2VKxuvSD3DPC/Gy+U+sOA1LAuT8mkmRuvw+NACSaeXEhosdQ==",
 --snip--
 },
 --snip--
 "node_modules/express": {
 "version": "4.18.2",
 "resolved": "https://registry​.npmjs​.org​/express​/​-​/express​-4​.18​.2​.tgz",
 "integrity": "sha512-5/PsL6iGPdfQ/lKM1UuielYgv3BUoJfz1aUwU9vHZ+J7gyvwdQXFEBIEI==",
 "dependencies": {
 "accepts": "~1.3.8",
 --snip--
 "vary": "~1.1.2"
 },
 "engines": {
 "node": ">= 0.10.0"
 }
 },
 --snip--
 "vary": {
 "version": "1.1.2",
 "resolved": "https://registry​.npmjs​.org​/vary​/​-​/vary​-1​.1​.2​.tgz",
 "integrity": "sha512-BNGbWLfd0eUPabhkXUVm0j8uuvREyTh5ovRa/dyow/BqAbZJyC+bfhskkh=="
 }
 }
}

Listing 1-2: The package-lock.json file for Exercise 1

The lock file contains a reference to the project and lists the informa-
tion from the corresponding package.json file. Then it lists all the project’s
dependencies; for us, the only dependency is Express.js, with a pinned ver-
sion. (We’ll cover Express.js in Exercise 1.) In addition, the file lists all the
dependencies for the Express.js version in use, in this case the accept and
vary packages. The stored artifact’s SHA hash enables npm to verify the
integrity of the resource after downloading it.

Now, with all modules version-locked, every npm install command
will create an exact clone of the original setup. Like package.json, the
package-lock.json file is part of the code repository.

8 Chapter 1

Creating a Project
Let’s cover the most important commands for your day-to-day work, in
the order in which you would logically use them to create and maintain a
project. After performing these steps, you’ll have a package.json file and a
production-ready project folder with one installed package, Express.js.

Initializing a New Module or Project
To start a new project, run npm init, which initializes a new module. This
should trigger an interactive guide through which you’ll populate the proj
ect’s package.json file based on your input:

$ mkdir sample-express
$ cd sample-express
$ npm init
This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sensible defaults.
--snip--
Is this OK? (yes)

At the beginning of each project, you need to initialize a new Node.js
setup in an empty folder (created here with mkdir sample-express) using npm
init. For simplicity, keep the default suggestions here. The assistant cre-
ates a basic package.json file in your project folder. It should look similar to
Listing 1-3.

{
 "name": " sample-express",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC"
}

Listing 1-3: The default package.json file

When we compare this file with the one shown in Listing 1-1, we see
that they are fairly similar, except for the dependencies and development
dependencies. With the package.json file ready, we can now install these depen-
dencies with npm install.

Installing the Dependencies
Node.js provides modules for tasks like accessing the filesystem’s input and
output, using networking protocols (such as DNS, HTTP, TCP, TLS/SSL,
and UDP), and handling binary data. It also provides cryptography mod-
ules, interfaces for working with data streams, and much more.

Node.js 9

Running npm install <package> downloads and places a specific package
in the node_modules folder, next to your package.json file, and adds it to the
dependencies list in package.json. You should use it whenever you need to
add a new module that is required to run the application.

Say you want to create a new Express.js-based server. You’ll need to
install the Express.js package from https://npmjs.com. Here we install a par
ticular version, but to install the latest version, omit the version number and
use npm install express instead:

$ npm install express@4.18.2
added 57 packages, and audited 58 packages in 1s
found 0 vulnerabilities

Now the node_modules folder contains an express folder and additional
folders with its dependencies. Also, Express.js is listed as a dependency in
package.json, as shown in Listing 1-4.

{
 "name": " sample-express",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC",
 "dependencies": {
 "express": "^4.18.2"
 }
}

Listing 1-4: The default package.json file with Express.js as a dependency

We’ve successfully added Express.js as a dependency.

Installing the Development Dependencies
Now let’s say you want to use a package called karma for end-to-end testing
of the server. Instead of being a dependency like Express.js, this package is
used only during development and is not necessary for running the actual
application.

In cases like this, you should run npm install --save-dev package to down-
load this package and add it to the devDependencies list in the local package​
.json file:

$ npm install --save-dev karma@5.0.0
added 128 packages, and audited 186 packages in 3m
9 vulnerabilities (1 moderate, 4 high, 4 critical)

To address issues that do not require attention, run:
 npm audit fix

https://npmjs.com

10 Chapter 1

To address all issues (including breaking changes), run:
 npm audit fix --force

Run `npm audit` for details.

Notice that, after installing the karma package, npm indicates that
this version has known vulnerabilities. Nonetheless, it is added to the node​
_modules folder and listed as a devDependency in package.json. We will follow
the suggestions to fix the issues in a bit.

Auditing the package.json File
During installation, npm indicated that karma has a vulnerability, so let’s
verify this. The npm audit command inspects the local package.json file for
any known vulnerabilities:

$ npm audit

npm audit report
--snip--
karma <=6.3.15
Severity: high
Open redirect in karma - https://github.com/advisories/GHSA-rc3x-jf5g-xvc5
Cross-site Scripting in karma - https://github.com/advisories/GHSA-7x7c-qm48-pq9c
Depends on vulnerable versions of log4js
Depends on vulnerable versions of ua-parser-js
fix available via `npm audit fix --force`
Will install karma@6.4.1, which is a breaking change
--snip--
9 vulnerabilities (1 moderate, 4 high, 4 critical)

To address issues that do not require attention, run:
 npm audit fix

To address all issues (including breaking changes), run:
 npm audit fix --force

Running the command returns a detailed report about the version and
severity of each problematic package, as well as a summary of all the issues
found in the currently installed Node.js modules.

The npm package manager also indicated that the issues could be fixed
automatically with npm audit fix. Alas, it warns us about breaking changes in
the latest karma version. To accommodate those, we need to use the --force
flag. I recommend using npm audit every few months, along with npm update,
to avoid using outdated dependencies and creating security risks:

$ npm audit fix --force
added 13 packages, removed 41 packages, changed 27 packages, and audited 158 packages in 5s

Now we see that the devDependencies list in package.json has the latest
karma version, and another run of npm audit reports that there are no more
known vulnerabilities in the installed packages.

Node.js 11

Cleaning Up the node_modules Folder
Running npm prune inspects the local package.json file, compares it to the local
node_modules folder, and removes all unnecessary packages. You should use
it during development, after adding and removing packages, or when per-
forming general cleanup chores.

Let’s check that the audit we just performed didn’t install any unneces-
sary packages:

$ npm prune
up to date, audited 136 packages in 1s

found 0 vulnerabilities

The output looks fine; there are no issues with our packages.

Updating All Packages
Running npm update updates all installed packages to their latest acceptable
version. You should use this command frequently to avoid outdated depen-
dencies and security risks:

$ npm update
added 1 package, removed 1 package, changed 1 package, and audited 158 packages in 8s

found 0 vulnerabilities

As you can see, npm update displays a summary of the updates.

Removing a Dependency
Running npm uninstall package removes the package and its dependencies
from the local node_modules folder and package.json file. You should use this
command to delete modules you don’t need anymore. Say you decide that
end-to-end tests with karma are no longer necessary:

$ npm uninstall karma
removed 71 packages, and audited 138 packages in 3s

found 0 vulnerabilities

The command’s output shows the changes made to the node_modules
folder. The package was removed from package.json as well.

Installing a Dependency
Running npm install downloads all dependencies and devDependencies
from the npm repository and places them in the node_modules folder.
Use this command to install an existing project on a new machine.
For example, to install a copy of the Express.js project in a new folder,
you could create a new empty folder and copy only the package.json and

12 Chapter 1

package-lock​.json files into it. Then you could run the npm install com-
mand inside this folder:

$ npm install
added 137 packages, and audited 138 packages in 3s

found 0 vulnerabilities

Whenever you clone the repository or create a new project from a
package.json file, run npm install. As with all previous commands, npm shows
a status report listing any vulnerabilities.

Using npx to Execute a Script Only Once
When you installed Node.js, you also installed npx, which stands for node
package execute. This tool enables you to execute any package from the registry
without installing it beforehand. This is useful when you need to run some
code only once. For example, you might use a scaffolding script that initial-
izes a project but is neither a dependency nor a development dependency.

The npx tool works by checking whether the executable you’re trying
to run is available through the $PATH environment variable or local project
binaries. If this is not the case, npx installs the package to a central cache
instead of your local node_modules folder. Say you want to check your pack-
age JSON for syntax errors. For this, you can use the jsonlint package. As
this package is neither required to run the project nor part of your develop-
ment process, you don’t want to install it into your node_modules folder:

$ npx jsonlint package.json
Need to install the following packages:
 jsonlint
Ok to proceed? (y) y
{
 "name": " sample-express",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC",
 "dependencies": {
 "express": "^4.18.2"
 }
}

This calls jsonlint to validate our package.json file via npx. First npx
installs the package into the global cache folder, then runs jsonlint. It prints
the content of our package.json file and reports no errors. Check your node​
_modules folder; jsonlint shouldn’t be installed. Nonetheless, on each subse-
quent call of npx, you’ll find jsonlint available.

Node.js 13

Exercise 1: Build a “Hello World” Express.js Server
Express.js is a free and open source backend framework built on top of
Node.js. Designed for building web applications and APIs, it is the de facto
standard server framework for the Node.js ecosystem and is foundational to
full-stack web development.

Express.js offers common middleware used by HTTP servers for tasks
such as caching, content negotiation, cookie handling, handling cross-
origin requests, redirecting, and much more.

N O T E 	 Next.js uses its own built-in server that borrows heavily from Express.js. For the Food
Finder application that you’ll build in Part II of this book, Next.js will be the founda-
tion of the middleware you’ll use. As Next.js abstracts this middleware for you, you
won’t directly interact with the server there.

Let’s build a simple Express.js-based Node.js server to practice your
Node.js skills.

Setting Up
If you’ve already created the sample-express folder and package.json file while
following along with this chapter, you can skip this setup. Otherwise, cre-
ate and switch to a new folder called sample-express. Then, to initialize a new
Node.js project, run npm init on the command line. The interactive guide
should ask you for some details, such as the name and version of your appli-
cation. Accept the defaults for now.

Next, you’ll want to use the Express.js package as the foundation of the
server. Run npm install express@4 to install the latest release of the major
version 4. You will see that the package.json file now contains express as a
dependency.

Writing the Server Code
Create an index.js file in the sample-express folder and add the code in
Listing 1-5.

const express = require('express');
const server = express();
const port = 3000;

server.get('/hello', function (req, res) {
 res.send('Hello World!');
});

server.listen(port, function () {
 console.log('Listening on ' + port);
});

Listing 1-5: A basic Express.js server

14 Chapter 1

First we load the express package into the file, instantiate the app, and
define a constant for the port to use. Then we create a route for our server
so that it will respond to every GET request sent to the /hello base URL with
Hello World! We use the Express.js get method and pass /hello as the first
parameter and a callback function as the second parameter. Now, for each
GET request sent to the /hello endpoint, the server runs the callback func-
tion that sends Hello World! as the response to the browser. Finally, we use
the Express.js listen method to spin up the web server and tell it to listen on
port 3000.

Start the server from your command line:

$ node index.js
Listening on 3000

Now visit http://localhost:3000​/hello in your browser. You should see the
Hello World! message. Congratulations! You just wrote your first Node.js web
server in JavaScript.

Summary
This chapter taught you how to run JavaScript code outside a browser using
Node.js and its module ecosystem. You learned how to use, add, and remove
modules in your full-stack application with npm commands, as well as how
to read and use the package.json and package-lock.json files. Finally, you peeked
into Express.js, the de facto standard server for full-stack development, and
used it to build a sample Node.js server with just a few lines of code.

This chapter only scratched the surface of Node.js. If you want to explore
its full potential, I recommend the Node.js tutorials from W3Schools at
https://www​.w3schools​.com​/nodejs​/ and the free ExpressJS Fundamentals course
from https://www​.udemy​.com​/course​/expressjs​-fundamentals​/.

In the next chapter, you will get to know ES.Next, the latest iteration of
JavaScript, and master the modern features it brings to the table.

https://www.w3schools.com/nodejs/
https://www.udemy.com/course/expressjs-fundamentals/

In Chapter 1, you used basic JavaScript to
create a web server with Node.js. Now we’ll

take a closer look at the language’s more
advanced features and how you can effectively

		 use them to create full-stack web applications.
You’ll sometimes hear the term ES.Next used to refer to new versions

of JavaScript. In this book, we use ES.Next as a broad label for modern
JavaScript and its concepts. Most runtime environments have implemented
the features covered here. Otherwise, you can transpile them with Babel.js,
creating backward-compatible JavaScript that emulates the new features for
older runtimes.

ES.Next Modules
ES.Next modules allow you to separate code into files to improve mainte-
nance and testability. They encapsulate a piece of logic into easily reusable
code, and because variables and functions are limited to the module’s

2
M O D E R N J A V A S C R I P T

16 Chapter 2

scope, you can use the same variable name in different modules without
running into conflicts. (We discuss the concept of scopes in “Declaring
Variables” on page 17.)

The official ES.Next modules replaced various unofficial module for-
mats, such as UMD and AMD, which you would load with a require state-
ment. For example, you used require to include the Express.js package for
the Node.js server code in Chapter 1. Instead, ES.Next modules use export
and import statements to export functions from one module’s scope and
import them for use somewhere else. In other words, modules allow you to
create functions and variables and expose them to a new scope.

Using Named and Default Exports
There are two kinds of Next.js exports: named and default. These exports
use slightly different syntaxes when you import them later. Default exports
require you to define new function names on import. For named exports,
renaming is optional and done with the as statement.

It’s considered a best practice to use named exports over default exports,
because named exports define a clear and unique interface for the module’s
functionality. When we use default exports, the user risks importing the same
function under different names. TypeScript, which we’ll cover in Chapter 3,
recommends that we use default exports if the module has one clear purpose
and a single export. In contrast, it recommends using named exports when-
ever the module exports more than one item.

You should know the syntax of default exports so that you can work with
third-party modules that use them. Unlike named exports, there can be only
one default export per file, marked by the default keyword (Listing 2-1).

const getFoo = function () {
 return 'foo';
};

export default getFoo;

Listing 2-1: Default exports

In this listing, we define an anonymous function and store it in the con-
stant getFoo. Then we export the constant with the default keyword to make
it the module’s default export.

You can export named exports inline or at the end of the file, with
curly brackets ({}). Listing 2-2 shows several named exports.

export const getFooBar = function () {
 return 'foo bar';
};

const getBar = function () {
 return 'bar';
};

Modern JavaScript 17

const getBaz = function () {
 return 'baz';
};

export {getBar, getBaz};

Listing 2-2: Named exports

Here we define an anonymous function, store it in the constant
getFooBar, and immediately export it as getFooBar. Then we define two more
anonymous functions and export them as named exports in curly brackets.

Importing Modules
The syntax to import an ES.Next module depends on the type of export
you created. Named exports do need to be imported using curly brackets,
whereas default exports do not. In Listing 2-3, we import the default export
getFoo by using the import statement followed by the local name we assign to
it. Finally, we conclude the import with a reference to the file that contains
the code.

import getFoo from "default.js";

Listing 2-3: Importing default exports

We follow a similar pattern for the named exports in Listing 2-4, except
that we need to refer to the original function names inside curly brackets.
To rename the functions locally, we would need to explicitly do so with an
as statement, and there is usually no reason to do so.

import { getFooBar, getBar, getBaz } from "named.js";

Listing 2-4: Importing named exports

Now you can use the imported functions in your code, as they are avail-
able in the scope to which you imported them.

Declaring Variables
JavaScript offers three different ways to declare a variable: var, let, and
const. This section discusses the use cases for each of them. Often, you’ll be
given the advice to avoid var because it is “outdated.” You can rest assured
that it’s not, and you must understand each of these variable declaration
methods in order to choose the right tool for the job.

These variables differ in their scope, which defines the code area
in which we can access and use them. JavaScript has multiple levels of
scope: global, module, function, and block. Block scope, which applies
to any block of code enclosed in curly brackets, is the smallest unit of
scope. Every time you use curly brackets, you create a new block scope.
In comparison, you make a function scope when you define a function.

18 Chapter 2

The scope is limited to the code area inside a specific function. The module
scope applies only to a specific module, whereas the global scope applies to
the entire program. Variables defined in the global scope are available in
every part of your code.

As you’ll see in the following code listings, a variable is always available
in its own scope and all of its child scopes. Hence, you should remember
that, for example, a function scope can contain multiple block scopes. The
same variable name can be defined twice in one program as long as each
variable occurs in different scopes.

Hoisted Variables
Traditional JavaScript declares variables with the var keyword. The scope
of these variables is the current execution context (usually the enclosing
function). If declared outside any function, the variable’s scope is global,
and the variable creates a property on the global object.

Unlike for all other variables, the runtime environment moves, or hoists,
the declaration of var to the top of its scope upon execution. Therefore, you
can call these variables in your code before you define them. Listing 2-5
shows a short example of hoisting.

function scope() {
 foo = 1;
 var foo;
}

Listing 2-5: Using a hoisted variable before it is defined

In this listing, we assign a value to a variable before declaring it in the
following line. In languages like Java and C, we can’t use variables before
we declare them, and any attempt to do so will throw an error. However,
because of hoisting in JavaScript, the parser moves all variable declarations
defined with the var keyword to the top of the scope. Thus, the code is
equivalent to that in Listing 2-6.

function scope() {
 var foo;
 foo = 1;
}

Listing 2-6: Defining a variable before using it

Because of hoisting, block scope does not apply to variables declared
with the var keyword. They are always hoisted. To illustrate this, take a look
at Listing 2-7, where we declare a global variable globalVar, a variable foo
inside the function scope, and a variable bar inside a block scope, all with
the var keyword.

var globalVar = "global";
function scope() {
 var foo = "1";

Modern JavaScript 19

 if (true) {
 var bar = "2";
 }
 console.log(globalVar);
 console.log(window.globalVar);
 console.log(foo);
 console.log(bar);
}
scope();

Listing 2-7: The scope of var

We run the scope function and see that globalVar and window.globalVar
are the same; the parser hoists both variables, foo and bar, to the top of the
function scope. Thus, the variable bar is available outside the block scope,
and the function scope writes both variables’ values, 1 and 2, to the console.

Scope-Abiding Variables
Modern JavaScript introduced the let keyword to supplement var. With
let, we can declare variables that are block-scoped and can be accessed
only after they have been declared. For this reason, they are considered
non-hoisted variables. Block-scoped variables are limited to the scope of
the block statement inside which they are defined. Unlike global variables
defined with var, a global let variable isn’t added to the window object.

Let’s look at the scope of a variable declared with let. In Listing 2-8, we
declare a variable foo inside a function scope, a variable bar inside a block
scope, and a global variable globalVar.

let globalVar = "global";
function scope() {
 let foo = "1";
 if (true) {
 let bar = "2";
 }
 console.log(globalVar);
 console.log(window.globalVar);
 console.log(foo);
 console.log(bar);
}
scope();

Listing 2-8: The scope of let

Each variable is available only in its respective scope. The parser does
not hoist them, and therefore, the variable bar is not available outside the
block statement. If you try to reference it elsewhere, the parser will throw
an error and notify you that bar is not defined.

We execute the function, and unlike the var code, it writes only the
value of foo to the console. When we try to access bar, we receive an error,
Uncaught ReferenceError: bar is not defined. For globalVar, we see the value
global printed on the console, whereas window.globalVar is undefined.

20 Chapter 2

Constant-Like Data
Modern JavaScript introduced another new keyword, const, for declaring
constants such as data types. Like let, const does not create properties of
the global object when declared globally. They, too, are considered non-
hoisted, as they cannot be accessed before being declared.

Constants in JavaScript are different from those in many other lan-
guages, where they function as immutable data types. In JavaScript, con-
stants only look immutable. In fact, they are read-only references to their
value. Therefore, you cannot directly reassign another value to the variable
identifier for primitive data types. However, objects or arrays are non-
primitive data types, so even when you use const, you can mutate their val-
ues through methods or direct property access.

In Listing 2-9, we declare both a primitive and a non-primitive data
type with the const keyword and try to change their content.

const primitiveDataType = 1;
try {
 primitiveDataType = 2;
} catch (err) {
 console.log(err);
}

const nonPrimitiveDataType = [];
nonPrimitiveDataType.push(1);

console.log(nonPrimitiveDataType);

Listing 2-9: Using const to declare primitive and non-primitive types

We declare and assign a value to two constant-like data structures.
Now when we try to reassign a value to the primitive data structure, the
runtime throws the error Attempted to assign to readonly property. Because
we used const, we cannot reassign its value. In contrast, we can modify
the nonPrimitiveDataType array (done here with the push method) and append
a value without running into an error. The array should now contain one
item with the value 1; hence, we see [1] in the console.

Arrow Functions
Modern JavaScript introduced arrow functions as alternatives to regular
functions. There are two concepts you need to know about arrow functions.
First, they use a different syntax than regular functions. Defining an arrow
function is much quicker, requiring just a few characters and one line of
code. The second important, but not so obvious, change is that they use
something called a lexical scope, making them more intuitive and less error
prone.

Modern JavaScript 21

Writing Arrow Functions
Instead of using the function keyword to declare an arrow function, we
use the equal-to and greater-than signs to form an arrow (=>). This syntax,
also called the fat arrow, reduces noise and results in more compact code.
Therefore, modern JavaScript prefers this syntax when passing functions as
arguments.

In addition, if an arrow function has only one parameter and one state-
ment, we can omit the curly brackets and the return keyword. In this com-
pact form, we call the function a concise body function. Listing 2-10 shows the
definition of a traditional function followed by an arrow function.

const traditional = function (x) {
 return x * x;
}

const conciseBody = x => x * x;

Listing 2-10: A traditional function and an arrow function with the concise body syntax

We first define a standard function with the function keyword and famil-
iar return statement. Then we write the same functionality as an arrow func-
tion with the concise body syntax. Here we omit the curly brackets and use
an implied return statement, without the return keyword.

Understanding Lexical Scope
Unlike regular functions, arrow functions do not bind their scope to the
object that calls the function. Instead, they use a lexical scope, in which the
surrounding scope determines the value of the this keyword. Therefore,
the scope to which this refers in an arrow function always represents the
object defining the arrow function instead of the object calling the function.
Listing 2-11 illustrates the concepts of lexical and defining scopes.

1 this.scope = "lexical scope";

const scopeOf = {
 2 scope: "defining scope",

 traditional: function () {
 3 return this.scope;
 },

 arrow: () => {
 return this.scope;
 },
};

console.log(scopeOf.traditional());
console.log(scopeOf.arrow());

Listing 2-11: An arrow function’s scope

22 Chapter 2

We first declare the scope property on the lexical scope 1; this is the
defining object. Then we create an object with a property of the same name
inside the defining scope 2. Next, we define two functions, both of which
use this to return the value of this.scope 3.

Upon calling them, you can see the difference between the two references.
Whereas this.scope in the arrow function refers to the property defined in the
lexical scope, the traditional function’s this refers to the second property we
defined. Consequently, the scopeOf.traditional function outputs defining scope,
whereas the scopeOf.arrow function outputs lexical scope.

Exploring Practical Use Cases
Because functions are first-class citizens in JavaScript, we can pass them as
arguments to other functions. In Chapter 1, you used this pattern to define
callbacks in Node.js or previously when you worked with event handlers
in the browser. But when you use regular functions as callbacks, the code
quickly gets cluttered with function statements and curly brackets, even if
the actual code in the callback is quite simple. Arrow functions allow for a
clean and simple syntax in callbacks. In Listing 2-12, we use a callback on
the array filter method and define it as a traditional function and as an
arrow function.

let numbers = [-2, -1, 0, 1, 2];

let traditional = numbers.filter(function(num) {
 return num >= 0;
 }
);

let arrow = numbers.filter(num => num >= 0);

console.log(traditional);
console.log(arrow);

Listing 2-12: Passing a fat arrow function as a parameter

The first version of the callback is a traditional function, whereas the
second implementation uses an arrow function with a concise body syntax.
Both return the same array: [0, 1, 2]. We see that the actual functionality,
to remove all negative numbers from the array, is a simple check to see if
the current item is greater than or equal to zero. The traditional function
is harder to understand, as it requires additional characters. Once you fully
grasp the arrow syntax, you’ll enhance the readability of your code and, in
turn, improve the code quality.

Creating Strings
Modern JavaScript introduces untagged and tagged template literals. Template
literals are a simple way to add variables and expressions to a string. This string

Modern JavaScript 23

interpolation can span multiple lines and include single and double quotation
marks without requiring escaping. We enclose template literals in backticks (`)
and indicate a variable or expression in the template by using a dollar sign ($)
and curly brackets.

An untagged template literal is just a string enclosed in backticks. The
parser interpolates the variables and expressions and returns a string. As
a full-stack developer, you’ll use this pattern every time you want to add
variables to a string or concatenate multiple strings. Listing 2-13 shows an
example of an untagged template literal. They can span multiple lines with-
out the need for any control characters.

let a = 1;
let b = 2;
let string = `${a} + ${b} = ${a + b}`;
console.log(string);

Listing 2-13: An untagged template literal

The parser will substitute the placeholders and evaluate the expression
in the template literal to the string 1 + 2 = 3.

As soon as an expression precedes a template literal, it becomes tagged.
In these cases, the function receives both a template literal and the substitu-
tion values as arguments and then performs an action with both of them
before returning a value. This returned value can be of any primitive or
non-primitive type. In Listing 2-14, we use a tagged template literal with a
custom function to add or subtract numbers and explain the process using
words.

function tag(literal, ...values) {
 console.log("literal", literal);
 console.log("values", values);

 let result;
 switch (literal[1]) {
 case " plus ":
 result = values[0] + values[1];
 break;
 case " minus ":
 result = values[0] - values[1];
 break;
 }
 return `${values[0]}${literal[1]}${values[1]} is ${result}`;
}

let a = 1;
let b = 2;
let output = tag`What is ${a} plus ${b}?`;

console.log(output);

Listing 2-14: A basic tagged template literal

24 Chapter 2

Here the parser calls the tag expression and then passes the template
literal and substitution values as arguments to the function. The function
constructs a string from the parameters and returns it.

Let’s take a deeper look at our code. In our tag expression, the first
argument, literal, is an array that is split at the variables, like this: ['What
is ', ' minus ', '?']. The argument value is also an array, and it contains
the values of the template literal variables we passed to the function: [1, 2].
We use a simple switch/case statement to calculate the result based on the
literal and values. Finally, we return a new string with the answer to the
“question” and see 1 plus 2 is 3 on the console.

With their simple interface for complex string substitutions, tagged
template literals provide an elegant way to create a domain-specific language
(DSL) in JavaScript. A DSL is a language targeted to solve a particular task
in a particular domain. It’s in contrast to a general-purpose language, such
as JavaScript, which we can use to solve a wide array of software-related
problems. A familiar example of a DSL is HTML, which we use in the web
development domain to mark up text but which we cannot use for math-
ematical operations or reading file contents. You will define your own DSL
for full-stack development with GraphQL schemas. When you define your
first GraphQL schema in Chapter 6, you’ll understand that its DSL is noth-
ing more than a tagged template literal.

Asynchronous Scripts
JavaScript is single-threaded, which means that it can run only one task at
a time. Therefore, long-running tasks can block the application. A simple
solution is asynchronous programming, a pattern where you start a long-
running task without blocking the whole application. While your script
waits for a result, the rest of the application can still respond to interactions
or user interface events and perform other calculations.

Avoiding Traditional Callbacks
Traditional JavaScript implements asynchronous code with callback functions
executed after another function returns a result. You’ve probably already used
callbacks when your code has needed to react to an event instead of running
immediately. One common use case for this technique in full-stack web devel-
opment is performing I/O operations in Node.js or calling remote APIs.
Listing 2-15 provides an example of an I/O operation. We import the Node.js
fs module, which handles filesystem operations, and use a callback function to
display the file’s contents as soon as the operation concludes.

const fs = require("fs");

const callback = (err, data) => {
 if (err) {
 return console.log("error");
 }

Modern JavaScript 25

 console.log(`File content ${ data }`);
};

fs.readFile(" file.txt", callback);

Listing 2-15: Reading a file in Node.js with a callback function

Reading a file is a common example of asynchronous scripting. We
don’t want the application to be blocked while waiting for the file content
to be ready; however, we also need to use the file’s content in a specific part
of the application.

Here we create the callback function and pass it as a parameter to the
fs.readFile function. This function reads a file from the filesystem and
executes the callback as soon as the I/O operation fails or succeeds. The
callback receives the file data and an optional error object, which we write
to the console for now.

Callbacks are a clumsy solution to asynchronous scripting. As soon as
you have multiple dependent callback functions, you end up in so-called
callback hell, where every callback function takes another callback func-
tion as an argument. The result is a pyramid of functions that are difficult
to read and prone to errors. Modern JavaScript introduced promises and
async/await as an alternative to callbacks.

Using Promises
Promises provide a much cleaner syntax for chainable asynchronous tasks.
Similar to callbacks, they defer further tasks until a previous action has
completed or failed. Essentially, promises are function calls that do not
return an immediate result. Instead, they promise to return the result at
some later point. If there is an error, the promise is rejected instead of
resolved.

The Promise object has two properties: the state and the result. When
the state is pending, the result is undefined. However, as soon as the prom-
ise resolves, the state changes to fulfilled, and the result reflects the return
value. If the promise is rejected instead, the state is also set to rejected, and
the result contains an error object.

Promises follow a unique syntax. To use them, you first create a new
Promise or call a function that returns a Promise. Then you consume the
Promise object, and finally you clean up. This is done by registering the con-
suming functions then, catch, and finally. The promise initially calls then as
soon as the state changes from pending to fulfilled and passes the returned
data to it. Each following then method receives the return value of the pre-
vious one, allowing you to create a single task chain that works with and
manipulates these return values.

The promise chain invokes the catch method only if an error occurs
either initially or later in the chain of tasks. In addition, a state change (of
this particular promise) to rejected also invokes it. In any case, the parser
calls the finally method after the stack of then methods has completed or
the catch method was invoked. You use the finally method for cleanup tasks

26 Chapter 2

such as unlocking the user interface or closing database connections. It’s
similar to the finally call of a try...catch statement.

You can use promises in any function. In Listing 2-16, we use the native
fetch API to request JSON data.

function fetchData(url) {
 fetch(url)
 .then((response) => response.json())
 .then((json) => console.log(json))
 .catch((error) => {
 console.error(`Error : ${error}`);
 });
}
fetchData("https://www​.usemodernfullstack​.dev​/api​/v1​/users");

Listing 2-16: Fetching remote data with promises

Like I/O operations on the filesystem, network requests are long-
running tasks that block the application. Therefore, we should use asyn-
chronous patterns to load remote datasets. As in Listing 2-15, we need to
wait until the operation is complete before we can process the requested
data or handle an error.

The fetch API is promise-based by default. As soon as the promise
resolves and the state changes to fulfilled, the following then function
receives the response object. We then parse the data and pass the JSON
object to the next function in the promise chain, a sequence of functions con-
nected with a dot (.then). If there is an error, the promise is rejected. In this
case, we catch the error and write it to the console.

Simplifying Asynchronous Scripts
Modern JavaScript introduces a new, simpler pattern for handling asynchro-
nous requests: the async/await keywords. Instead of relying on chained func-
tions, we can write code whose structure is similar to regular synchronous
code by employing these keywords.

When using this pattern, you mark functions explicitly as asynchronous
with async. Then you use await instead of the promise-based syntax for your
asynchronous code. In Listing 2-17, we use the native fetch API with async/
await to perform another long-running task and fetch JSON data from a
remote location. This code is functionally the same as Listing 2-16, and you
should see that its syntax is more intuitive and cleaner than the chain of
then calls.

async function fetchData (url) {
 try {
 const response = await fetch(url);
 const json = await response.json();
 console.log(json);

Modern JavaScript 27

 } catch (error) {
 console.error(`Error : ${error}`);
 }
}

fetchData("https://www.usemodernfullstack.dev/api/v1/users");

Listing 2-17: Fetching remote data with async/await

First we declare the function as async to enable the await keyword inside
the function. Then we use await to wait for the response of the fetch call.
Unlike the promise syntax we used before, await simplifies the code. It awaits
the response object and returns it. Thus, the code block looks similar to
regular synchronous code.

This pattern requires us to handle errors manually. Unlike with prom-
ises, there is no default reject function. Therefore, we must wrap await state-
ments in a try...catch block to handle error states gracefully.

Looping Through an Array
Modern JavaScript introduced a whole set of new array functions. The most
important one for full-stack web development is array.map. It allows us to
run a function on each array item and return a new array with the modified
items, preserving the original array. Developers commonly use it in React to
generate a list or populate JSX with datasets from arrays. You will use this
pattern extensively once we introduce React in Chapter 4.

In Listing 2-18, we use array.map to iterate over an array of numbers and
create an arrow function as a callback.

const original = [1,2,3,4];
const multiplied = original.map((item) => item * 10);
console.log(`original array: ${original}`);
console.log(`multiplied array: ${multiplied}`);

Listing 2-18: Using array.map to manipulate each item of an array

We iterate over the array items and pass each of them to the callback
function. Here we multiply each item by 10, and then array.map returns an
array with the multiplied items.

When we log the initial array and the returned array, we see that the
original array still contains the actual, unchanged numbers (1,2,3,4). Only
the multiplied array contains the new, modified items (10,20,30,40).

Dispersing Arrays and Objects
Modern JavaScript’s spread operator is written as three dots (...). It spreads
out, or expands, the values of an array or the properties of an object into
their own variables or constants.

28 Chapter 2

Technically, the spread operator copies its content to variables that allo-
cate their own memory. In Listing 2-19, we use the spread operator to assign
the multiple values of an object to several constants. You’ll use this pattern
in nearly all React code to access component properties.

let object = { fruit: "apple", color: "green" };
let { fruit, color } = { ...object };

console.log(`fruit: ${fruit}, color: ${color}`);

color = "red";
console.log(`object.color: ${object.color}, color: ${color}`);

Listing 2-19: Dispersing an object into constants with the spread operator

We first create an object with two properties, fruit and color. Then we
use the spread operator to expand the object into variables and log them
to the console. The variables’ names are the same as the object properties’
names. However, we can now access the values directly from the variables
instead of referring to the object. We do so in the template literal and see
fruit: apple, color: green as the console output.

Also, as these variables allocate their own memory, they are complete
clones. Therefore, modifying the variable color to red won’t change the
original value: object.color still returns green when we log both variables to
the console.

Using the spread operator to clone an array or object is useful because
JavaScript treats arrays as references to its values. When you assign an array
or object to a new variable or constant, this merely copies the reference to
the original; it does not clone the array or object by allocating memory.
Therefore, changing the copy also changes the original. Using spread
instead of the equals operator (=) allocates memory and keeps no reference
to the original value. Hence, it’s an excellent solution for cloning an array
or object, as shown in Listing 2-20.

let originalArray = [1,2,3];
let clonedArray = [...originalArray];

clonedArray[0] = "one";
clonedArray[1] = "two";
clonedArray[2] = "three";

console.log (`originalArray: ${originalArray}, clonedArray: ${clonedArray}`);

Listing 2-20: Cloning an array with the spread operator

Here we use the spread operator to copy the values from the original
array to the cloned array in the same operation. Then we modify the cloned
array’s items. Finally, we write the two arrays to the console and see that the
original array differs from the cloned array.

Modern JavaScript 29

Exercise 2: Extend Express.js with Modern JavaScript
Modern JavaScript provides the tools you need to write clean and efficient
code. In Part II, you’ll use it in the Food Finder application. For now, let’s
apply your new knowledge to optimize the simple Express.js server you cre-
ated in Chapter 1.

Editing the package.json File
We’ll replace the server’s require call with named modules for different
routes. To do so, we need to explicitly specify that our project uses native
modules. Otherwise, Node.js will throw an error. Modify your package.json
file so that it looks like Listing 2-21.

{
 "name": "sample-express",
 "version": "1.0.0",
 "description": "sample express server",
 "license": "ISC",
 "type": "module",
 "dependencies": {
 "express":"^4.18.2",
 "node-fetch": "^3.2.6"
 },
 "devDependencies": {}
}

Listing 2-21: The modified package.json file

Add the property type with the value module. Also, you’ll want to install
the node-fetch package to make an asynchronous API call in one of your
routes. Run npm install node-fetch to do so.

Writing an ES.Next Module with Asynchronous Code
Create the file routes.js in the sample-express folder, next to the index.js file,
and add the code in Listing 2-22.

import fetch from "node-fetch";

const routeHello = () => "Hello World!";

const routeAPINames = async () => {
 const url = "https://www.usemodernfullstack.dev/api/v1/users";
 let data;
 try {
 const response = await fetch(url);
 data = await response.json();
 } catch (err) {
 return err;
 }
 const names = data
 .map((item) => `id: ${item.id}, name: ${item.name}`)

30 Chapter 2

 .join("
");
 return names;
};

export { routeHello, routeAPINames };

Listing 2-22: The route module in the routes.js file

First we import the fetch module for making asynchronous requests.
Then we create the first route, for our existing /hello endpoint. Its behav
ior should be the same as before; using a fat arrow function with a concise
body syntax, it returns the string Hello World!

Next, we create a route for a new /api/names endpoint. This endpoint
will add a page to our web server displaying a list of usernames and IDs.
But first we explicitly define an async function so that we can use the await
syntax for our fetch call. Then we define the API endpoint in a constant
and another variable to store asynchronous data. We need to define these
before we use them because the await calls happen inside a try...catch
block, and these variables are block-scoped. If we defined them inside the
block, we wouldn’t be able to use them later.

We call the API and await the response data, which we convert to JSON
as soon as the call succeeds. The data variable now holds an array of objects.
We use array.map to iterate over the data and create the strings we want to
display. Then we join all array items with break tags (
) to display them
in rows and return the string.

Finally, we export the two routes under their names.

Adding the Modules to the Server
Modify the file index.js in the sample-express folder to match Listing 2-23. We
use native modules for importing the require module and the routes we cre-
ated in Listing 2-22.

import { routeHello, routeAPINames } from "./routes.js";
import express from "express";

const server = express();
const port = 3000;

server.get("/hello", function (req, res) {
 const response = routeHello(req, res);
 res.send(response);
});

server.get("/api/names", async function (req, res) {
 let response;
 try {
 response = await routeAPINames(req, res);
 } catch (err) {
 console.log(err);
 }
 res.send(response);

Modern JavaScript 31

});

server.listen(port, function () {
 console.log("Listening on " + port);
});

Listing 2-23: The basic Express.js server with modern JavaScript

First we import routes with the syntax for named imports. Then we
replace the require call for the express package with an import statement.
The /hello endpoint we created earlier calls the route we imported, and the
server sends Hello World! as the response to the browser.

Finally, we create a new endpoint, /api/names, that contains asynchro-
nous code. Therefore, we mark the handler as async and await the route
inside a try...catch block.

Start the server from your command line:

$ node index.js
Listening on 3000

Now visit http://localhost:3000​/api​/names in your browser, as shown in
Figure 2-1.

Figure 2-1: The response the browser receives from the Node.js web server

You should see the new list of user IDs and names.

Summary
This chapter taught you enough modern JavaScript and ES.Next to create
a full-stack application. We covered how to use JavaScript modules to cre-
ate maintainable packages and import and export code, the different ways
to declare variables and constants, the arrow function, and tagged and
untagged template literals. We wrote asynchronous code with promises and
async/await. We also covered array.map, the spread operator, and their useful-
ness for your full-stack code. Finally, you used your new knowledge to update
the sample Node.js server from Chapter 1 with modern JavaScript concepts.

Modern JavaScript has many more features than this chapter covers.
From the freely available resources, I recommend the JavaScript tutorials at
https://www​.javascripttutorial​.net.

In the next chapter, we cover TypeScript, a superset of JavaScript with
support for types.

https://www.javascripttutorial.net

3
T Y P E S C R I P T

TypeScript is a programming language
that adds static typing to the dynamically

typed JavaScript language. It’s a strict syntac-
tic superset of JavaScript, which means that all

		 existing JavaScript is valid TypeScript. By contrast,
		 TypeScript is not valid JavaScript, because it supplies
		 additional features.

This chapter will introduce you to the pitfalls of working with JavaScript’s
dynamic types and explain how TypeScript’s static typing helps catch errors
early, increasing the stability of your code. Full-stack developers have embraced
TypeScript: it was the runner-up in the most wanted category of a recent Stack
Overflow Developer Survey, and 78 percent of participants in a State of JS sur-
vey reported using it. According to https://builtwith​.com, TypeScript underlies
7 percent of the top 10,000 sites.

We’ll cover the essential and advanced TypeScript concepts necessary
for building full-stack applications. Along the way, you’ll get to know the

https://builtwith.com

34 Chapter 3

language’s most common configuration options, its most important types,
and how and when to use TypeScript’s static typing features.

Benefits of TypeScript
TypeScript makes working with JavaScript’s type system less error prone, as
its compiler helps us see type errors instantly. Because JavaScript is dynami-
cally typed, you don’t need to specify a variable’s type when declaring it.
As soon as the runtime executes the script, it checks these types based on
usage. However, this means that errors resulting from invalid types (for
example, calling array.map on a variable that holds a number instead of an
array) won’t be discovered until runtime, at which point the complete pro-
gram fails.

In addition to being dynamically typed, JavaScript is also weakly typed,
which means it implicitly converts variables to their most plausible values.
Listing 3-1 shows an implicit conversion from a number to a string.

let string = "1";
let number = 1;
let result;

result = number + number;
console.log("value: ", result, " type of ", typeof(result));

result = number + string;
console.log("value: ", result, " type of ", typeof(result));

Listing 3-1: Implicit conversion from a number to a string in JavaScript

We declare three variables, assigning the first a string, the second a
numeric value, and the third the result of using the arithmetic plus (+)
operator to add the number to itself. We then log the result of this sum
operation and its type to the console. If you executed this code, you would
see that the value is numeric and that the runtime assigned a type of number
to the variable.

Next, we use the same operator again, but instead of adding a numeric
value to the number variable, we add a string to it. You should see that the
logged value is 11, not 2, as you might have expected. Moreover, the vari-
able’s assigned type has changed to string. This happens because the run-
time environment needs to handle an impossible task: adding a number
and a string. It solves this issue by implicitly converting the number to a
string, then using the plus operator to concatenate the two strings. Without
TypeScript, we notice this conversion only when we run the code.

Another common problem caused by untyped variables relates to
function and API contracts, or the agreements about what the code accepts
and returns. When a function takes a parameter, it implicitly expects a
parameter of a specific type. But without TypeScript, there is no way to
ensure that the parameter type is correct. The same problem exists for
the function’s return value. To illustrate this, Listing 3-2 changes the code

TypeScript 35

from Listing 3-1 so that it uses a function to calculate the value of the result
variable.

let string = "1";
let number = 1;
let result;

const calculate = (a, b) => a + b;

result = calculate(number, number);
console.log("value: ", result, " type of ", typeof(result));

result = calculate(number, string);
console.log("value: ", result, " type of ", typeof(result));

Listing 3-2: A function that could return an invalid type due to implicit type conversion

The new calculate function takes two parameters, a and b, and as before,
adds the two values. Like in Listing 3-1, as soon as we pass a number and a
string as parameters, the function returns a string instead of a number. Our
function might expect both parameters to be numbers, but we can’t verify this
without manually checking the type by using logic similar to that in Listing 3-3.

let string = "1";
let number = 1;
let result;

const calculate = (a, b) => {
 if (Number.isInteger(a) === false || Number.isInteger(b) === false) {
 throw new Error("Invalid type: a parameter is not an integer");
 } else {
 return a + b;
 }
};

result = calculate(number, number);
console.log("value: ", result, " type of ", typeof(result));

result = calculate(number, string);
console.log("value: ", result, " type of ", typeof(result));

Listing 3-3: The refactored type-safe function

Here we use the native isInteger function of the Number object to verify
that the parameters a and b are integers. The first call of the function, in
which we pass it two integers, should calculate the result as expected. The
second call, in which we pass the function an integer and a string, looks
fine in the editor. However, when we run the code, the runtime environ-
ment should throw the error Invalid type: a parameter is not an integer.

There are two main concerns with manually checking the types. First,
it adds a lot of noise to our code, as we need to check for all possible types
every time we work with function or API contracts, such as when we accept
a parameter or return a value. Second, we’re not notified of issues during

36 Chapter 3

development. To see the errors in dynamically typed languages, we need
to execute the code so that the interpreter can inform us about errors at
runtime.

Unlike dynamically typed languages, statically typed languages per-
form type checks on the code compilation, before runtime. The TypeScript
Compiler (TSC) handles this chore; it can run in the background of our
code editor or IDE and instantly report all errors based on invalid type
usage. Therefore, you can catch errors and see each variable’s assigned
types and data structures early.

Even if you don’t set up instant feedback like that, running your code
through TSC is necessary before it can be used, which ensures that these
kinds of errors are caught earlier than they otherwise would be. The abil-
ity to check for these errors is one of the most important benefits of using
TypeScript over JavaScript. We will discuss how to benefit from type annota-
tions and when to use them in “Type Annotations” on page 38.

Setting Up TypeScript
TypeScript’s syntax isn’t valid JavaScript, so a regular JavaScript runtime
environment can’t execute it. To run TypeScript in Node.js or a browser,
we first need to use TSC to convert it to regular, backward-compatible
JavaScript. We then execute the resulting JavaScript.

Despite being called a compiler, TSC doesn’t actually compile TypeScript
into JavaScript. Instead, it transpiles it. The difference lies in the level of
abstraction. A compiler creates low-level code, while a transpiler is a source-
to-source compiler that produces equivalent source code in a language of
roughly the same abstraction. For example, you could transpile ES.Next to
legacy JavaScript or Python 2 to Python 3. (That said, the terms transpiling
and compiling are often used interchangeably.)

In addition to converting TypeScript to JavaScript, TSC checks your
code for type errors and verifies the contracts between your functions. The
transpiling and type-checking happen independently, and the TSC pro-
duces JavaScript regardless of the types you defined. TypeScript errors are
merely warnings emitted during the build. They won’t stop the transpiling
step as long as the JavaScript itself doesn’t produce an error.

The use of TypeScript won’t affect your code’s performance. The compiler
removes types and type operations during the transpilation step, essentially
stripping all TypeScript syntax from the actual JavaScript code. Therefore,
they can’t affect the runtime or the size of the final code. TypeScript is
consequently no slower than JavaScript, although the transpilation can take
some time.

Installation in Node.js
If you’re using Node.js, you should define TypeScript and all type defini-
tions as development dependencies with the --save-dev flag in your project’s
package.json file. There is no need to install TypeScript globally. Just add
TypeScript directly to your project with this npm command:

TypeScript 37

$ npm install --save-dev typescript

TypeScript files use the extension .ts, and because TypeScript is a super-
set of JavaScript, all valid JavaScript code is automatically valid TypeScript
code. Therefore, you can rename your .js files to .ts and instantly use the
static type checker with your existing code.

A tsconfig.json file defines TSC configuration options. We’ll cover the
most important ones in the next section. For now, run the following com-
mand to generate a new file with the default configuration:

$ npx tsc -init

TSC looks for this file in the current path and all parent directories.
The optional -p flag points the TypeScript compiler directly to the file. TSC
then reads configuration information from this file and treats its folder as
TypeScript’s root directory.

N O T E 	 If you want to follow this chapter’s examples without creating a dedicated project, you
can run code in the online playground at https://www​.typescriptlang​.org​/play
instead of installing TypeScript locally.

The tsconfig.json File
Take a look at the basic structure of a tsconfig.json file. The content of the
generated file depends on your installed TypeScript version, and there are
around 100 configuration properties, but for most projects, only the follow-
ing few are relevant:

{
 "extends": "@tsconfig/recommended/tsconfig.json",
 "compilerOptions": {},
 "include": [],
 "exclude": []
}

The extends option is a string that configures the path to another simi-
lar configuration file. Usually, this property extends a preset you used as
a template with minor, project-specific tweaks. It works similarly to class-
based inheritance in object-oriented programming. The preset overrides
the base configuration, and the configuration’s key-value pairs overwrite
the preset. The example shown here uses the recommended configuration
file for TypeScript to override the default settings.

The compilerOptions field configures the transpiling step. We list its
options in Appendix A. The value for include is an array of strings that
specifies the patterns or filenames to include for transpiling. The value for
exclude is an array of strings that specifies patterns or filenames to exclude.
Keep in mind that TSC applies these patterns on the list of files found with
the included pattern. Usually, we don’t need to include or exclude files, as

https://www.typescriptlang.org/play

38 Chapter 3

our whole project will consist of TypeScript code. Hence, we can leave the
arrays empty.

Dynamic Feedback with TypeScript
Most modern code editors have support for TypeScript, and they show
us the errors generated by TSC directly inside the code. Remember the
calculate function we used to explain how TypeScript verifies function con-
tracts? Figure 3-1 is a screenshot from Visual Studio Code highlighting the
type error and hinting at the solution.

Figure 3-1: Working with TypeScript in Visual Studio Code

You can use any code editor or IDE you’d like to write your TypeScript
code, though one that shows dynamic feedback like this is recommended.

Type Annotations
A type annotation is an optional way to explicitly tell the runtime environ-
ment which types to expect. You add them following this schema: variable:
type. The following example shows a version of the calculate function in
which we type both parameters as numbers:

const calculate = (a: number, b: number) => a + b;

Some developers tend to add types to everything in their code, and
by doing so, they add noise that makes the code less readable. This anti-
pattern, called over-typing, stems from a false understanding of how type
annotations should work. The TypeScript compiler infers types from usage.
Therefore, you don’t need to explicitly type everything. Instead, the code
editor runs TSC in the background and leverages the results to display the
inferred type information and compiler errors as you saw in the “Dynamic
Feedback with TypeScript” section.

Rather, type annotations are a way to ensure that code honors the API
contracts. There are three scenarios in which you’ll want to verify the con-
tract, and only one of them is especially important. The first scenario, upon
a variable’s declaration, is usually not recommended. The second, annotat-
ing the return value of a function, is optional, whereas the third scenario,
annotating a function’s parameters, is essential. We’ll now take a look at all
three of these cases in detail.

TypeScript 39

Declaring a Variable
The most obvious place to type a variable is upon an assignment or declara-
tion. Listing 3-4 demonstrates this by explicitly typing the variable weather
as a string and then assigning it a string value.

let weather: string = "sunny";

Listing 3-4: Over-typing during the variable’s declaration

In most cases, however, this is a form of over-typing, as you could
instead leverage the compiler’s type inference. Listing 3-5 shows the alter-
native pattern of using type inference.

let weather = "sunny";

Listing 3-5: Inferring the variable’s type based on its value

Because TSC automatically infers the type of this variable, the code
editor should show the type information when you hover over the variable.
Without the explicit annotation, we have a much cleaner syntax and avoid the
noise that the redundant type declaration adds to the code. This improves
code readability, which is why this kind of over-typing is usually to be avoided.

Declaring a Return Value
Although TypeScript can infer a function’s return type, you’ll usually want
to annotate it explicitly. This code pattern ensures that the function’s con-
tract is honored, as the compiler shows implementation errors where the
function is defined instead of where it is used.

Another reason to use type annotations in this situation is that, as a
programmer, you must explicitly define what a function does. By clarifying
the function’s input and output types, you’ll gain a better understanding
of what you actually want the function to do. Listing 3-6 shows you how to
declare a function’s return type upon declaration.

function getWeather(): string {
 const weather = "sunny";
 return weather;
}

Listing 3-6: Typing a function’s return value upon declaration

We create a function that returns the weather variable we declared
earlier. The weather variable has the inferred string type. Hence, the func-
tion returns a string. Our type definition explicitly sets the function’s
return type.

Declaring a Function’s Parameters
It’s essential to annotate the parameters of a function, because TypeScript
doesn’t have enough information to infer function parameters in most

40 Chapter 3

cases. By typing these parameters, you’re telling the compiler to check
the types when you call the function and pass it arguments. Take a look at
Listing 3-7 to see this pattern in action.

const weather = "sunny";
function getWeather(weather: string): string {
 return weather;
};
getWeather(weather);

Listing 3-7: Typing a function’s parameters

Instead of declaring the weather variable as a constant inside the func-
tion, we want the returned value to be dynamic. Therefore, we modify the
function to accept a parameter and return it immediately. We then call the
function with the weather constant as a parameter.

Good TypeScript code avoids noise and relies on inferring type annota-
tions. It always annotates a function’s parameters and opts for annotated
return values but never annotates local variables.

Built-in Types
Before you can use TypeScript and its annotations, you need to know what types
are available to you. One of TypeScript’s main benefits is that it enables you to
declare any of JavaScript’s primitive types explicitly. In addition, TypeScript adds
its own types, the most important of which are unions, tuples, any, and void. You
can also define custom types and interfaces.

Primitive JavaScript Types
JavaScript has five primitive types: strings, numbers, Booleans, undefined,
and null. Everything else in the language is considered an object. Listing 3-8
shows the syntax for defining variables of these primitive JavaScript types
with additional TypeScript type annotations. (Remember that, most of the
time, you can just rely on the compiler’s type inference in this situation.)

let stringType: string = "bar";
let booleanType: boolean = true;
let integerType: number = 1;
let floatType: number = 1.5;
let nullType: null = null;
let undefinedType: undefined = undefined;

Listing 3-8: JavaScript’s primitive types with TypeScript’s type annotations

First we define a string variable and a Boolean with the TypeScript
annotations. These are identical to strings and Booleans in JavaScript.
Then we define two numbers. Like JavaScript, TypeScript uses a single
generic type for numbers, without differentiating between integers and

TypeScript 41

floating points. Finally, we look at TypeScript’s null and undefined types.
These behave the same as JavaScript’s primitive types of the same name.
Null refers to a value that either is empty or doesn’t exist, and it indicates
the intentional absence of a value. In contrast, undefined indicates the unin-
tentional absence of a value. We did not assign a value in Listing 3-5 for the
undefined type, because we don’t know it.

The union Type
There are a few additional types you should know about, because the more
precise your type annotations are, the more helpful you’ll find TSC to be.
TypeScript introduced the union type to the JavaScript ecosystem. Unions are
variables or parameters that can have more than one data type. Listing 3-9
shows an example of a union type that can be a string or a number.

let stringOrNumberUnionType: string | number;
stringOrNumberUnionType = "bar";
stringOrNumberUnionType = 1;
stringOrNumberUnionType = true;

Listing 3-9: TypeScript’s union type

We declare a union-type variable that can contain either a string or a
number, but nothing else. As soon as we assign a Boolean variable, TSC
throws an error, and the IDE shows the message Type 'boolean' is not
assignable to type 'string | number'.

While you might find union types useful for annotating function
parameters and arrays that can contain different types, you should use
them sparingly and avoid them whenever possible. This is because, before
working with union-typed items, you need to perform additional manual
type checks; otherwise, they could cause errors. For example, if you iterated
over an array of strings or numbers and then added all items, you would
first need to convert all strings to numbers. Otherwise, JavaScript would
implicitly convert the numbers to strings, as shown earlier in this chapter.

The array Type
TypeScript provides a generic array type that offers array functions similar
to JavaScript’s array. However, take a close look at the syntax for typing the
array, shown in Listing 3-10. You’ll notice that the type of the array depends
on the type of the array items.

let genericArray: [] = [];
genericArray.push(1);

let numberArray: number[] = [];
numberArray.push(1);

Listing 3-10: Typed arrays

42 Chapter 3

First we define an array without specifying the type of its items. Unfor
tunately, what seems to be a definition of a generic array leads to issues
down the road. As soon as we try to add a value, TSC throws the error
Argument of type 'number' is not assignable to parameter of type 'never',
because the array is not typed.

Hence, we need to type the items in the array. Therefore, we create an
array, numberArray, in which each item has the type of number. Now we can
add numeric values to the array without running into errors.

The object Type
TypeScript’s built-in object type is the same as JavaScript’s object. Although
you can define the properties’ types for TSC to type-check, the compiler can’t
ensure the order of the properties. Nonetheless, it typechecks them, as
shown in Listing 3-11.

let weatherDetail: {
 weather: string,
 zipcode: string,
 temp: number
} = { weather: "sunny", zipcode: "00000", temp: 1 };
weatherDetail.weather = 2;

Listing 3-11: Typed objects

Here we define an object with three properties: two that take a string
and another that takes a number. Then we try to assign a number to the
property weather annotated as a string. Now TSC notifies us with an error
explaining that we assigned a value of the wrong type.

Note that, usually, you should avoid typing objects inline, as in this
example. Instead, it is a best practice to create a custom type, which is
reusable and avoids cluttering our code, enhancing its readability. We
discuss how to create and use them in “Custom Types and Interfaces” on
page 44.

The tuple Type
Another common type that TypeScript adds to JavaScript is the tuple type.
Shown in Listing 3-12, tuples are arrays with a specified number of typed
items. TypeScript’s tuples are similar to those you might have encountered
in programming languages such as Python and C#.

let validTuple: [string, number] = ["bar", 1];
let invalidTuple: [string, number] = [1, "bar"];

Listing 3-12: TypeScript’s tuple type

We define two tuples. In both, the first array item is a string, and the sec-
ond is a number. If the type, order, or number of items added to the tuple
differs from the tuple’s declaration, TSC throws an error. Here the first

TypeScript 43

assignment is acceptable, whereas the second one throws two errors indicat-
ing a mismatch in types.

The any Type
TypeScript’s any type is generic, meaning it can take any value, and you
should avoid using it. As you can see in Listing 3-13, it accepts all values
without throwing an error, which defeats the purpose of static typing.

let indifferent: any = true;
indifferent = 1;
indifferent = [];

Listing 3-13: TypeScript’s any type

Using any might seem like an easy choice, and it is tempting to rely on
it as an escape hatch. Avoid this at all costs. When you pass any as a value
to, say, a function, you break the contract you specified in the function
declaration, and when you use any to define the contract, there effectively
isn’t one.

To view a scenario in which using the any type causes problems, take a
look at Listing 3-14.

const calculate = (a: any, b: any): any => a + b;
console.log(calculate (1,1));
console.log(calculate ("1",1));

Listing 3-14: Problems caused by the any type

We reuse the calculate function, which adds two numbers. When we
pass two numeric values, we receive the expected output of 2. In a previous
example, we typed the parameters as numbers, thus preventing the use of
invalid types as arguments.

However, when we use any instead of a number and pass a string to
the function, TSC doesn’t throw an error. JavaScript implicitly converts
the number to a string and returns an unexpected value of 11. We saw this
behavior at the beginning of the chapter, in the untyped version of the
function. As you can see, using any is the same as using no types at all.

While convenient, the any type masks your bugs during programming
and hides your type designs, rendering type-checking useless. It also pre-
vents your IDE from displaying errors and invalid types.

The void Type
TypeScript’s void type is the opposite of any: it indicates no type at all. Its
only use case is to annotate the return value of a function that shouldn’t
have one, as shown in Listing 3-15.

44 Chapter 3

function log(msg: string): void {
 console.log(msg);
}

Listing 3-15: TypeScript’s void type

The custom log function we define here passes a parameter to the con-
sole. It doesn’t return anything, so we use void as the return type.

To learn more about TypeScript types and other important details
of the language, take a look at The TypeScript Handbook at https://www​
.typescriptlang​.org​/docs​/handbook​/intro​.html.

Custom Types and Interfaces
The previous sections introduced you to enough TypeScript to begin using
the language. However, you’ll find it helpful to know a few more advanced
concepts. This section shows you how to create custom types and use
untyped third-party libraries in your TypeScript code. You’ll also learn
when to create a new type and use a custom interface.

While working with TypeScript, remember that a TypeScript file without
top-level imports or exports is not a module; therefore, it runs in the global
scope. Consequently, all of its declarations are accessible in other modules.
By contrast, a TypeScript file with top-level imports or exports is its own
module, and all declarations are limited to the module scope, meaning
they’re available in the scope of this module only.

Defining Custom Types
TypeScript lets you define custom types by using the type keyword. Custom
types are a great way to simplify your code. To see how, take a second look
at the code shown back in Listing 3-8, when you created a typed object.
Now consider Listing 3-16, which optimizes the code with a custom type
definition. You should find it much cleaner and easier to read.

type WeatherDetailType = {
 weather: string;
 zipcode: string;
 temp?: number;
};

let weatherDetail: WeatherDetailType = {
 weather: "sunny",
 zipcode: "00000",
 temp: 30
};
const getWeatherDetail = (data: WeatherDetailType): WeatherDetailType => data;

Listing 3-16: Custom types for typed objects with TypeScript

https://www.typescriptlang.org/docs/handbook/intro.html
https://www.typescriptlang.org/docs/handbook/intro.html

TypeScript 45

We create a custom type, WeatherDetailType, with the type keyword. Note
that the overall syntax is similar to that used to define an object; we use the
equal sign (=) to assign the definition to the custom type.

The custom type has two required properties: weather and zipcode. In
addition, it has an optional temp property, as indicated by the question
mark (?). Now when we create the getWeatherDetail function, we can annotate
the parameter, weatherDetail, as an object with a type of WeatherDetailType.
Using this technique, we avoid using inline annotations and can reuse our
custom type later, such as to annotate the return type of a function.

Defining Interfaces
In addition to types, TypeScript has interfaces. However, the difference
between a type and an interface is blurry. You can freely decide which one
to use, so long as you follow a convention in your code.

In general, we consider a type definition to answer the question, “Which
type is this data?” A possible answer might be a union or a tuple. An inter-
face is a way to describe the shape of some data, such as the properties
of an object. It answers the question, “Which properties does this object
have?” The most practical difference is that, unlike an interface, we cannot
directly modify a type after we’ve declared it. For an in-depth look at the
distinction, consult The TypeScript Handbook.

As a rule of thumb, use an interface to define a new object or the
method of an object. More generally, consider using interfaces over types,
as they provide more precise error messages. A classic React use case for
interfaces is to define the properties of a specific component. Listing 3-17
shows how to use the interface keyword to create a new interface to replace
the type in Listing 3-16.

interface WeatherProps {
 weather: string;
 zipcode: string;
 temp?: number;
}

const weatherComponent = (props: WeatherProps): string => props.weather;

Listing 3-17: Custom interfaces for TypeScript functions

Here we use the interface keyword to define a new interface. Unlike a
custom type’s definition, an interface definition does not use the equal sign
to assign the interface’s properties to its name. We then use the custom
interface to type the properties object props of the weatherComponent, which
returns a string.

Using Type Declaration Files
To use custom types universally, you can define them in type declaration files,
which have the .d.ts extension. Unlike regular TypeScript files with the .ts or
.tsx extension, type declaration files shouldn’t contain any implementation

46 Chapter 3

code. Instead, TSC uses these type definitions to understand custom types
and perform type checks. They aren’t transpiled to JavaScript and are never
part of the executed script.

Type declaration files prove useful when you find yourself working
with external code bases. Often, third-party libraries aren’t written in
TypeScript. Therefore, they don’t provide type declaration files for their
code bases. Luckily, the DefinitelyTyped repository at http://definitelytyped​
.github​.io provides type declaration files for more than 7,000 libraries. Use
these files to add TypeScript support to these libraries.

Type declaration files are collected under the @types scope in npm. This
scope holds all the declarations from DefinitelyTyped. Hence, they are easy
to find and are grouped next to each other in your package.json file. All type
declaration files from the @types scope should be considered development
dependencies of your project. Hence, we use the --save-dev flag on the npm
install command to add them.

Listing 3-18 shows a minimal example of a type declaration file that
exports a type and interface for an API.

interface WeatherQueryInterface {
 zipcode: string;
}

type WeatherDetailType = {
 weather: string;
 zipcode: string;
 temp?: number;
};

Listing 3-18: Defining custom types and interfaces

Save these definitions in a file called custom.d.ts in your root directory.
TSC should automatically load these definitions. You can now use the types
and interfaces from the file in your TypeScript modules.

Exercise 3: Extend Express.js with TypeScript
Let’s use your new knowledge of TypeScript to rewrite the Express.js server
you created in Exercises 1 and 2. In addition to adding type annotations,
we’ll add a new route to the server by using custom types.

Setting Up
Begin by adding TypeScript to the project following the steps described in
“Setting Up TypeScript” on page 36. Next, because Express.js isn’t typed,
add type definitions from DefinitelyTyped to your project by running the
following:

$ npm install --save-dev @types/express

http://definitelytyped.github.io
http://definitelytyped.github.io

TypeScript 47

Your package.json file should now look like this:

{
 "name": "sample-express",
 "version": "1.0.0",
 "description": "sample express server",
 "license": "ISC",
 "type": "module",
 "dependencies": {
 "express": "^4.18.2",
 "node-fetch": "^3.2.6"
 },
 "devDependencies": {
 "@types/express": "^4.17.15",
 "typescript": "^4.9.4"
 }
}

Now you can create configuration and type declaration files for the
project.

Creating the tsconfig.json File
Either create a new tsconfig.json file in the sample-express folder, next to the
index.ts file, or open the one you created earlier. Then add or replace its
content with the following code:

{
 "compilerOptions": {
 "esModuleInterop": true,
 "module": "es6",
 "moduleResolution": "node",
 "target": "es6",
 "noImplicitAny": true
 }
}

We configure TypeScript for our simple Express.js server, which
requires only a few settings. We use ES.Next modules for our TypeScript
code, and because we want to keep them after transpiling the TypeScript
to JavaScript, we set module and target to es6. The express package is a
CommonJS module. Therefore, we need to use the esModuleInterop option
and set the moduleResolution to node. Finally, we use the noImplicitAny option
to disallow the implicit use of the any type and require explicit typing.
Appendix A describes these configuration options in more detail.

Defining Custom Types
For our server, we’ll follow a simple rule of thumb: every time we use an
object, we should consider adding a custom type or interface to our project.
If the object is a function parameter, we’ll create a custom interface. If we
use this particular object more than once, we’ll create a custom type.

48 Chapter 3

To define the custom types for this sample project, we create a file
custom.d.ts next to the index.ts file in the sample-express folder and add the
code from Listing 3-19.

type responseItemType = {
 id: string;
 name: string;
};

type WeatherDetailType = {
 zipcode: string;
 weather: string;
 temp?: number;
};

interface WeatherQueryInterface {
 zipcode: string;
}

Listing 3-19: The custom.d.ts file

We create two custom types and an interface. One defines the response
items of the asynchronous API call. The other type and the interface are
similar to examples shown earlier in this chapter. They are necessary for
the new weather route we will create shortly.

Adding Type Annotations to the routes.ts File
Next, we must add type annotations to our server code. Rename the routes.js
file in the sample-express folder to routes.ts to enable the TSC for this file. You
should instantly see the errors and warnings appear in your editor. Take
some time to look at these and then adjust the contents to match the code
in Listing 3-20. We’ve bolded all type annotations.

import fetch from "node-fetch";

const routeHello = (): string => "Hello World!";

const routeAPINames = async (): Promise<string> => {
 const url = "https://www.usemodernfullstack.dev/api/v1/users";
 let data: responseItemType[];
 try {
 const response = await fetch(url);
 data = (await response.json()) as responseItemType[];
 } catch (err) {
 return "Error";
 }
 const names = data
 .map((item) => `id: ${item.id}, name: ${item.name}`)
 .join("
");
 return names;
};

TypeScript 49

const routeWeather = (query: WeatherQueryInterface): WeatherDetailType =>
 queryWeatherData(query);

const queryWeatherData = (query: WeatherQueryInterface): WeatherDetailType => {
 return {
 zipcode: query.zipcode,
 weather: "sunny",
 temp: 35
 };
};

export { routeHello, routeAPINames, routeWeather };

Listing 3-20: The typed routes.ts file

Following the principle discussed in “Type Annotations” on page 38, we
annotate only a function’s parameters and return types. We also annotate
local variables only when their types cannot be inferred, as when convert-
ing the fetch response to JSON. Here we need to explicitly type the variable
with our custom responseItemType and cast the conversion’s return value as
an array of responseItemTypes.

In the rest of the listing, we create the functions for the additional
weather route. We use the custom interface for typing both functions’
parameters and the custom type for their return types. In this basic exam-
ple, the query function returns mostly static data, except the ZIP code,
which it takes from the passed parameters. A regular implementation
would query a database with the ZIP code and retrieve actual data.

Finally, we add the new route for the weather endpoint to the export
statement.

Adding Type Annotations to the index.ts File
Rename the file index.js in the sample-express folder to index.ts and adjust the
code to match Listing 3-20. In addition to the necessary type annotations,
create a new endpoint and follow the TypeScript convention to prefix unused
parameters with an underscore (_), shown in Listing 3-21.

import { routeHello, routeAPINames, routeWeather } from "./routes.js";
import express, { Request, Response } from "express";

const server = express();
const port = 3000;

server.get("/hello", function (_req: Request, res: Response): void {
 const response = routeHello();
 res.send(response);
});

server.get("/api/names",
 async function (_req: Request, res: Response): Promise<void> {
 let response: string;
 try {

50 Chapter 3

 response = await routeAPINames();
 res.send(response);
 } catch (err) {
 console.log(err);
 }
 }
);

server.get(
 "/api/weather/:zipcode",
 function (req: Request, res: Response): void {
 const response = routeWeather({ zipcode: req.params.zipcode });
 res.send(response);
 }
);

server.listen(port, function (): void {
 console.log("Listening on " + port);
});

Listing 3-21: The typed index.ts file

First we import the new weather route from the available routes and
the Request and Response types from the express package. These are all named
exports. Thus, we use curly brackets ({}).

Then, following best practices, we add code annotations and, at the
same time, prefix the unused req parameters with an underscore. TSC will
follow the convention of functional programming languages by ignoring
these parameters. The api/names entry point is marked as an async func-
tion, so it needs to return a value wrapped in a promise. Hence, nothing is
returned, and we return void as the promise’s value.

In the following lines of code, we create an additional route for a new
/api/weather/:zipcode endpoint. The colon (:) creates a parameter on the
request’s params object. We retrieve the value for zipcode with req.params
.zipcode and pass it down to the routeWeather function. Note that there is no
underscore on the request parameter this time. Finally, we use the same
function as before to start the Express.js server and listen to port 3000.

Transpiling and Running the Code
To transpile the code with the TypeScript compiler to JavaScript, run TSC
with npx on the command line:

$ npx tsc

TSC generates two new files, index.js and routes.js, from the TypeScript
files. Start the server from your command line with the regular Node.js call:

$ node index.js
Listening on 3000

TypeScript 51

Now visit http://localhost:3000​/api​/weather​/12345 in your browser. You
should see the weather details with the ZIP code 12345, as shown in
Figure 3-2.

Figure 3-2: Browser response from the Node.js web server

Success! You wrote your first TypeScript application.

Summary
This chapter taught you what you need to know about TypeScript to create
a full-stack application. We set up TypeScript and TSC in a new project,
then discussed its most important configuration options. Next, you learned
to use TypeScript efficiently, leveraging type-annotation inference to avoid
over-typing.

We also discussed primitive and advanced built-in types and how to cre-
ate custom types and interfaces. Finally, you used your new knowledge to
add TypeScript to the Express.js server built in previous exercises and refac-
tored the code with type annotations, custom types, and interfaces.

If you want to become a TypeScript expert, I recommend The TypeScript
Handbook and the tutorials at https://www​.typescripttutorial​.net. In the next
chapter, you’ll get to know React, a declarative JavaScript library for build-
ing user interfaces.

https://www.typescripttutorial.net

Developers can use the React library to cre-
ate a full-stack application’s user interface.

React is built upon the Node.js ecosystem,
and as one of the most commonly used web

		 frameworks, it currently forms the basis of more than
		 40 percent of the most visited websites.

To work effectively with React, you must understand the syntax used to
define the appearance of user interface elements and then combine these
into React components that can dynamically update. This chapter covers
everything you need to know to begin developing full-stack applications
using this library.

The Role of React
Modern frontend architectures split an application’s user interface into
small, self-contained, and reusable items. Some of these, such as headers,
navigations, and logos, might appear only once per page, while others are

4
R E A C T

54 Chapter 4

repeated elements that form the page’s contents, such as headlines, but-
tons, and teasers. Figure 4-1 shows some of these items. React’s syntax
embraces this pattern; the library focuses on building these independent
components and, in doing so, helps us develop our applications more
efficiently.

Logo

Headline

Navigation Header

Subheadline

Button #1 Button #2

Teasers

Figure 4-1: User interface components

React uses a declarative programming paradigm, through which you
create a user interface by describing the desired results instead of explic
itly listing all the steps necessary to create it, as is done in imperative pro-
gramming. A classic example of the declarative paradigm is HTML. Using
HTML, you describe a web page’s elements, and the browser then renders
the page. By contrast, you could use JavaScript to write an imperative pro-
gram that creates each HTML element. In doing so, you would explicitly list
the steps to build the website.

In addition, these user interface components are reactive. This means
two things: one, that they handle their own isolated states, and two, that
each component updates the page’s HTML as soon as its state changes.
Changes to the React code instantly affect a browser’s document object model
(DOM), which represents a website as a tree in which each HTML element is
a node. The DOM also provides an API for each node and for the website in
general, enabling scripts to modify a website or a specific node.

DOM operations, such as re-rendering a component, are expensive. To
update the DOM, React uses a virtual DOM, which is an in-memory clone
of the actual browser DOM that it later syncs with the real thing. This vir-
tual DOM allows for incremental updates that reduce the number of costly
operations on the browser. The virtual DOM is a crucial principle of React.
React calculates the difference between the virtual DOM and the real DOM
with every call to one of its render functions and then decides what to

React 55

update. Usually, React performs batch updates to lower the performance
impact further. This process of reconciliation lets React deliver fast and
responsive user interfaces.

Although React is primarily a user interface library, developers can also
use it to build single-page applications that don’t require middleware or a
backend. These apps are nothing more than a view layer rendered in the
browser. To some extent, they can be dynamic: for example, we can change
the page’s language, open an image gallery, or toggle an element’s visibility.
However, all of this occurs in the browser, with additional React modules,
rather than on the server.

We can also perform more advanced functionality, like updating the
browser’s location to simulate the existence of distinct pages, purely in the
browser, with React’s Router module. This module lets us define routes, sim-
ilar to the ones we defined in our Express.js server, on the frontend. As soon
as a user clicks an internal link, the routing component updates the view
and changes the browser’s location. This makes it seem as though they’ve
loaded another HTML page. In reality, we’ve just changed the current page’s
contents. In doing so, we avoided another set of server requests, so the
simulated page loads much more quickly. Also, because our JavaScript code
controls the transition between pages, we can add effects and animations to
these transitions.

Setting Up React
Unlike, say, the basic Express.js server you created in Exercise 1 on page 13,
which uses standard JavaScript and can run directly with Node.js, React relies
on an advanced setup with a complete build toolchain. For example, it uses a
custom JavaScript Syntax Extension (JSX) to describe HTML elements and
TypeScript for static typing, both of which require a transpiler to convert
the code to JavaScript. Therefore, the manual process for setting up React is
quite complex.

Thus, we generally rely on other tools. In the case of a single-page appli-
cation, we use a code generator, such as create-react-app, to scaffold it.
During this scaffolding process, create-react-app generates the boilerplate
code for a new React application, as well as the build chain and folder struc-
ture for the project. It also provides a consistent project layout that helps us
easily understand other React projects.

To run the examples in this chapter, one option is to scaffold a simple
TypeScript React app with create-react-app by following the steps at https://
create​-react​-app​.dev​/docs​/getting​-started​/. If you don’t want to create a dedicated
project, you can instead run code using React with a TypeScript template
in an online playground, such as https://codesandbox​.io or https://stackblitz​.com.
The playgrounds and create-react-app follow the same file structure. In both
cases, you should save your code to the default App.tsx file.

For more complex apps, we’d use a complete web application frame-
work such as Next.js, which provides the necessary setup out of the box.
Covered in Chapter 5, Next.js is the most popular framework for full-stack

https://create-react-app.dev/docs/getting-started/
https://create-react-app.dev/docs/getting-started/
https://codesandbox.io
https://stackblitz.com

56 Chapter 4

web applications that use React. Internally, Next.js employs a variation of
create-react-app for scaffolding. We’ll rely on it in future chapters to work
with React.

The JavaScript Syntax Extension
React uses JSX to define the appearance of user interface components.
JSX is an extension of JavaScript that a transpiler must convert before
the browser renders it to the DOM. While it has HTML-like syntax, it is
more than a simple templating language. Instead, it allows us to use any
JavaScript feature to describe React elements. For example, we can use
JSX syntax inside conditional statements, assign it to variables, and return
it from functions. The compiler will then embed any variable or valid
JavaScript expression wrapped in curly brackets ({}) into the HTML.

This logic allows us to, for instance, use array.map to loop over an array,
check each item for a certain condition, pass the item to another func-
tion, and create a set of JSX elements based on the function’s return value,
directly inside a page’s template. While this may sound abstract, we’ll use
this pattern extensively when we create React components in the Food
Finder application you’ll build in Part II.

An Example JSX Expression
JSX expressions, like those in Listing 4-1, are the most essential part of the
React user interfaces. This JavaScript code defines a JSX function expres-
sion, getElement, that takes one string as a parameter and returns a JSX.Element.

import React from "react";

export default function App() {
 const getElement = (weather: string): JSX.Element => {
 const element = <h1>The weather is {weather}</h1>;
 return element;
 };
 return getElement("sunny");
}

Listing 4-1: A minimal example of a JSX expression

The entry point for each React application is the App function. Like the
index.js file of our Express.js server, this function is executed when the appli-
cation starts. Here, we usually set up the global elements, such as stylesheets
and the overall page layout.

React renders the function’s return value to the browser. In Listing 4-1,
we immediately return an element. As the smallest building blocks of React
user interfaces, elements describe what you’ll see on the screen, just as HTML
elements do. Examples of elements include custom buttons, headlines, and
images.

React 57

After importing the React package, we create the JSX element and
store it in an element constant. At first glance, you might wonder why it isn’t
wrapped in quotes, as it contains what appears to be a regular HTML h1
element and looks like a string. The answer is that it isn’t a string but a JSX
element from which the library creates HTML elements programmatically.
As a result, the code will display a message about the weather to the page.

As soon as we call the JSX expression, the React library transpiles it into
a regular JavaScript function call and creates an HTML string from the JSX
element displayed in the browser. In Chapter 3, you learned that all valid
JavaScript is also valid TypeScript. Hence, we can use JSX with TypeScript as
well. JSX files use a .jsx (JavaScript) or .tsx (TypeScript) extension. Paste this
code into the App.tsx file of the project you created, and the browser should
render an h1 HTML element with the text The weather is sunny either in the
preview pane of the online playground or in your browser.

The ReactDOM Package
One easy way to work with elements is to use the ReactDOM package, which
contains APIs for working with the DOM. Note that the elements you create
aren’t browser DOM elements. Instead, they’re plain JavaScript objects that
will be rendered, using React’s render function, to the virtual DOM’s root
element and then attached to the browser DOM.

React elements are immutable: once created, they cannot be changed. If
you do alter any part of the element, React will create a new element and re-
render the virtual DOM, then compare the virtual DOM with the browser
DOM to decide whether the browser DOM needs an update. We’ll use JSX
abstractions for these tasks; nonetheless, it’s good to understand how React
works under the hood. If you want to dig deeper, consult the official docu-
mentation at https://react.dev/learn.

Organizing Code into Components
We mentioned that components are independent, reusable pieces of code
built from React elements. Elements are objects that can contain other ele
ments. Once rendered to the virtual or browser DOM, they create DOM
nodes or whole DOM subtrees. Meanwhile, React components are classes or
functions that output elements and render them to the virtual DOM. We
will build a user interface using React components. For more information
about this distinction, read the deep dive at the official React blog: https://
reactjs​.org​/blog​/2015​/12​/18​/react​-components​-elements​-and​-instances​.html.

While other frameworks might separate a user interface’s code by tech-
nology, splitting it into HTML, CSS, and JavaScript files, React instead sepa-
rates code into these logical building blocks. As a result, a single physical
file contains all the information necessary for a component, regardless of
underlying technologies.

More concretely, a React component is a JavaScript function that, by
convention, starts with an uppercase letter. Furthermore, it takes a single
object argument, called props, and returns a React element. This props

https://react.dev/learn
https://reactjs.org/blog/2015/12/18/react-components-elements-and-instances.html
https://reactjs.org/blog/2015/12/18/react-components-elements-and-instances.html

58 Chapter 4

argument should never be modified inside the component and is consid-
ered immutable inside the React code.

Listing 4-2 shows a basic React component that displays the same weather
string as in the previous listings. In addition, we’ve added a custom inter-
face and a click handler. The custom interface enables us to set an attribute
on the JSX component and read its value in the TypeScript code. It’s a com-
mon way to pass values to a function component without a global state man-
agement library.

Here, we simply pass the component the same string used in the previ-
ous listings and render it to the DOM, but for a real-world application, the
weather string might be part of an API response. To get the weather data,
a parent component might query the API and then send this data through
the component’s attribute to the component’s code, or each component in the
application would need to query the API to access that data, impacting
the overall performance of the application.

The click handler enables us to react to user interactions. In JSX, click
handlers have the same names as in HTML, and we add them the way we
might add inline DOM events. For example, to react to a user clicking an
element, we add an onClick attribute with a callback function.

import React from "react";

export default function App() {

 interface WeatherProps {
 weather: string;
 }

 const clickHandler = (text: string): void => {
 alert(text);
 };

 const WeatherComponent = (props: WeatherProps): JSX.Element => {
 const text = `The weather is ${props.weather}`;
 return (<h1 onClick={() => clickHandler(text)}>{text}</h1>);
 };

 return (<WeatherComponent weather="sunny" />);
}

Listing 4-2: A basic React component

First we create a custom interface for our new component’s properties.
We’ll use this interface for the component’s prop parameter later. Because
we set a weather attribute on the component and define a matching weather
property on the interface, we can access the value of the weather attribute
with props.weather in our TypeScript code.

Then we create the event handler as an arrow function with one string
parameter. We use an onClick event property similar to inline DOM events
and assign a callback function, clickHandler. As soon as the user clicks the
page’s headline, we display a simple alert box.

React 59

Next, we define the component. As you can see, it’s a JSX expression
that implements the WeatherProps interface and returns a JSX element.
Inside the component, we use an untagged template literal to create text
and add the dynamic weather information with the value from the weather
attribute, via props.weather. Then we return the JSX element and, finally,
return and render the weather component, setting sunny as the attribute’s
value.

Paste this code into the App.tsx file. The browser should render an
h1 HTML element with the text The weather is sunny in the preview pane.
When you click the text, an alert box will display it once more. Change the
value of the weather attribute to display different weather strings.

Writing Class Components
There are two kinds of components in React: class components and func-
tion components. The component in Listing 4-2 is a function component,
which borrows heavily from functional programming. In particular, these
components follow the pattern of pure functions: they create some output
(JSX elements) based on some input (the props argument and the JSX com-
ponent’s attributes). While we emphasize this type of component in this
chapter, you should know the basics of class components too.

A class component follows the typical patterns of object-oriented pro-
gramming: it is defined as a class and inherits methods from its parent
React.Component class. Like all components, it has an argument called props
and returns a JSX element. Class components also have constructor and
super functions, and you can use the this keyword to refer to the current
component’s instance.

Of particular value, the internal property this.state provides you an
interface to store and access information about the component’s internal
state, such as opened elements, the current image in an image gallery, or,
as in the next example, a simple click counter. Of similar importance are
the class’s lifecycle methods, which run during specific lifecycle steps: for
example, whenever the component mounts, renders, updates, or unmounts.
In Listing 4-3, we use the componentDidMount lifecycle method. React runs
this method immediately after the component becomes part of the DOM.
It is similar to the browser’s DOMReady event, with which you might already be
familiar.

Listing 4-3 shows the previously created weather component defined
as a class component. To practice accessing the component’s state, we’ve
added a counter that will count the clicks on the headline element. Because
it records the internal component’s state, the counter resets on page reload.
Paste this code into the App.tsx file and click the headline to count up.

import React from "react";

export default function App() {
 interface WeatherProps {
 weather: string;
 }

60 Chapter 4

 type WeatherState = {
 count: number;
 };

 class WeatherComponent extends React.Component<WeatherProps, WeatherState> {
 constructor(props: WeatherProps) {
 super(props);
 this.state = {
 count: 0
 };
 }

 componentDidMount() {
 this.setState({ count: 1 });
 }

 clickHandler(): void {
 this.setState({ count: this.state.count + 1 });
 }

 render() {
 return (
 <h1 onClick={() => this.clickHandler()}>
 The weather is {this.props.weather}, and the counter shows{" "}
 {this.state.count}
 </h1>
);
 }
 }

 return (<WeatherComponent weather="sunny" />);
}

Listing 4-3: A basic React class component

First we define the custom interface to use for the component’s proper-
ties. We also define a type to use in the counter we’ll create later.

Next, we define the class component, extending the base class React​
.Component. Following object-oriented programming patterns, the construc-
tor calls a super function and initializes the component’s state. We set our
counter to 0. As soon as the browser mounts the component, it calls the
lifecycle method componentDidMount, changing the component’s count variable
to 1. We modify the click handler to count the number of clicks instead of
displaying an alert box, and we call the render function. Here we return
the JSX elements that display the weather props and the current state as
HTML.

Finally, we return the WeatherComponent, and React initializes it. The pre-
view pane displays the string The weather is sunny, and the counter shows 1.
We see from the number 1 that the lifecycle method was indeed called.
Each click on the headline increases the number instantly, because of the
reactive nature of the component’s state. As soon as the state changes, React
re-renders the component and updates the view with the current value of
the state.

React 61

Providing Reusable Behavior with Hooks
Function components can use hooks to provide reusable behaviors, such as
for accessing a component’s state. Hooks are functions that offer simple
and reusable interfaces to state and lifecycle features. Listing 4-4 shows the
same weather component we created in Listing 4-3, this time written as a
function component. It uses hooks instead of lifecycle methods to update
the component’s counter.

import React, { useState,useEffect } from "react";

export default function App() {

 interface WeatherProps {
 weather: string;
 }

 const WeatherComponent = (props: WeatherProps): JSX.Element => {

 const [count, setCount] = useState(0);
 useEffect(() => {setCount(1)},[]);

 return (
 <h1 onClick={() => setCount(count + 1)}>
 The weather is {props.weather},
 and the counter shows {count}
 </h1>
);
 };

 return (<WeatherComponent weather="sunny" />);
}

Listing 4-4: A React function component that uses hooks

We’ve added two new features to this component: an indicator of the
component’s state and a way to run code as soon as we mount the compo-
nent. Therefore, we use the two hooks, useState and useEffect, by importing
them as named imports from the React module, then adding them to the
function component. The useState hook replaces the this.state property
from the class component, and the useEffect hooks the componentDidMount
lifecycle method. In addition, we replace the clickHandler from the previous
example with a simple inline function to update the counter.

Each call to a hook produces an entirely isolated state, so we can use
the same hook multiple times in the same component and trust that the
state will update. This pattern keeps the hook callbacks small and focused.
Also note that the runtime does not hoist hooks. They are called in the
order in which we define them in the code.

When you compare Listings 4-3 and 4-4, you should instantly see that
the function component is more readable and easier to understand. For this
reason, we’ll exclusively use function components in the rest of this book.

62 Chapter 4

Working with Built-in Hooks
React provides a collection of built-in hooks. You’ve just seen the most
common ones, useState and useEffect. Another useful hook is useContext,
for sharing data among components. Other built-in hooks cover more
specific use cases to enhance the performance of your application or
handle specific edge cases. You can look them up as needed in the React
documentation.

You can also create custom hooks whenever you need to break a mono-
lithic component into smaller, reusable packages. Custom hooks follow
a specific naming convention. They start with use, followed by an action
beginning with an uppercase letter. You should define only one functional-
ity per hook to make it easily testable.

This section will guide you through the three most common hooks and
the benefits of using them.

Managing the Internal State with useState
A pure function uses only the data that is available inside the function.
Still, it can react to local state changes, such as the counter in the weather
component we created. The useState hook is probably the most-used one for
handling regional states. This internal component’s state is available only
inside the component and is never exposed to the outside.

Because the component state is reactive, React re-renders the compo-
nent as soon as we update its state, changing the value across the entire
component. However, React guarantees that the state is stable and won’t
change on re-renders.

The useState hook returns the reactive state variable and a setter func-
tion used to set the state, as shown in Listing 4-5.

const [count, setCount] = useState(0);

Listing 4-5: The useState hook viewed in isolation

We initialize the useState hook with the default value. The hook itself
returns the state variable count and the setter function we need to modify
the state variable’s value, because we cannot modify this variable directly.
For example, to set the state variable count we created in Listing 4-5 to 1, we
need to call the setCount function with the new value as a parameter, like
this: setCount(1). By convention, the setter function begins with a set fol-
lowed by the state variable’s name.

Handling Side Effects with useEffect
Pure functions should rely only on the data passed to them. When a
function uses or modifies data outside its local scope, we call this a side
effect. The simplest example of a side effect is modifying a global variable.
This is considered a bad practice both in JavaScript and in functional
programming.

React 63

Sometimes, however, our components need to interact with the “out-
side world” or have an external dependency. In these cases, we can use the
useEffect hook, which handles side effects, providing an escape hatch from
the functional aspect of the component. For example, useEffect can manage
dependencies, call APIs, and fetch data required for the component.

This hook runs after React mounts the component into the layout and
the rendering process of the component is completed. It has an optional
return object, which runs before the component is unmounted. You can use
it for cleanup, for example, to remove event listeners.

One way to use this hook is to observe and react to dependencies. To do
this, we can pass it an optional array of dependencies. Any change to one of
these dependencies would trigger a rerun of the hook. If the dependency
array is empty, the hook won’t depend on any external value and never
reruns. This is the case in our weather component, where useEffect is exe-
cuted only after mounting and unmounting the component. It has no exter-
nal dependencies, so the dependency array remains empty and the hook
runs only once.

Sharing Global Data with useContext and Context Providers
Ideally, React’s function components would be pure functions that oper-
ate only on data passed through the props parameter. Alas, a component
might sometimes need to consume a shared, global state. In this case,
React implements the context provider to share global data with a tree of
child components.

The context provider wraps the child components, and we can access
the shared data with the useContext hook. As the context value changes,
React automatically re-renders all child components. Thus, it is quite an
expensive hook. You shouldn’t use it for datasets that change frequently.

In the full-stack application you’ll build in Part II, you’ll use useContext
to share session data with child components. Shared contexts are also often
employed to keep track of color schemes and themes. Listing 4-6 shows how
to consume a theme through a context provider.

import React, { useState, createContext, useContext } from "react";

export default function App() {
 const ThemeContext = createContext("");

 const ContextComponent = (): JSX.Element => {

 const [theme, setTheme] = useState("dark");

 return (
 <div>
 <ThemeContext.Provider value={theme}>
 <button onClick={() => setTheme(theme == "dark" ? "light" : "dark")}>
 Toggle theme
 </button>
 <Headline />

64 Chapter 4

 </ThemeContext.Provider>
 </div>
);
 };

 const Headline = (): JSX.Element => {
 const theme = useContext(ThemeContext);
 return (<h1 className={theme}>Current theme: {theme}</h1>);
 };

 return (<ContextComponent />);
}

Listing 4-6: A complete context provider example

First we import the necessary functions from the React package and use
the createContext function to initialize the ThemeContext. Next, we create the
parent component and name it ContextComponent. This is the wrapper that
holds the context provider and all child components.

In the ContextComponent, we create the local theme variable with useState and
set the stateful variable as the content the context provides. This enables
us to change the variable in the context from inside a child component.
Because we used a reactive stateful variable for the value, all instances of
the theme variable will instantly update across all child components.

We add a button element and toggle the value of the stateful variable
between light and dark whenever a user clicks the button. Finally, we cre-
ate the Headline component, which calls the useContext hook to get the theme
value provided by the ThemeContext to all child components. The Headline
component uses the theme value for the HTML class and displays the cur-
rent theme.

Exercise 4: Create a Reactive User Interface for the Express.js Server
Let’s use your new knowledge and our weather component to create a reac-
tive user interface for the Express.js server. The new React component will
allow us to update text on the web page by clicking it.

Adding React to the Server
First we’ll include React in our project. For experimentation purposes,
you can add the React library and the stand-alone version of the Babel.js
transpiler directly inside your HTML head tag. Be aware, however, that this
technique is not suitable for production. Transpiling code in the browser
is a slow process, and the JavaScript libraries we add here aren’t optimized.
Using React with a skeleton Express.js server requires a decent number of
tedious setup steps and a decent amount of maintenance. We’ll use Next.js
in Chapter 5 to simplify developing React applications.

Create a folder, named public, next to the package.json file and then cre-
ate an empty file called weather​.html inside it. Add the code in Listing 4-7,
which contains our React example with the weather component. Later,

React 65

we’ll create a new endpoint, /components/weather, that directly returns the
HTML file.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <title>Weather Component</title>
 <script src​="https://unpkg​.com​/react@18​/umd​/react​.development​.js"><​/script>
 <script src​="https://unpkg​.com​/react​-dom@18​/umd​/react​-dom​.development​.js"><​/script>
 <script src​="https://unpkg​.com​/@babel​/standalone​/babel​.min​.js"><​/script>
 </head>
 <body>
 <div id="root"></div>

 <script type="text/babel">
 function App() {

 const WeatherComponent = (props) => {

 const [count, setCount] = React​.useState(0);
 React​.useEffect(() => {
 setCount(1);
 }, []);

 return (
 <h1 onClick={() => setCount(count + 1)}>
 The weather is {props.weather},
 and the counter shows {count}
 </h1>
);
 };
 return (<WeatherComponent weather="sunny" />);
 }

 const container = document.getElementById("root");
 const root = ReactDOM.createRoot(container);
 root.render(<App />);
 </script>
 </body>
</html>

Listing 4-7: The static file ​/public​/weather​.html renders React in the browser.

First we add three React scripts to the weather​.html file: these are
react.development, react.dom.development, and the stand-alone babel.js, which
are all similar to the import of React we previously used in the App.tsx file.
Then we add ReactDOM to let React interact with the DOM. The three files
add a global property, React, to window.object. We use this property as a global
variable to reference React functions. The stand-alone Babel script adds the
Babel.js transpiler, which we need to convert the code from JSX to JavaScript.

Next, we add the weather component’s code we developed previously.
Instead of referencing the App.tsx file, we place app functions directly inside

66 Chapter 4

the HTML file and mark the script block as text/babel. This type tells Babel
to transpile the code inside the script tag into standard JavaScript.

We make a few simple modifications to the weather component’s code.
First we remove the type annotations, as they are allowed only in TypeScript
files. Then, because we are using the browser environment, we prefix the
hooks with their global property name, React. Finally, we use ReactDOM to
create the React root container and render the <App /> component there.

Creating the Endpoint for the Static HTML File
The second file we’ll edit is the index.ts file in the root directory. We add
the highlighted code in Listing 4-8 to add a new entry point, /components/
weather.

import { routeHello, routeAPINames, routeWeather } from "./routes.js";
import express, { Request, Response } from "express";

import path from "path";

const server = express();
const port = 3000;

--snip--
server.get("/components/weather", function (req: Request, res: Response): void {
 const filePath = path.join(process.cwd(), "public", "weather.html");
 res.setHeader("Content-Type", "text/html");
 res.sendFile(filePath);
});

server.listen(port, function (): void {
 console.log("Listening on " + port);
});

Listing 4-8: The refactored index.ts

To load the static HTML file, import path from Node.js’s default path
module. The path module provides all kinds of utilities for working with
files and directories. In particular, we’ll use the join function to create a
valid path that meets the operation system’s format.

We use the default global process.cwd function to get the current work-
ing directory, and from there, we create the path to our HTML file. Then
we add the weather component’s entry point and set the response’s Content
-Type header to text/html. Finally, we use the sendFile function to send to the
browser the weather​.html file we created previously.

Running the Server
We need to transpile the server code to JavaScript, so we run TSC with npx
on the command line:

$ npx tsc

React 67

The generated files, index.js and routes.js, are similar to the previously
created ones. TSC doesn’t touch the static HTML. The stand-alone
Babel.js script converts the JSX code on runtime in the browser. Start the
server from your command line:

$ node index.js
Listening on 3000

Now visit http://localhost:3000​/components​/weather​-component in your browser.
You see the same text you saw when you rendered the weather component in
the React playground, as in Figure 4-2. As soon as you click the text, the click
handler increases the reactive state variable, and the counter shows the new
value.

Figure 4-2: Browser response from the Node.js web server

You successfully created your first React application. To gain more expe-
rience with React, try adding a custom button component for the click
counter, with a style attribute that uses a JSX expression to change the back-
ground color for odd and even counter values.

Summary
You should now have a solid foundation with which to create your React apps.
JSX elements are the building blocks of React components that return JSX
to be rendered as HTML in the DOM, via React’s virtual DOM. You also
explored the difference between class components and modern function
components, took a deep dive into React hooks, and used these hooks to
build a function component.

If you want to explore React’s full potential, take a look at the React tuto-
rials from W3Schools at https://www​.w3schools​.com​/REACT​/DEFAULT​.ASP and
those created by the React team at https://react.dev/learn/tutorial-tic-tac-toe.

In the next chapter, we’ll work with Next.js. Built on top of React, Next.js
is a production-ready full-stack web development framework for single-page
applications.

https://www.w3schools.com/REACT/DEFAULT.ASP
https://react.dev/learn/tutorial-tic-tac-toe

In Chapter 4, you used React to create
responsive user interface components. But

because React is just a library, building a
full-stack application requires additional tools.

		 In this chapter, we use Next.js, the leading web
		 application framework built on top of React. To
		 create an app with Next.js, you need to know only a
		 few essential concepts. This chapter covers them.

Next.js streamlines the creation of an application’s frontend, middle-
ware, and backend. On the frontend, it uses React. It also adds native CSS
modules to define styles, and custom Next.js modules to perform routing,
image handling, and additional frontend tasks. When it comes to the mid-
dleware and the backend, Next.js uses a built-in server to provide the entry
points for HTTP requests and a clean API in which to work with request
and response objects.

5
N E X T. J S

70 Chapter 5

We’ll cover its filesystem-based approach to routing, discuss ways to build
and render the web pages we deliver to clients, explore adding CSS files to
style pages, and refactor our Express.js server to work with Next.js. This chap-
ter uses the traditional pages directory to teach you these basic concepts. To
learn about Next.js’s alternative app directory, see Appendix B.

Setting Up Next.js
Next.js is part of the npm ecosystem. While you could manually install all
of its required modules by running npm install next react react-dom and sub-
sequently create all of your project’s files and folders by yourself, there is a
much simpler way to set things up: running the create-next-app command.

Let’s create a sample application to use throughout this chapter. Follow
these steps to set up a new empty folder called sample-next and build your
first Next.js application inside it. Keep the default answers from the setup
wizard, and choose to use the traditional pages directory instead of the app
directory:

$ mkdir sample-next
$ cd ./sample-next
$ npx create-next-app@latest --typescript --use-npm
--snip--
What is your project named? ... my-app
--snip--
Creating a new Next.js app in /Users/.../my-app.

Installing dependencies:
- react
- react-dom
- next

Installing devDependencies:
- eslint
- eslint-config-next
- typescript
- @types/react
- @types/node
- @types/react-dom

We create a new folder, switch to it, and then initialize a new Next.js
project. We use the npx command instead of npm because, as you learned
in Chapter 1, npx doesn’t require us to install anything as a dependency
or development dependency. We mentioned that a typical use case for it is
scaffolding, which is precisely what we’re doing here.

The create-react-app command has a few options, of which only two are
relevant to us: the --typescript option creates a Next.js project that supports
TypeScript, and the --use-npm flag selects npm as a package manager.

We accept the default project name, my-app, and all the other default set-
tings. The script creates a folder based on the project name containing the

Next.js 71

package.json file and a complete sample project with all necessary files and
folders. Finally, it installs the dependencies and development dependencies
through npm.

N O T E 	 Instead of setting up a new project, you can use the online playgrounds at https://
codesandbox​.io​/s​/ or https://stackblitz​.com to run the Next.js code examples
from this chapter. Just opt for the pages directory setup instead of app there as well.

Project Structure
Let’s explore the boilerplate Next.js app’s project structure. Enter the fol-
lowing commands to run it:

$ cd my-app
$ npm run dev

> my-app@0.1.0 dev
> next dev

ready - started server on 0.0.0.0:3000, url: http://localhost:3000

Visit the provided URL in your browser. You should see a default page
similar to the one in Figure 5-1 (this welcome page could change depend-
ing on your Next.js version).

Figure 5-1: The boilerplate Next.js app viewed in a browser

Now open the my-app folder that the scaffolding script created, and
look around. The my-app folder contains a lot of folders, but only three are
currently important to you: public, styles, and pages.

The public folder holds all static assets, such as custom font files, all
images, and files the app makes available for download. We’ll link to these
assets from the app’s HTML and CSS files. The pages folder contains all of

https://codesandbox.io/s/
https://codesandbox.io/s/
https://stackblitz.com

72 Chapter 5

the app’s routes. Each of its files is an endpoint belonging to a page route or
an API route (in the api subfolder).

N O T E 	 Recent versions of Next.js additionally include an app directory that you can choose
to use for routing as an alternative to the pages directory. Because the app directory
uses more advanced concepts, this chapter covers the simpler pages architectural
style. However, you can learn more about the app directory in Appendix B, where
we’ll cover its use in detail.

In the my-app folder, we also find the _app.tsx file, which is Next.js’s
equivalent to the App.tsx file we used in Chapter 4. This is the entry point
for the whole application and the place where we’ll add our global styles,
components, and context providers. Finally, the styles folder contains the
global CSS files and modules for locally scoped, component-specific files.

Development Scripts
The technologies our app uses, including TypeScript, React, and JSX, don’t
run directly in the browser. They all require a build pipeline with a reason-
ably complex transpiler. Next.js provides four command line scripts to sim-
plify development.

The npx next dev and npm run dev commands starts the application
at http://localhost:3000 in development mode. As a result, Next.js rebuilds
and reloads the rendered application in the browser window as soon as we
change a file. In addition to this hot-code reloading, the development server
also displays errors and warning messages to aid the application’s develop-
ment. The installation wizard adds the server to package.json’s script section,
so we can start it with npm run dev as well.

The npx next build and npm run build commands create the optimized
build of our application. They remove unused code and reduce the file size
of our scripts, styles, and all other assets. You’ll use them for the live deploy-
ment. The npx next start and npm run start commands run the optimized
application at http://localhost:3000 in production mode on the built-in server
or in a serverless environment. This production build relies on a previously
created build. Hence, we must have first run the build command.

Finally, npx next export and npm run export commands create a stand-
alone version of your application that is independent of the built-in Next.js
server and can run on any infrastructure. This version of your app won’t be
able to use features that require Next.js on the server side, however. Consult
the official Next.js documentation at https://nextjs​.org for a guide to using it.

Routing the Application
When we built our sample Express.js server, we created an explicit rout-
ing file that mapped each of the app’s endpoints to distinct functions
that performed corresponding behavior. Next.js offers a different, per-
haps simpler, routing system; it automatically creates the app’s routes

https://nextjs.org

Next.js 73

based on the files in the pages directory. If a file in this folder exports a
React component (in the case of a web page) or an async function (in the
case of an API), it becomes a valid endpoint, as either an HTML page or
an API.

In this section, we’ll revisit the routes we created in our Express.js
server and remake them using Next.js’s routing technique.

Simple Page Routes
For our Express.js server, we manually created a /hello route in the index.ts
file. When visited, it returned Hello World! Let’s convert this route to a
page-based one in Next.js. The simplest kind of page route consists of a file
placed directly in the pages directory. For example, the pages/index.tsx file,
created by default, maps to http://localhost:3000. To create a simple /hello
route, make a new file, hello.tsx, in that directory. Now add to it the code
from Listing 5-1.

import type { NextPage } from "next";

const Hello: NextPage = () => {
 return (<>Hello World!</>);
}

export default Hello;

Listing 5-1: The pages/hello.tsx file

Our Express.js server used the routeHello function to return the
Hello World! string. Here we need to add a little more code to export a
React component. First we import the custom type NextPage from the
Next.js module and use it to create a constant, Hello. We assign the con-
stant a fat arrow function that returns a NextPage, which is nothing but a
custom wrapper for React components. In this case, we return JSX that
renders the Hello World! string. Finally, we export the NextPage as the file’s
default export.

Run the server and navigate to http://localhost:3000/hello. The page you
see should show Hello World! as its content.

The page looks different from the one in the sample Express.js server.
That’s because Next.js automatically renders all global styles defined in the
_app.tsx file to each page. Hence, the font looks different, even though we
didn’t explicitly define any styles in the hello.tsx file.

Nested Page Routes
Nested routes, such as /components/weather from the sample Express.js server,
are logical subroutes of other routes. In other words, weather is nested inside
the components entry point. You’ve probably already guessed how we create a
nested route with Next.js’s page-routing pattern. Yes, we merely create a sub-
folder, and Next.js maps the folder structure to the URL schema.

74 Chapter 5

Create a new folder, components, inside the pages folder and add a new
file, weather.tsx, there. Figure 5-2 depicts the relationship between the URL
components/weather and the file structure pages/components/weather.tsx.

Browser URL:

Files:

localhost:3000 / /components weather

Root Segment Leaf

Root segment

Segment

Leaf segment

Creates content

pages/

components/

weather.tsx

Figure 5-2: The relationship between the URL components/weather and the file structure
pages/components/weather.tsx

Our pages folder is the root of the URL, and each nested folder becomes
a URL segment. The file that exports the NextPage is the leaf segment, or the
final part of the URL. For this file, we reuse the weather component code
we wrote in Chapter 4, shown in Listing 5-2.

import type { NextPage } from "next";
import React, { useState, useEffect} from "react";

const PageComponentWeather: NextPage = () => {

 interface WeatherProps {
 weather: string;
 }

 const WeatherComponent = (props: WeatherProps) => {

 const [count, setCount] = useState(0);
 useEffect(() => {
 setCount(1);
 }, []);

 return (
 <h1 onClick={() => setCount(count + 1)}>
 The weather is {props.weather},
 and the counter shows {count}
 </h1>
);
 };

Next.js 75

 return (<WeatherComponent weather="sunny" />);
};

export default PageComponentWeather;

Listing 5-2: The pages/components/weather.tsx file

The only difference from the functional component created in Chapter 4
is that we wrap the code in a function that returns a NextPage, which we then
export as the default export. This is consistent with the page we created in
Listing 5-1 and follows Next.js’s pattern requirement.

Visit the new page at http://localhost:3000/components/weather in the
browser. It should look similar to Figure 5-3.

Figure 5-3: The pages/components/weather.tsx file is rendered at the /components/weather
URL in the browser.

You should recognize the click-handler functionality you saw in
Chapter 4.

API Routes
In addition to a user-friendly interface, a full-stack application might also
need a machine-readable interface. For example, the Food Finder applica-
tion you’ll create in Part II will provide an API to external services so that a
mobile app or a third-party widget can display our wish list. As JavaScript-
driven full-stack developers, the most common API formats we’ll use are
GraphQL and REST, and we talk about these in depth in Chapter 6. Here
we will create REST APIs, which we like for their simplicity.

With Next.js, we can design and create APIs via the same patterns we
use for pages. Each file in the pages/api/ folder is a single API endpoint,
and we can define nested API routes in the same way we define nested
page routes. However, unlike page routes, API routes are not React com-
ponents. Instead, they are async functions that take two parameters,
NextApiRequest and NextApiResponse, and return a NextApiResponse and
JSON data.

There are two caveats you need to remember when it comes to API
routes. First, they do not specify a Cross-Origin Resource Sharing (CORS)
header by default. This set of HTTP headers, most notably the Access
-Control-Allow-Origin header, lets a server define the origins from which
client-side scripts can request resources. If you want client-side scripts
running in websites on third-party domains to access your API endpoints,

76 Chapter 5

you’ll need to add additional middleware to enable CORS directly in the
Next.js server. Otherwise, external requests will prompt a CORS error. This
isn’t specific to Next.js; Express.js and most other server frameworks require
you to do the same.

The second caveat is that static exports done by running next export do
not support API routes. They rely on the built-in Next.js server and cannot
run as static files.

We used one API route, api/names, in the Express.js server. Now let’s
refactor the code and convert it to a Next.js API route. As before, create a
new file, names.ts, and place it in the api folder. Because API routes return
an async function instead of JSX, we use the .ts extension, not the .tsx exten-
sion used for JSX code. Paste the code from Listing 5-3 into the file.

import type { NextApiRequest, NextApiResponse } from "next";

type responseItemType = {
 id: string;
 name: string;
};

export default async function handler(
 req: NextApiRequest,
 res: NextApiResponse
): Promise<NextApiResponse<responseItemType[]> | void> {
 const url = "https://www​.usemodernfullstack​.dev​/api​/v1​/users";
 let data;
 try {
 const response = await fetch(url);
 data = (await response.json()) as responseItemType[];
 } catch (err) {
 return res.status(500);
 }
 const names = data.map((item) => {
 return { id: item.id, name: item.name };
 });
 return res.status(200).json(names);
}

Listing 5-3: The pages/api/names.ts file

First we import the custom types for the API request and response from
the Next.js package. Then we define the custom type for the API response.
In Chapter 3, we created the same type for typing the await call in the routes.ts
file. We’re using the same code and await call here, so we’ve reused the type
as well. We then create and directly export the API handler function men-
tioned earlier. You learned in Chapter 2 that async functions need to return
a promise as their return type. Therefore, we wrap this API response in a
promise.

The code in the function’s body is similar to the code in the routeAPINames
function from Chapter 4. It makes an API request to fetch the user data,

Next.js 77

converts the received data into the desired return format, and finally returns
the data. However, we need to make a few modifications. First, instead of
returning an error string, we return an API response with no content and a
generic status code of 500, for an Internal Server Error.

The second adjustment involves the data mapping. Previously, we
returned a string that rendered in the browser. Now, instead of this string,
we return a JSON object. Therefore, we modify the array.map function
to create an array of objects. Finally, we change the return statement to
return the API response with the names object as JSON and a status code of
200: OK.

Now open the new API route in the browser at http://localhost:3000/api​/
names. You should see the API response shown in Figure 5-4.

Figure 5-4: The pages/api/names.ts file rendered from /api/names in the browser

Dynamic URLs
You now know how to create page and API routes, which are the foun-
dation of any full-stack application. However, you might be wondering
how to create dynamic URLs, which change based on input. We often use
dynamic URLs for profile pages, where the user’s name becomes part
of the URL. In fact, we implemented a dynamic URL in the Express.js
server’s weather API when we defined the route /api/weather/:zipcode in the
index.ts file. There, zipcode was a dynamic parameter, or a dynamic leaf
segment, whose value was provided by the req.params.zipcode function.

Next.js uses a slightly different pattern for dynamic URLs. Because it
creates the routes based on folders and files, we need to define dynamic
segments through their filenames by wrapping the variable portion in
square brackets ([]). The dynamic route /api/weather/:zipcode from the
Express.js server would thus translate to the file /api/weather/[zipcode].ts.

Let’s create a dynamic route in our sample Next.js application that
mimics the /api/weather/:zipcode route from the Express.js server. Make a
new folder, weather, in the api folder, and place a file named [zipcode].ts in it.
Then paste the code from Listing 5-4 into the file.

import type { NextApiRequest, NextApiResponse } from "next";

type WeatherDetailType = {
 zipcode: string;
 weather: string;
 temp?: number;
};

78 Chapter 5

export default async function handler(
 req: NextApiRequest,
 res: NextApiResponse
): Promise<NextApiResponse<WeatherDetailType> | void> {

 return res.status(200).json({
 zipcode: req.query.zipcode,
 weather: "sunny",
 temp: 35
 });

}

Listing 5-4: The api/weather/[zipcode].ts file

This code should be familiar to you, as it follows the basic outline of
an API route in Next.js. We import the necessary types, then define a cus-
tom type, WeatherDetailType, and use it as the type for the data returned
by the function. (By the way, this is the same type definition we created
in Chapter 3.) In the function’s body, we return the response with a status
code of 200: OK and a JSON object. We fill the zipcode property with the
ZIP code from the dynamic URL parameter, retrieved with req.query
.zipcode.

When you run the server, the browser should show the JSON response
with the dynamic URL parameter in the response type. If you navigate to
http://localhost:3000/api/weather/12345, you should see the API response. If
you change the “12345” part of the URL and request the data again, the
response data should change accordingly.

Note that the dynamic route /api/weather/[zipcode].ts matches /api/
weather/12345 and /api/weather/54321 but not sub-paths of those routes,
such as /api/weather/location/12345 or /api/weather/location/54321. For this,
you’ll need to use a catch all API route, which includes all paths that are
inside the current path. You can create a catch all route by adding three
dots (...) in front of the filename. For example, the catch all route /api/
weather/[...​zipcode].ts could handle all four API endpoints mentioned in this
paragraph.

Styling the Application
To add styles to our Next.js application, we create regular CSS files, writ-
ten without the vendor prefixes used in other frameworks. Later, Next.js’s
postprocessor will add necessary properties to generate backward-compatible
styles. While CSS syntax is beyond the scope of this book, this section
describes how to use Next.js’s two kinds of CSS styles: global styles and locally
scoped component styles, defined in CSS modules.

Next.js 79

Global Styles
Global styles affect all pages of an app. We stumbled across this behavior when
we rendered the hello.tsx file; the page used CSS even though we hadn’t added
any style information ourselves.

Practically speaking, global styles are just regular CSS files. They aren’t
modified during the build, and their class names are guaranteed to stay the
same. Therefore, we can use them as regular CSS classes across the applica-
tion. We import these CSS files in the app’s entry point, the pages/_app.tsx
file. Take a look at those in the boilerplate project. You should see a line of
code similar to Listing 5-5.

import "@/styles/globals.css";

Listing 5-5: Importing global styles in the _app.tsx file

Of course, you can adjust the filename and location of the imported
styles or import multiple files. Try playing around by adding a few styles in
the global.css file and some regular CSS classes to the HTML elements in
the hello.tsx file. Then visit the page at htttp://localhost:3000/hello to see how it
changed.

Component Styles
In Chapter 4, you saw that React lets us create user interfaces out of
independent, reusable components. Global styles aren’t the best approach
for styling independent components, as they require us to keep track of the
names we’ve already used in various components, and if we import compo-
nents from a previous project, we risk having the CSS classes collide with
one another.

We need the CSS classes to be scoped to individual modules to work
efficiently with modularized components. There are multiple architectural
patterns for implementing this. For example, using the Block Element
Modifier methodology, you can manually scope the styles to a component
or a user interface block.

Luckily, we don’t need to bother with such a clumsy solution. Next.js
lets us use CSS modules that are scoped during the build process. These
CSS modules follow the naming convention <component>.module.css. The
compiler automatically prefixes each CSS class name inside the module
with the component’s name and a unique identifier. This enables you to use
the same style names for multiple components without issue.

The actual CSS you write won’t have these prefixes. For example, look
at the Home.module.css file inside the styles folder, shown in Listing 5-6.

.container {
 padding: 0 2rem;
}

Listing 5-6: Regular CSS code in styles/Home.module.css

80 Chapter 5

One problem is that, because the build process modifies the class
names and prefixes them, we can’t directly use these styles in our other
files. Instead, we must import the styles and treat them like a JavaScript
object. Then we can refer to them as a property of the styles object. For
example, the pages/index.tsx file in Listing 5-7 uses the container class from
Listing 5-6, providing an example of how to use scoped styles.

import styles from "../styles/Home.module.css"
--snip--
const Home: NextPage = () => {
 return (
 <div className={styles.container}>
 --snip--
 </div>
);
};

Listing 5-7: Using styles from the CSS module styles/Home.module.css in the index.tsx file

This code imports the CSS file into a constant called styles. Now all the
CSS class names will be available as properties of the styles object. In JSX,
we use variables wrapped in curly brackets ({}), so we add a reference to the
container class as {styles.container}.

You can now build APIs and custom-styled pages out of React compo-
nents. The next section introduces useful custom components that Next.js
provides to enhance your full-stack application.

Built-in Next.js Components
Next.js provides a set of custom components. Each of these addresses one
specific use case: for example, accessing internal page properties such as
the page title or SEO metadata (next/head), improving the app’s overall ren-
dering performance and user experience (next/image), or enabling the appli-
cation’s routing (next/link). We’ll use the Next.js components covered in
this chapter in the full-stack application in Part II, where you can see them
applied in practice. For additional attributes and niche use cases, refer to
the Next.js documentation.

The next/head Component
The next/head component exports a custom Next.js-specific Head component.
We use it to set a page’s HTML title and meta elements, which are found
inside an HTML head component. To improve SEO ranking and enhance
usability, each page should have its own metadata. Listing 5-8 shows an exam-
ple of the hello.tsx page from Listing 5-1 with a customized title and meta
element.

It is important to remember that the Head elements are not merged
across pages. Next.js’s client-side routing removes the content of the Head
element during the page transition.

Next.js 81

import type { NextPage } from "next";
import Head from "next/head";

const Hello: NextPage = () => {
 return (
 <div>
 <Head>
 <title>Hello World Page Title</title>
 <meta property="og:title" content="Hello World" key="title" />
 </Head>
 <div>Hello World!</div>
 </div>
);
};

export default Hello;

Listing 5-8: The pages/hello.tsx file with a customized title and meta element

We import the Head element from the next/head component and add it to
the returned JSX element, placing it above the existing content and wrap-
ping both in another div element because we need to return one element
instead of two.

The next/link Component
The next/link component exports a Link component. This component is
built on top of the React Link element. We use it instead of an HTML
anchor tag when we want to link to another page in the application,
enabling client-side transitions between pages. When clicked, the Link com-
ponent updates the browser DOM with the new DOM, scrolls to the top
of the new page, and adjusts the browser history. Furthermore, it provides
built-in performance optimizations, prefetching the linked page and its
data as soon as the Link component enters the viewport (the currently visible
part of the website). This background prefetch enables smooth page transi-
tions. Listing 5-9 adds the Next.js Link element to the page from the previ-
ous listing.

import type { NextPage } from "next";
import Head from "next/head";
import Link from "next/link";

const Hello: NextPage = () => {
 return (
 <div>
 <Head>
 <title>Hello World Page Title</title>
 <meta property="og:title" content="Hello World" key="title" />
 </Head>
 <div>Hello World!</div>
 <div>
 Use the HTML anchor for an

82 Chapter 5

 external link
 and the Link component for an
 <Link href="/components/weather"> internal page
 </Link>
 .
 </div>
 </div>
);
};

export default Hello;

Listing 5-9: The pages/hello.tsx file with an external link and an internal next/link element

We import the component, then add it to the returned JSX element.
For comparison purposes, we use a regular HTML anchor to link to the No
Starch Press home page and the custom Link to connect to the weather com-
ponent page in our Next.js application. In the app, try clicking both links to
see the difference.

The next/image Component
The next/image component exports an Image component used to display
images. This component is built on top of the native HTML element.
It handles common layout requirements, such as filling all available space
and scaling images. The component can load modern image formats, such
as AVIF and WebP, and serve the image with the correct size for the cli-
ent’s screen. Furthermore, you have the option to use blurred placeholder
images and lazy-load the actual image as soon as it enters the viewport; this
enforces the visual stability of your website by preventing cumulative layout
shifts, which occur when an image renders after the page, causing the page
content to shift down. Cumulative layout shifts are considered a bad user
experience, and they can make the user lose their focus. Listing 5-10 pro-
vides a basic example of the next/image component.

import type { NextPage } from "next";
import Head from "next/head";
import Link from "next/link";
import Image from "next/image";

const Hello: NextPage = () => {
 return (
 <div>
 <Head>
 <title>Hello World Page Title</title>
 <meta property="og:title" content="Hello World" key="title" />
 </Head>
 <div>Hello World!</div>
 <div>
 Use the HTML anchor for an
 external link and the Link component for an
 <Link href="/components/weather"> internal page</Link>.

Next.js 83

 <Image
 src="/vercel.svg"
 alt="Vercel Logo"
 width={72}
 height={16}
 />
 </div>
 </div>
);
};
export default Hello;

Listing 5-10: The pages/hello.tsx file using the next/image element

Here we display the Vercel logo from our application’s public folder.
First we import the component from the next/image package. Then we add it
to the page content. The syntax and the properties of our minimal example
are similar to the HTML img element. You can read more about the compo-
nent’s advanced properties in the official documentation at https://nextjs​.org​/
docs​/api​-reference​/next​/image.

Pre-rendering and Publishing
While you can start building full-stack Next.js applications with the
information you’ve learned so far, you’ll find it useful to know one more
advanced topic: the different ways to render and publish your application
and their implications for its performance.

Next.js provides three options for pre-rendering your app with its built-
in server. The first, static site generation (SSG), generates the HTML at build
time. Thus, each request will always return the same HTML, which remains
static and is never re-created. The second option, server-side rendering (SSR),
generates new HTML files on each request, and the third, incremental static
regeneration (ISR), combines both approaches.

Next.js lets us choose our pre-rendering option on a per-page basis,
meaning the full-stack application can contain pages with SSG, SSR, and
ISR, as well as client-side rendering for some React components. You can
also create a complete static export of your site by running next export. The
exported application will run independently on all infrastructures, as it
doesn’t need the built-in Next.js server.

To gain experience with these rendering approaches, we’ll create a new
page that displays the data from our names API for each rendering option.
Create a new folder, utils, next to the pages folder and add an empty file,
fetch-names.ts, to it. Then add the code in Listing 5-11. This utility function
calls the remote API and returns the dataset.

type responseItemType = {
 id: string;
 name: string;
};

https://nextjs.org/docs/api-reference/next/image
https://nextjs.org/docs/api-reference/next/image

84 Chapter 5

export const fetchNames = async () => {
 const url = "https://www.usemodernfullstack.dev/api/v1/users";
 let data: responseItemType[] | [] = [];
 let names: responseItemType[] | [];
 try {
 const response = await fetch(url);
 data = (await response.json()) as responseItemType[];
 } catch (err) {
 names = [];
 }
 names = data.map((item) => { return { id: item.id, name: item.name }});

 return names;
};

Listing 5-11: The async utility in utils/fetch-names.ts

After defining a custom type, we create a function and directly export
it. This function contains the code from the previously created names.ts
file, with two adjustments: first we need to define the data array as possibly
empty; next, we return an empty array instead of an error string if the API
call fails. This change means that we don’t need to verify the type before
iterating over the array when we generate the JSX string.

Server-Side Rendering
Using SSR, Next.js’s built-in Node.js server creates an application’s HTML
in response to each request. You should use this technique if your page
depends on fresh data from an external API. Unfortunately, SSR is slower
in production, because the pages aren’t easily cacheable.

To use SSR for a page, export an additional async function, getServer​
SideProps, from that page. Next.js calls this function on every request and
passes the fetched data to the page’s props argument to pre-render it before
sending it to the client.

Try this out by creating a new file, names-ssr.tsx, in the pages folder. Paste
the code from Listing 5-12 into the file.

import type {
 GetServerSideProps,
 GetServerSidePropsContext,
 InferGetServerSidePropsType,
 NextPage,
 PreviewData
} from "next";
import { ParsedUrlQuery } from "querystring";
import { fetchNames } from "../utils/fetch-names";

type responseItemType = {
 id: string;
 name: string;
};

Next.js 85

const NamesSSR: NextPage = (props: InferGetServerSidePropsType<typeof getServerSideProps>) => {

 const output = props.names.map((item: responseItemType, idx: number) => {
 return (
 <li key={`name-${idx}`}>
 {item.id} : {item.name}

);
 });

 return (

 {output}

);
};

export const getServerSideProps: GetServerSideProps = async (
 context: GetServerSidePropsContext<ParsedUrlQuery, PreviewData>
) => {

 let names: responseItemType[] | [] = [];
 try {
 names = await fetchNames();
 } catch(err) {}
 return {
 props: {
 names
 }
 };
};

export default NamesSSR;

Listing 5-12: A basic page that displays data with SSR, page/names-ssr.tsx

To use Next.js’s SSR, we export the additional async function,
getServerSideProps. We also import necessary functionality from the next
and querystring packages and the fetchNames function we created earlier.
Then we define the custom type for the response to the API request. It’s
the same custom type we used in Chapter 3.

Next, we create the page and store the export as the default one.
The page returns a NextPage and takes the default properties for this
page type. We iterate over the props parameter’s names array and create a
JSX string that we render and return to the browser. Then we define the
getServerSideProps function, which gets the data from the API. We return
the created dataset from the async function and pass it to the NextPage
inside the page properties.

Navigate to the new page at http://localhost:3000/names-ssr. You should
see the list of the usernames.

86 Chapter 5

Static Site Generation
SSG creates the HTML files only once and reuses them for every request. It
is the recommended option, because pre-rendered pages are easy to cache
and fast to deliver. For example, a content delivery network can easily pick
up your static files.

Usually, SSG applications have a lower time to first paint, or the time it
takes after a user requests the page (by, for example, clicking a link) until the
content appears in the browser. SSG also reduces blocking time, or the time it
takes until the user can actually interact with the page’s content. Good scores
in these metrics indicate a responsive website, and they are part of Google’s
scoring algorithm. Hence, these pages have increased SEO rankings.

If your page relies on external data, you can still use SSG by exporting
an additional async function, getStaticProps, from the page’s file. Next.js
calls this function at build time, passes the fetched data to the page’s props
argument, and pre-renders the page with SSG. Of course, this works only if
the external data isn’t dynamic.

Try creating the same page as in the SSR example, this time with SSG.
Add a new file, names-ssg.tsx, in the pages folder and then paste in the code
shown in Listing 5-13.

import type {
 GetStaticProps,
 GetStaticPropsContext,
 InferGetStaticPropsType,
 NextPage,
 PreviewData,
} from "next";
import { ParsedUrlQuery } from "querystring";
import { fetchNames } from "../utils/fetch-names";

type responseItemType = {
 id: string,
 name: string,
};

const NamesSSG: NextPage = (props: InferGetStaticPropsType<typeof getStaticProps>) => {

 const output = props.names.map((item: responseItemType, idx: number) => {
 return (
 <li key={`name-${idx}`}>
 {item.id} : {item.name}

);
 });

 return (

 {output}

);
};

Next.js 87

export const getStaticProps: GetStaticProps = async (
 context: GetStaticPropsContext<ParsedUrlQuery, PreviewData>
) => {

 let names: responseItemType[] | [] = [];
 try {
 names = await fetchNames();
 } catch (err) {}

 return {
 props: {
 names
 }
 };
};

export default NamesSSG;

Listing 5-13: A page that displays data with SSG, page/names-ssg.tsx

The code is mostly identical to Listing 5-9. We just need to change the
SSR-specific code to use SSG. Therefore, we export getStaticProps instead of
getServerSideProps and adjust the types accordingly.

When you visit the page, it should look similar to the SSR page. But
instead of requesting fresh data on each visit to http://localhost:3000/names​
-ssg, the data is requested only once, on page build.

Incremental Static Regeneration
ISR is a hybrid of SSG and SSR that runs purely on the server side. It gener-
ates the HTML on the server during the initial build and sends this pre-
generated HTML the first time a page is requested. After a specified time
has passed, Next.js will fetch the data and regenerate the page on the server
in the background. In the process, it invalidates the internal server cache
and updates it with the new page. Every subsequent request will receive the
up-to-date page. Like SSG, ISR is less costly than SSR and increases a page’s
SEO ranking.

To enable ISR in SSG pages, we need to add a property to revalidate
getStaticProp’s return object. We define the validity of the data in seconds,
as shown in Listing 5-14.

return {
 props: {
 names,
 revalidate: 30
 }
};

Listing 5-14: Changing getServerSideProps to enable ISR

We add the revalidate property with a value of 30. As a result, the cus-
tom Next.js server will invalidate the current HTML 30 seconds after the
first page request.

88 Chapter 5

Client-Side Rendering
A completely different approach, client-side rendering involves first generat-
ing the HTML with SSR or SSG and sending it to the client. The client
then fetches additional data at runtime and renders it in the browser DOM.
Client-side rendering is a good choice when working with highly flexible,
constantly changing datasets, such as real-time stock market or currency
prices. Other sites use it to send a skeleton version of the page to the client
and later enhance it with more content. However, client-side rendering low-
ers your SEO performance, as its data can’t be indexed.

Listing 5-15 shows the page we created earlier, configured for client-
side rendering. Create a new file, names-csr.tsx, in the pages folder and then
add the code to it.

import type {
 NextPage
} from "next";
import { useEffect, useState } from "react";
import { fetchNames } from "../utils/fetch-names";

type responseItemType = {
 id: string,
 name: string,
};

const NamesCSR: NextPage = () => {
 const [data, setData] = useState<responseItemType[] | []>();
 useEffect(() => {
 const fetchData = async () => {
 let names;
 try {
 names = await fetchNames();
 } catch (err) {
 console.log("ERR", err);
 }
 setData(names);
 };
 fetchData();
 });

 const output = data?.map((item: responseItemType, idx: number) => {
 return (
 <li key={`name-${idx}`}>
 {item.id} : {item.name}

);
 });

 return (

 {output}

);

Next.js 89

};

export default NamesCSR;

Listing 5-15: The client-side rendered page, page/names-csr.tsx

This code differs significantly from the previous examples. Here we
import the useState and useEffect hooks. The latter one will fetch the data
after the page is already available. As soon as the fetchNames function returns
the data, we use the useState hook and the reactive data state variable to
update the browser DOM.

We cannot declare the useEffect hook as an async function, because
it returns either an undefined value or a function, whereas an async function
returns a promise, and therefore TSC would throw an error. To avoid this,
we need to wrap the await call in an async function, fetchData, and then call
that function.

The page configured for client-side rendering should look similar to
the other versions. But when you visit http://localhost:3000/names-csr, you
might see a white flash. This is the page waiting for the asynchronous API
request.

To get a better feel for the different rendering types, modify the code
for each example in this section to use the API https://www.usemodernfullstack
.dev/api/v1/now, which returns an object with the timestamp of the request.

Static HTML Exporting
The next export command generates a static HTML version of your web
application. This version is independent of the built-in Node.js-based
Next.js web server and can run on any infrastructure, such as an Apache,
NGINX, or IIS server.

To use this command, your page must implement getStaticProps, as in
SSG. This command won’t support the getServerSideProps function, ISR, or
API routes.

Exercise 5: Refactor Express.js and React to Next.js
Let’s refactor the React and Express.js applications from the previous chap-
ters into a Next.js application that we’ll expand in the upcoming chapters.
As a first step, we’ll summarize the functionality we need to build. Our
application has an API route, api/names, that returns usernames, and
another API route, api/weather/:zipcode, that returns a static JSON object and
the URL parameter. We used it to understand dynamic URLs. In addition,
we created pages at /hello and component/weather.

Throughout this chapter, we’ve already refactored these various ele
ments to work with Next.js’s routing style. In this exercise, we’ll put it all
together. Follow the steps in “Setting Up Next.js” on page 70 to initialize
the Next.js application. Within the sample-next folder, name your application
refactored-app.

https://www.usemodernfullstack.dev/api/v1/now
https://www.usemodernfullstack.dev/api/v1/now

90 Chapter 5

Storing Custom Interfaces and Types
We create a new file, custom.d.ts, in the root of the project to store our cus-
tom interface and type definitions (Listing 5-16). It is similar to the one we
used in Chapters 3 and 4. The main difference is that we add custom types
for the Next.js application.

interface WeatherProps {
 weather: string;
}

type WeatherDetailType = {
 zipcode: string;
 weather: string;
 temp?: number;
};

type responseItemType = {
 id: string;
 name: string;
};

Listing 5-16: The custom.d.ts file

We’ll use the custom interface WeatherProps for the props argument of
the page that displays the weather components, components/weather. The
WeatherDetailType is for the API route api/weather/:zipcode, which uses a
dynamically fetched ZIP code. Finally, we use responseItemType in the API
route api/names to type the fetch response.

Creating the API Routes
Next, we re-create the two API routes from the Express.js server. Earlier
sections of this chapter showed this refactored code. For the api/names
route, create a new file, names.ts, in the api folder, then add the code from
Listing 5-3. Refer to that section for a detailed explanation of the code.

Migrate the dynamic route api/weather/:zipcode from the Express.js
server to the Next.js application by creating a [zipcode].js file in the api
folder and adding the code from Listing 5-4, shown in “Dynamic URLs”
on page 77. You can refer to that section for more details.

Creating the Page Routes
Now we work on the pages. First, for the simple page hello.tsx, we create a
new file in the pages folder and add the code from Listing 5-10. This code
renders the Hello World! example and uses the custom Next.js components
Head, Link, and Image, all of which are explained in detail in “Built-in Next.js
Components” on page 80.

The second page is the nested route pages/components/weather.tsx. As
before, we create a new file, weather.tsx, in a folder called components, within
the pages folder. Add the code from Listing 5-2. This listing uses the useState

Next.js 91

and useEffect hooks to create a reactive user interface. We can remove
the custom interface definition for the WeatherProps from this file. The
custom.d.ts file already adds them to TSC.

Running the Application
Start the application with the npm run dev command. Now you can visit the
same routes we created for the Express.js server and see that they are func-
tionally the same. Congratulations! You created your first Next.js-based
full-stack application. Play around with the code and try using global and
component CSS to style your pages.

Summary
Next.js adds the missing functionality needed to create full-stack applica-
tions with React. After scaffolding a sample project and exploring the
default file structure, you learned how to create page and API routes in
the framework. You also learned about global- and component-level CSS,
Next.js’s four built-in command line scripts, and its most useful custom
components.

We also discussed the different ways to render content and pages with
Next.js and when to choose each option. Finally, you used the code from
this chapter to quickly migrate the Express.js application you built in the
previous chapters to Next.js. To continue your adventures in this useful
framework, I recommend the official tutorials at https://nextjs​.org.

In the next chapter, we’ll explore two types of web APIs: the standard
RESTful APIs and modern GraphQL.

https://nextjs.org

An API is a generic pattern used to connect
computers or computer programs. Unlike

a user interface, it’s designed to be accessed
not by a user but by another piece of software.

		 One purpose of APIs is to hide the internal details of
		 a system’s workings while exposing a standardized
		 gateway to the system’s data or functionality.

As a full-stack developer, you’ll usually interact with, or consume, two
kinds of APIs: internal and third-party. When querying an internal API,
you’re consuming data from your own systems, typically from your own
database or service. Private APIs are not available to outside parties. For
example, your bank might use private APIs to check your credit score or
account balance on its internal systems and display them in your online
banking profile.

Third-party APIs provide access to data from an external system. For
example, the OAuth login you’ll implement in Part II uses an API. You

6
R E S T A N D G R A P H Q L A P I S

94 Chapter 6

might also use an API to fetch a social media feed or weather information
from an external provider to display on your website. Because external APIs
are exposed to the public, you can reach them through a public URL, and
they document the conventions you should use to access their data in an
API contract. This contract defines the format of the communications, the
parameters the API expects, and the possible responses you might receive
for each request. We briefly discussed API and function contracts and why
you should type them in Chapter 3.

Full-stack web development primarily uses two types of APIs, REST
and GraphQL, both of which transmit data over HTTP. This chapter covers
these.

REST APIs
REST is an architectural pattern used to design RESTful web APIs. These
APIs are essentially a set of URLs, each of which provides access to a single
resource. They rely on the use of HTTP methods and the standard HTTP
status codes to transmit data and accept URL-encoded or request header
parameters. Typically, they respond with the requested data in JSON or
plaintext.

In fact, you’ve already built your first REST API. Recall the Next.js server
you created in Exercise 5 on page 89, which provided the api/weather/:zipcode
endpoint. So far, we’ve used this endpoint to play with Next.js’s routing,
understand dynamic URLs, and learn how to access query parameters.
You’ll soon see, however, that this API follows REST conventions: to access
it, we used the HTTP GET method to consume the URL endpoint and
received a JSON response with an HTTP status code of 200: OK. Common
status code ranges are 2XX for successful requests and 3XX for redirects.
If the request fails, we see the 4XX range to indicate a client-related error,
such as 401: Unauthorized, and 5XX for server errors, often the generic 500:
Internal Server Error.

As full-stack developers, we might sometimes create our own APIs;
more often, though, we’ll find ourselves consuming third-party APIs. Why
might we consume, say, a third-party weather API? Well, imagine that we
want our app to display the current weather at multiple remote locations.
Instead of setting up and maintaining various weather stations on our own
and then reading the data from the sensors, which would involve both pro-
viding and consuming an API for each of them, we could consume data
from a third-party API offered by an existing weather service. Our code
might call that API, pass in a ZIP code as a parameter, and receive the
weather data for this location in a predetermined format. We’d then display
this data on our website.

RESTful APIs enable us to interact with data without knowing anything
about how that data was stored or what underlying technology provided it.
If you follow an API’s specifications, you should receive the requested data,

REST and GraphQL APIs 95

even if the underlying technology or architecture changes. Beyond this,
there are a handful of requirements for an API to be considered RESTful.

The URL
A unique URL provides an interface to a RESTful API. Each of a provider’s
APIs typically has the same base URL, called the root entry point, such as
http://localhost:3000​/api. You can think of this as the APIs’ family name.
Often, you’ll see a version number added to the root entry point, because a
provider might have multiple versions of an API. For example, there might
be the legacy http://localhost:3000​/api​/v1 and an updated http://localhost:3000​/
api​/v2. To honor this pattern, you can create a folder v1 inside the api folder
and move the REST API code there.

N O T E 	 Other common ways of versioning an API include custom headers and query strings.
In the first case, the client would request the API with a custom Accept-Version
header and receive a matching Content-Version header. In the second case, an API
request would use ?version=1.0.0 as a query parameter in the URL.

The next part of the API’s URL is the path, often called the endpoint. It
specifies the resource we want to query (for example, the weather API). API
specifications usually mention only the endpoint itself, such as /v1/weather,
leaving the root entry point implied. The URL generally also accepts
parameters. These can be path parameters that are part of the URL, like
in our ZIP code API endpoint, /v1/weather/{zipcode}, or they can be query
parameters, which are added as encoded key-value pairs after an initial
question mark, as in /v1/weather?zipcode=<zipcode>. By convention, path
parameters are usually used to refer to a resource or resources, and
query parameters are used to perform operations on the data returned,
like sorting or filtering.

The Specification
The resources themselves are separate from the representations returned
to the client. In other words, the server might send data in formats like
HTML, XML, JSON, or others, regardless of the way in which the data
is stored in the application’s database. You can learn about an API’s
response format in its specification, which serves as the manual for an API.
One excellent way to document your APIs is with the OpenAPI format,
which is widely used in the industry and is part of the Linux Foundation.
You can use the Swagger graphical editor at https://editor​.swagger​.io to
experiment with it.

For example, Listing 6-1 shows a specification for the /v1/weather/
{zipcode} endpoint, written as JSON. Paste the code into the Swagger editor
to explore the generated documentation in a more user-friendly manner.

https://editor.swagger.io

96 Chapter 6

{
 "openapi": "3.0.0",
 "info": {
 "title": "Sample Next.js - OpenAPI 3.x",
 "description": "The example APIs from our Next.js application",
 "version": "1.0.0"
 },
 "servers": [
 { "url": "https://www​.usemodernfullstack​.dev​/api​/" },
 { "url": "http://localhost:3000​/api​/" }
],
 "paths": {
 "/v1/weather/{zipcode}": {
 "get": {
 "summary": "Get weather by zip code",
 "parameters": [
 {
 "name": "zipcode",
 "in": "path",
 "description": "The zip code for the location as string.",
 "required": true,
 "schema": {
 "type": "string",
 "example": 96815
 }
 }
],
 "responses": {
 "200": {
 "description": "Successful operation",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/weatherDetailType"
 }
 }
 }
 }
 }
 }
 }
 },
 "components": {
 "schemas": {
 "weatherDetailType": {
 "type": "object",
 "properties": {
 "zipcode": {
 "type": "string",
 "example": 96815
 },
 "weather": {
 "type": "string",
 "example": "sunny"

REST and GraphQL APIs 97

 },
 "temp": {
 "type": "integer",
 "format": "int64",
 "example": 35
 }
 }
 }
 }
 }
}

Listing 6-1: The OpenAPI specification for the /v1/weather/{zipcode} endpoint

First we define general information, such as the API’s title and descrip-
tion. The most important value here is the API version. In Exercise 6 on
page 108, we’ll adjust our server to reflect this version. The next property
we set is the server, or the root entry point of the API. We use localhost
here, because our Next.js application runs locally for now.

Then we specify the unique API endpoints under paths, setting the
path, parameters, and responses for each of them. In this example, we spec-
ify the minimum required data for one endpoint, the /v1/weather/{zipcode},
and clarify that it uses the GET method. The curly brackets ({}) indicate
the URL parameter, but we also set the parameter with the name zipcode
explicitly in the path. In addition, we define the schema, or format, for the
parameter, which should be a string.

Next, in the responses section, we set the response that the API should
return if the HTTP status code is 200: OK. This content, in the application/
json format, is weatherDetailType, which you should already be familiar with
from previous chapters. It’s similar to the custom type definition in our
custom.d.ts file, except here we use JSON instead of TypeScript.

Note that the Swagger editor also generates an interactive playground
based on the specification that lets us test the API’s endpoints against a run-
ning server. In addition, we can generate a server and client directly in the edi-
tor’s interface. The generated server will provide the REST API described in
the specification, whereas the client will generate a library we can use in any
application that consumes the API from the spec. This interactive playground
and generated code make working with third-party APIs very easy.

State and Authentication
RESTful APIs are stateless, meaning they don’t store session information
on the server. Session information is any data about previous user interac-
tions. For example, imagine an online store’s shopping cart. In a stateful
design, the application would store the content of your cart on the server
and update it whenever you add new items. In a RESTful design, the client
instead sends all relevant session data in each request. User–server interac-
tions are understood in isolation, without context from previous requests.

Even so, public RESTful APIs often require some form of authentica-
tion. In order to distinguish the requests of authenticated users from the

98 Chapter 6

requests of unauthenticated users, those APIs typically provide a token that
users should include in subsequent requests. Consumers send this token as
part of the request’s data or in the HTTP Authorization header. We’ll provide
more details about authorization tokens and how they work in Chapter 9.

This stateless design means that the authentication works regardless of
whether the client requests the data from the end server directly, a proxy,
or a load balancer. Therefore, a RESTful API is capable of handling a lay-
ered system. Stateless architectures are also ideal in high-volume situations,
because they remove the server load caused by the retrieval of session infor-
mation from a database.

HTTP Methods
In REST, there are four standard ways to interact with a dataset: create,
read, update, and delete. These interactions are commonly called CRUD
operations. REST APIs use the following HTTP methods to perform these
operations on the request’s resource:

GET ​  ​Used to retrieve data from a resource. It’s the most common
request; each time you visit a website in your browser, you make a GET
request to the website’s address.

POST ​  ​Used to add a new element to a collection resource. Sending
the same POST request multiple times creates a new element for each
request, resulting in multiple elements with the same content. When
you send an email or submit a web form, your client is usually send-
ing a POST request behind the scenes, because you’re creating a new
resource in a database.

PUT ​  ​Used to overwrite or update an existing resource. Sending the
same PUT request multiple times creates or overwrites a single element
with updated content. For example, when you re-upload a picture on
Instagram or Facebook, you might send a PUT request.

PATCH ​  ​Used to partially update an existing resource. Unlike with PUT,
you’re sending only the data that differs from the current dataset. Hence,
it’s a smaller and more performant operation. For example, an update to
your profile on a social media page might be done with a PATCH request.

DELETE ​  ​Used to delete a resource (for example, to remove a picture
on Instagram).

REST API requests suffer from the same performance implications
as do all HTTP requests. Developers must consider critical factors such as
network bandwidth, latency, and server load. While the application usually
can’t influence the network latency or user bandwidth, it can increase its
performance by caching the requests and responding with the previously
cached results.

In general, the recommended approach is to cache requests aggres-
sively. By avoiding additional server requests, we can speed up our applica-
tion significantly. Unfortunately, not all HTTP requests are cacheable. The

REST and GraphQL APIs 99

responses for GET requests are cacheable by default, but PUT and DELETE
answers aren’t cacheable at all, because they don’t guarantee a predictable
response. Between two similar PUT requests, a DELETE request might have
deleted the resource, or vice versa. POST and PATCH request responses
can, in theory, be cached if the response provides an Expire header or a
Cache-Control header and your subsequent calls are GET requests to the
same resource. Still, servers frequently won’t cache those two types.

Working with REST
Let’s practice working with REST by taking a look at our fictional weather
service. Say we read the API contract and see that an authorized user can
receive and update datasets from the service by using its public REST API.
The API returns JSON data, the server’s URL is https://www​.usemodernfullstack​
.dev, and the endpoint at /api/v2/weather/{zipcode} accepts GET and PUT
requests. In this section, we walk through the requests and responses for get-
ting the current weather data for a specific ZIP code with a GET request to
the API, as well as for updating the stored weather data with a PUT request.

Reading Data
To receive the weather for your location, you might make a GET request
containing the ZIP code 96815 and an authorization token. We can make
such a GET request with a command line tool like cURL, which should be
part of your system. If necessary, you can install it from https://curl​.se. A typi-
cal cURL request looks like this:

$ curl -i url

The -i flag displays the header details we are interested in. We can
set the HTTP method with the -X flag and send an additional header with
the -H flag. Use the escape character to send a multiline command (\ on
macOS and ^ on Windows). Avoid adding a space character behind the
escape character. If you’re curious, try using cURL to query one of the
API endpoints in the app you created in Exercise 5 on page 89. A cURL
call for a GET request to the weather API v2/weather/{zipcode} at https://www​
.usemodernfullstack​.dev​/api would look like this:

$ curl -i \
 -X GET \
 -H "Accept: application/json" \
 -H "Authorization: Bearer 83dedad0728baaef3ad3f50bd05ed030" \
 https://www.usemodernfullstack.dev/api/v2/weather/96815

We make this request to the API endpoint v2/weather/{zipcode} on the
server at https://www​.usemodernfullstack​.dev​/api​. The ZIP code is included in
the URL. We set the return format to JSON in the Accept header and pass an

https://www.usemodernfullstack.dev
https://www.usemodernfullstack.dev
https://curl.se
https://www.usemodernfullstack.dev/api
https://www.usemodernfullstack.dev/api
https://www.usemodernfullstack.dev/api

100 Chapter 6

access token in the Authorization header. Because this is an example API, it
accepts any token; if one is not supplied, the API returns a status code of 401.

Here is what the API’s response to our GET request looks like:

HTTP/2 200
content-type: application/json ; charset=utf-8
access-control-allow-origin: *

{"weather":"sunny","tempC":"25","tempF":"77","friends":["96814","96826"]}

The API responds with an HTTP status code of 200, indicating that the
request was successful. We asked for a JSON response, and the content-type
header confirms that the response data is indeed of that type.

The Access-Control-Allow-Origin  header, which we discussed in Chapter 5,
here allows access to any domain. With this setting, a browser whose client-
side JavaScript wants to access the API will allow these requests regardless of
the website’s domain. Without the CORS header, the browser would block
the request and the script’s access to the response and instead throw a CORS
error.

Finally, we see that the response’s body contains a JSON string with the
API response.

Updating Data
Now imagine that you want to add display data from your neighborhood
(96814) and the adjacent one (96826) to your website. Unfortunately, these
ZIP codes aren’t yet available on the API. Luckily, because it’s open source,
we can hook up our own weather station and extend the system. Say we’ve
set up our weather sensors and connected them to the API. As soon as the
weather changes, we add the dataset to it.

Here is the PUT request we make to update the weather for the ZIP
code 96814. PUT requests store data in the request body; therefore, we use
the -d flag in the cURL command to send the encoded JSON:

$ curl -i \
 -X PUT \
 -H "Accept: application/json" \
 -H "Authorization: Bearer 83dedad0728baaef3ad3f50bd05ed030" \
 -H "Content-Type: application/json" \
 -d "{\"weather\":\"sunny\",\"tempC\":\"20\",\"tempF\":\"68\",
 \"friends\":\"['96815','96826']\" }" \
 https://www.usemodernfullstack.dev/api/v2/weather/96815

We request the same API endpoint, /api/v2/weather/, but replace the
GET method with PUT, because we don’t want to get the data from the
database; instead, we want to add data. We use the Content-Type header to
tell the API provider that the payload in the request body is a JSON string.
The API updates the dataset and responds with a status code of 200 and a
JSON object with additional status details:

REST and GraphQL APIs 101

HTTP/2 200
content-type: application/json ; charset=utf-8
access-control-allow-origin: *
{"status":"ok"}

You can learn more about RESTful APIs at https://restfulapi​.net, which
covers more specific topics, such as compression and security models, and
guides you through designing your own RESTful APIs. Now let’s turn our
attention to GraphQL, a different, more advanced type of API.

GraphQL APIs
Unlike REST, GraphQL isn’t merely an architectural pattern. It’s a complete,
open source data query and manipulation language for APIs. It’s also the
most popular REST alternative in full-stack web development, used by Airbnb,
GitHub, PayPal, and many other companies. In fact, 10 percent of the top
10,000 sites reportedly use GraphQL. This section covers only certain of its
features but should give you a solid understanding of GraphQL principles.

N O T E 	 Despite its name, GraphQL doesn’t require the use of a graph database like Neo4j. We
can use it to query any data source connected to the GraphQL server, including com-
mon databases such as MySQL and MongoDB.

Like REST, GraphQL APIs operate over HTTP. However, a GraphQL
implementation exposes only a single API endpoint, typically called /graphql,
for accessing all resources and performing all CRUD operations. By contrast,
REST has one dedicated endpoint per resource.

Another difference is that we connect to the GraphQL server by using
POST requests exclusively. Rather than using HTTP methods to define a
desired CRUD operation, we use queries and mutations in the POST request
body. Queries are read operations, while mutations are operations for creat-
ing, updating, and deleting data.

And unlike REST, which relies on standard HTTP status codes, GraphQL
returns 500, that is, an Internal Server Error, when an operation cannot be exe-
cuted at all. Otherwise, the response uses 200 even if there are problems with
the queries or mutations. The reason for this is that the resolver might have
partially executed before encountering an issue. Keep this in mind when
deploying a GraphQL API in production. Many standard operational prac-
tices and tools may need to change to account for this behavior.

The Schema
A GraphQL API defines the available queries and mutations in its schema,
which is equivalent to the REST API’s specification. Also called a typedef,
the schema is written in the Schema Definition Language (SDL). SDL’s
core elements are types, which are objects that contain typed fields defining
their properties, and optional directives that add additional information, for
example, to specify caching rules for queries or mark fields as deprecated.

https://restfulapi.net

102 Chapter 6

Listing 6-2 shows a GraphQL schema for our fictional weather API,
which returns the weather data for a location.

export const typeDefs = gql`

 type LocationWeatherType {
 zip: String!
 weather: String!
 tempC: String!
 tempF: String!
 friends: [String]!
 }

 input LocationWeatherInput {
 zip: String!
 weather: String
 tempC: String
 tempF: String
 friends: [String]
 }

 type Query {
 weather(zip: String): [LocationWeatherType]!
 }

 type Mutation {
 weather(data: LocationWeatherInput): [LocationWeatherType]!
 }
`;

Listing 6-2: The GraphQL schema for the weather API

You should notice that the schema is a tagged template literal, which
you learned about in Chapter 2. We begin by describing custom GraphQL
object types. These object types represent the data that the API returns.
They are similar to the custom types we defined in TypeScript. A type has
a name and can implement an interface. Each of these custom object types
contains fields, which have a name and a type. GraphQL has the built-in
scalar types Int, Float, String, Boolean, and ID. Exclamation marks (!) denote
non-nullable fields, and lists within square brackets ([]) indicate arrays.

The first custom object type is LocationWeatherType, which describes the
location information for a weather query. Here we use the String! expres-
sion to mark the ZIP field as non-nullable. Hence, the GraphQL service
always returns a value for this field. We define a friends field as an array
of strings to represent related weather stations by ZIP code. It is also non-
nullable, so it will always contain an array (with zero or more items) when
added to the return values. The String inside the friends array ensures that
every item will be a string.

Then we define the input type object for our first mutation. These types
are necessary for mutations, and they represent the input received from
the API’s consumer. Because consumers should be able to pass in only the
fields they’d like to update, we omit the exclamation marks to make the

REST and GraphQL APIs 103

fields optional. In GraphQL, we need to define input objects and types for
the return value separately, with the built-in types. Unlike in TypeScript, we
can’t use generic custom types.

The schema also defines the query and mutation functions. These are
the operations that consumers can send to the API. The weather query takes
a ZIP code as a parameter and always returns an array of WeatherLocationType
objects. The weather mutation takes a WeatherLocationInput parameter and
always returns the modified WeatherLocationType object.

Our schema doesn’t contain any directives, and we won’t go deep into
their syntax in this chapter. However, one reason to use directives is for
caching. Because GraphQL queries use POST, which isn’t cacheable using
the default HTTP cache, we must implement caching manually, on the
server side. We can configure caching statically on the type definitions with
the directive @cacheControl or dynamically, in the resolver functions, with
cacheControl.setCacheHint.

The Resolvers
In GraphQL, the resolvers are the functions that implement the schema.
Each resolver function maps to a field. Query resolvers implement the read-
ing of data, whereas mutation resolvers implement the creation, updating,
and deletion of data. Together they provide complete CRUD functionality.

To understand how resolvers work, you can think of each GraphQL
operation as a tree of nested function calls. In such an abstract syntax tree
(AST), each part of the operation represents a node. For example, consider
a complex, nested GraphQL query, which asks for the location’s current
weather, as well as the weather of all its neighbors. Our GraphQL schema
for this example looks like Listing 6-3.

export const typeDefs = gql`

 type FriendsType {
 zip: String!
 weather: String!
 }

 type LocationWeatherType {
 zip: String!
 weather: String!
 tempC: String!
 tempF: String!
 friends: [FriendsType]!
 }

 type Query {
 weather(zip: String): [LocationWeatherType]!
 }
`;

Listing 6-3: The GraphQL schema for the nested GraphQL query example

104 Chapter 6

In the schema for the example, we replace the content of the friends
array. Instead of a simple string, we want it to contain an object with a ZIP
code and weather information. Therefore, we define a new FriendsType and
use this type for the array items.

Listing 6-4 defines the complex example query.

query GetWeatherWithFriends {
 weather(zip: "96815") {
 weather
 friends {
 weather
 }
 }
}

Listing 6-4: The nested GraphQL query

This query takes the zip parameter 96815 and then returns its weather
property, as well as all of its friends’ weather properties, as strings. But how
does the query work under the hood?

Figure 6-1 shows the resolver chain and corresponding AST. The GraphQL
server would first parse the query into this structure and then validate the AST
against the type-definition schema to ensure that the query can be executed
without running into logical problems. Finally, the server would execute the
query.

Query

Location

Friend

GetWeatherWithFriends

weather(zip: "96815″)

weather friends

{zip, weather}

[{zip, weather}, {zip, weather} ...]

weather weather

Figure 6-1: Querying the GraphQL AST

Let’s examine the resolver chain for the query. The Query.weather func-
tion takes one argument, the ZIP code, and returns the location object for
this ZIP code. Then the server continues along each branch separately.
For the weather in the query, it returns the weather property of the location

REST and GraphQL APIs 105

object, Location.weather, at which point the branch ends. The second part
of the query, which asks for all friends from the location object and their
weather properties, runs the Location.Friends query and then returns the
Friends.weather property for each result. The resolver object of each step
contains the result returned by the parent field’s resolver.

Let’s return to our weather schema and define the resolvers. We’ll
keep these simple. In Listing 6-5, you can see that their names match those
defined in the schema.

export const resolvers = {
 Query: {
 weather: async (_: any, param: WeatherInterface) => {
 return [
 {
 zip: param.zip,
 weather: "sunny",
 tempC: "25C",
 tempF: "70F",
 friends: []
 }
];
 },
 },
 Mutation: {
 weather: async (_: any, param: { data: WeatherInterface }) => {
 return [
 {
 zip: param.data.zip,
 weather: "sunny",
 tempC: "25C",
 tempF: "70F",
 friends: []
 }
];
 }
 },
};

Listing 6-5: The GraphQL resolvers for the weather API

We first define async functions for the query and mutation properties
and assign the object to the const resolvers. Each takes two parameters.
The first one represents the previous resolver object in the resolver chain.
We aren’t using a nested or complex query; hence, here it is always unde-
fined. For this reason, we use the any type to avoid a TypeScript error and
use the underscore (_) convention you learned in Chapter 3 to mark it as
unused. The second parameter is an object containing the data passed to
the function on invocation. For the weather query and the weather mutation,
it is an object that implements the WeatherInterface.

For now, both functions ignore this parameter for the most part, using
only the zip property to reflect the input. Also, they return a static JSON

106 Chapter 6

object similar to the REST API we created in the previous listings. The
static data is just a placeholder, which we’ll replace with the result from our
database queries later. The response honors the API contract we defined in
the GraphQL schema, as this data consists of arrays with weather location
datasets.

Comparing GraphQL to REST
We’ve already implemented RESTful APIs in our Next.js application,
and as you saw in this chapter, REST is fairly simple to work with. You
might be wondering why you’d even consider using GraphQL. Well,
GraphQL solves two problems common in REST APIs: over-fetching and
under-fetching.

Over-Fetching
When a client queries a REST endpoint, the API always returns the com-
plete dataset for that endpoint. This means that, often, the API delivers
more data than necessary, a common performance problem called over-
fetching. For example, our example RESTful weather API at /api/v2/weather/
zip/96815 delivers all weather data for a ZIP code even if all you need is the
temperature in Celsius. You’d then need to manually filter the results. In
GraphQL, the API requests explicitly define the data they want returned.

Let’s look at an example to see how GraphQL lets us keep the API
response data to a minimum. The following GraphQL query returns only
the temperature in Celsius for the location with the ZIP code 96815:

query Weather {
 weather(zip: "96815") {
 tempC
 }
}

In GraphQL, we send the query as a JSON string with the POST
request’s data:

$ curl -i \
 -X POST \
 -H "Accept: application/json" \
 -H "Authorization: Bearer 83dedad0728baaef3ad3f50bd05ed030" \
 -H "Content-Type: application/json" \
 -d '{"query":"\nquery Weather {\n weather(zip: \"96815\") {\n tempC \n }\n}" }' \
 https://www.usemodernfullstack.dev/api/graphql

We consume the API with a POST request to the /api/graphql endpoint,
then set the Content-Type header and Accept header to JSON to explicitly tell
the API that we’re sending a JSON object in the request body and expect a
JSON response. We set the access token in the Authorization header, as in a

REST and GraphQL APIs 107

RESTful request. The POST body contains the query for the weather data,
and the \n control characters indicate the newlines in the GraphQL query.
As defined in the contract, the query expects a parameter, zip, for which we
pass in the ZIP code 96815. In addition, we request that the API return only
the tempC field of the weather node.

Here is the response from the GraphQL API:

HTTP/2 200
content-type: application/json ; charset=utf-8
access-control-allow-origin: *

{"data":{"weather":[{"tempC":"25C"}]}}

The API responds with a status code of 200. We specified in the request’s
query that we are interested in only the requested field tempC of the weather
object, so this is what we received. The API doesn’t return the ZIP code, tem-
perature in Fahrenheit, weather string, or friends array.

Under-Fetching
On the other hand, a REST dataset might not contain all the data you need,
requiring you to send follow-up requests. This problem is called under-fetching.
Imagine that your friends also have weather stations and that you want to get
the current weather at their ZIP codes. The RESTful weather API returns
an array with related ZIP codes (friends). However, you’d need to make addi-
tional requests for each ZIP code to receive their weather information, poten-
tially causing performance issues.

GraphQL treats datasets as nodes in a graph, with relationships between
them. Therefore, extending a single query to receive related data is pretty
simple. Our example GraphQL server’s resolvers are set up to fetch addi-
tional data about friends if the request’s query contains the friends field. We
define the GraphQL query as follows:

query Weather {
 weather(zip: "96815") {
 tempC
 friends {
 tempC
 }
 }
}

The following shows an example request that fetches all related nodes
through the friends array. Again, we define the return data and query the
friends only for the field tempC:

$ curl -i \
 -X POST \
 -H "Accept: application/json" \
 -H "Authorization: Bearer 83dedad0728baaef3ad3f50bd05ed030" \

108 Chapter 6

 -H "Content-Type: application/json" \
 -d '{"query":"query Weather {\n weather(zip: \"96815\")
 {\n tempC\n friends {\n tempC\n }\n }\n}"}' \
 https://www.usemodernfullstack.dev/api/graphql

The POST body contains the query for weather data pertaining to the
96815 ZIP code in one line and asks for the tempC field, as in the previous
request. To extend the query, we add a sub-selection on the friends field.
Now GraphQL traverses the related nodes and their fields and returns the
tempC field of the nodes whose ZIP codes match the ones in the 96815 node’s
friends array.

Here is the response from the GraphQL server. We see that it contains
data from the related nodes:

HTTP/2 200
content-type: application/json ; charset=utf-8
access-control-allow-origin: *

{"data":{"weather":[{"tempC":"25C","friends":
[{"tempC":"20C"},{"tempC":"30C"}]}]}}

As you’ve discovered, GraphQL lets us easily extend queries by adjust-
ing the data in the request.

Exercise 6: Add a GraphQL API to Next.js
Let’s rework our weather application’s API to use GraphQL. To do so, we
must first add GraphQL to the project. GraphQL isn’t a pattern but an envi-
ronment that consists of a server and a query language, both of which we
must add to Next.js.

We’ll install the stand-alone Apollo server, one of the most popular
GraphQL servers, which also provides a Next.js integration. Open your ter-
minal and navigate to the refactored application you built in Chapter 5. In
the directory’s top level, next to the package.json file, execute this command:

$ npm install @apollo/server @as-integrations/next graphql graphql-tag

This command also installs the GraphQL language and the GraphQL
tag modules we’ll need.

Creating the Schema
As we discussed, every GraphQL API starts with a schema definition. Create
a folder called graphql next to the pages folder in the Next.js directory. This
is where we’ll add all GraphQL-related files.

Now create a file called schema.ts and paste the code you wrote back in
Listing 6-2. We’ve already defined and discussed the type definition used
here. Simply add one line to the top of the file:

import gql from "graphql-tag";

REST and GraphQL APIs 109

This line imports the qql tagged template literal we use to define the
schema.

Adding Data
We want our API to return different data depending on the parameters
and properties of the queries sent to it. Therefore, we need to add datasets
to our project. GraphQL can query any database, even static JSON data.
So let’s implement a JSON dataset. Create the file data.ts inside the graphql
directory and add the code from Listing 6-6.

export const db = [
 {
 zip: "96815",
 weather: "sunny",
 tempC: "25C",
 tempF: "70F",
 friends: ["96814", "96826"]
 },
 {
 zip: "96826",
 weather: "sunny",
 tempC: "30C",
 tempF: "86F",
 friends: ["96814", "96814"]
 },
 {
 zip: "96814",
 weather: "sunny",
 tempC: "20C",
 tempF: "68F",
 friends: ["96815", "96826"]
 }
];

Listing 6-6: The graphql/data.ts file for the GraphQL API

This JSON defines three weather locations and their properties. A con-
sumer will be able to query our API for these datasets.

Implementing Resolvers
Now we can define our resolvers. Add the file resolvers.ts to the graphql direc-
tory and paste in the code from Listing 6-7. This is similar to the code we
previously discussed when we introduced resolvers, but instead of returning
the same static JSON object to the consumer, we query our new dataset.

import { db } from "./data";

declare interface WeatherInterface {
 zip: string;
 weather: string;
 tempC: string;

110 Chapter 6

 tempF: string;
 friends: string[];
}

export const resolvers = {
 Query: {
 weather: async (_: any, param: WeatherInterface) => {
 return [db.find((item) => item.zip === param.zip)];
 }
 },
 Mutation: {
 weather: async (_: any, param: { data: WeatherInterface }) => {
 return [db.find((item) => item.zip === param.data.zip)];
 }
 }
};

Listing 6-7: The graphql/resolvers.ts file for the GraphQL API

We import the array of JSON objects we created earlier and define an
interface for the resolvers. The query resolver finds an object by using the
ZIP code passed to it and returns it to the Apollo server. The mutation does
the same, except that the parameter structure is slightly different: it is acces-
sible through the data property. Alas, we can’t actually change the data by
using the mutation, as the data is a static JSON file. We’ve implemented the
mutation here for illustration purposes only.

Creating the API Route
The Apollo GraphQL server exposes one endpoint, graphql/, which we’ll
implement now. Create a new file, graphql.ts, in the api folder and add the
code from Listing 6-8. This code initializes the GraphQL server and adds a
CORS header so that we can access the API from different domains and use
the built-in GraphQL sandbox explorer to play with GraphQL later. You saw
this header in the previous cURL responses.

import { ApolloServer } from "@apollo/server";
import { startServerAndCreateNextHandler } from "@as-integrations/next";
import { resolvers } from "../../graphql/resolvers";
import { typeDefs } from "../../graphql/schema";
import { NextApiHandler, NextApiRequest, NextApiResponse } from "next";

//@ts-ignore
const server = new ApolloServer({
 resolvers,
 typeDefs
});

const handler = startServerAndCreateNextHandler(server);

const allowCors =
 (fn: NextApiHandler) => async (req: NextApiRequest, res: NextApiResponse) => {
 res.setHeader("Allow", "POST");

REST and GraphQL APIs 111

 res.setHeader("Access-Control-Allow-Origin", "*");
 res.setHeader("Access-Control-Allow-Methods", "POST");
 res.setHeader("Access-Control-Allow-Headers", "*");
 res.setHeader("Access-Control-Allow-Credentials", "true");

 if (req.method === "OPTIONS") {
 res.status(200).end();
 }
 return await fn(req, res);
 };

export default allowCors(handler);

Listing 6-8: The api/graphql.ts file, which creates the API entry point for GraphQL

This code is all we need to create the GraphQL entry point. First we
import the necessary modules, including our GraphQL schema and the
resolvers, both of which we created previously. Then we initialize a new
GraphQL server with typedefs and resolvers.

We start the server and continue by creating the API handler. To do
this, we use the Next.js integration helper to start the server and return
the Next.js handler. The integration helper connects the serverless Apollo
instance to the Next.js custom server. Before we define the default export
as an async function that takes the API’s request and response objects as
parameters, we create a wrapper to add the CORS headers to the request.
The first block inside the function sets up the CORS headers, and we limit
the allowed request to POST requests. We need the CORS headers here to
make our GraphQL API publicly available. Otherwise, we wouldn’t be able
to connect to the API from a website running on a different domain or even
use the server’s built-in GraphQL sandbox.

Part of the CORS setup here is that we immediately return 200 for
any OPTIONS requests. The CORS patterns use OPTIONS requests as
preflight checks. Here the browser requests only headers, and then checks
the response’s CORS headers to verify that the domain from which it
calls the API is allowed to access the resource before making the actual
request.

However, our Apollo server allows only POST and GET requests and
would return 405: Method Not Allowed for the preflight OPTIONS request.
So, instead of passing this request to the Apollo server, we end the request
and return 200 with the previous CORS headers. The browser should then
proceed with the CORS pattern. Finally, we start the server and create the
API handler on the desired path, api/graphql.

Using the Apollo Sandbox
Start your Next.js server with npm run dev. You should see the Next.js applica-
tion running on http://localhost:3000. If you navigate to the GraphQL API at
http://localhost:3000​/api​/graphql, you’ll find the Apollo sandbox interface for
querying the API, as in Figure 6-2.

112 Chapter 6

Figure 6-2: The Apollo sandbox’s API querying interface

In the Documentation pane on the left side, we see the available que-
ries as fields of the query object we defined earlier. As expected, we see
the Weather query here, and when we click it, a new query appears in the
Operation pane in the middle. At the same time, the interface changes,
and we see the available arguments and fields. Clicking each provides more
information. Using the plus (+) button, we can add fields to the Query pane
and run them against the data.

Try creating a Weather query that returns the zip and weather properties.
This query requires a ZIP code as an argument; add it through the user
interface on the left-hand side, and then add the ZIP code 96826 as a string
to the JSON object in the variables section of the lower pane. Now run the
query by clicking the Weather button at the top of the Operation pane.
You should receive the result for this ZIP code in the Response pane on the
right as JSON. Compare your screen with Figure 6-3.

REST and GraphQL APIs 113

Figure 6-3: The GraphQL query and response from the server

Play around with crafting queries, accessing properties, and creating
errors with invalid arguments to get a feel for GraphQL before moving on
to the next chapter.

Summary
This chapter explored RESTful and GraphQL web APIs and their role in
full-stack development. Although we used a REST design in previous chap-
ters, you should now be familiar with the concept of stateless servers, as well
as the five HTTP methods for performing CRUD operations in REST. You
also practiced working with a public REST API to read and update data,
then evaluated its requests and responses.

GraphQL APIs require a bit more work to implement, but they reduce
the over-fetching and under-fetching issues often experienced in REST. You
learned to define the API contract with a schema and implement its func-
tionality with resolvers. Then you queried an API and defined the dataset to
return in the request.

Finally, you added a GraphQL API to your existing Next.js application
by adding the Apollo server to it. You should now be able to create your
own GraphQL API and consume third-party resources. To learn more about
GraphQL, I recommend the tutorials at https://www​.howtographql​.com and
the official GraphQL introduction at https://graphql​.org​/learn​/.

In the next chapter, you’ll explore the MongoDB database and Mongoose,
an object data modeling library, for storing data.

https://www.howtographql.com
https://graphql.org/learn/

Most applications rely on a database man-
agement system, or database for short, to

organize and grant access to a collection of
datasets. In this chapter, you’ll work with the

		 MongoDB non-relational database and Mongoose, its
		 accompanying object mapper.

Because MongoDB returns data as JSON and uses JavaScript for data-
base queries, it provides a natural choice for full-stack JavaScript develop-
ers. In the following sections, you’ll learn how to create a Mongoose model
through which you can query your database, simplify your interactions
with MongoDB, and craft middleware that connects your frontend to your
backend database. You’ll also write service functions to implement the four
CRUD operations on the database.

In Exercise 7 on page 125, you’ll add a database to the GraphQL API
you created in Chapter 6, replacing its current static datastore.

7
M O N G O D B A N D M O N G O O S E

116 Chapter 7

How Apps Use Databases and Object-Relational Mappers
An app needs a database to store and manipulate data. So far in this book,
our app’s APIs returned only predefined datasets, saved in files, that couldn’t
change. We used parameters in our requests to add to the dataset but couldn’t
store the data between different API calls (called persisting the data). If we
wanted to update the app’s weather information, for example, we’d need a
database to persist the data so that the next API call could read it. In full-stack
development, we commonly use databases to store user-related data. Another
example of a database is the one that your email client uses to store your
messages.

To work with a database, we first need to connect to it and authenticate
with it. Once we have access to the data, we can execute queries to ask for
certain datasets. The query returns the results containing data that our app
can display or use in some other way. How each of these steps works in prac-
tice depends on the specific database in use.

Querying the data by using the database’s API tends to be clumsy
because it usually requires a good amount of boilerplate code, even to
simply establish and maintain the connection. Hence, we often use an
object-relational mapper or object data modeling tool, which simplifies working
with the databases by abstracting some of the details. For example, the
Mongoose object data modeling tool for MongoDB handles database con-
nections for us, saving us from having to check for an open database con-
nection during each interaction.

Mongoose also makes it easier to handle the fact that MongoDB runs
on a separate database server. Working with distributed systems requires
making asynchronous calls, which you learned about in Chapter 2. With
Mongoose, we can access the data with an object-oriented async/await inter-
face instead of using clumsy callback functions.

In addition, MongoDB is schema-less; it doesn’t require us to predefine
and strictly adhere to a schema. While convenient, this flexibility is also a
common source of errors, especially in large-scale applications or projects
with a rotating cast of developers. In Chapter 3, we discussed the benefits
of adding types to JavaScript by using TypeScript. Mongoose types and veri-
fies the integrity of MongoDB’s data models similarly, as you’ll discover in
“Defining a Mongoose Model” on page 118.

Relational and Non-Relational Databases
Databases can organize data in several ways, which fall into two main cat-
egories: relational and non-relational. Relational databases, such as MySQL
and PostgreSQL, store data in one or more tables. You can think of these
databases as resembling Excel spreadsheets. As in Excel, each table has a
unique name and contains columns and rows. The columns define proper-
ties, such as the data type, for all data stored in the column, and the rows
contain the actual datasets, each of which is identified by a unique ID.
Relational databases use some variation of Structured Query Language
(SQL) for their database operations.

MongoDB and Mongoose 117

MongoDB is a non-relational database. Unlike traditional relational data-
bases, it stores data as JSON documents instead of tables and doesn’t use
SQL. Sometimes termed NoSQL, non-relational databases can store data in
many different formats. For example, the popular NoSQL databases Redis
and Memcached use key-value storage, which makes them highly perfor-
mant and easily scalable. Thus, they’re often used as in-memory caches.
Another NoSQL database, Neo4j, is a graph database that uses graph theory
to store data as nodes, a concept we mentioned in Chapter 6. These are just
a few examples of non-relational databases.

MongoDB is the most widely used document database; instead of tables,
rows, and columns, it organizes data in collections, documents, and fields.
The field is the smallest unit in the database. It defines the data type and
additional properties and contains the actual data. You can consider it the
rough equivalent of a column in a SQL table. Documents, which are made
of fields, are like rows in a SQL table. We sometimes call them records, and
MongoDB uses BSON, a binary representation of a JSON object, to store
them. A collection is roughly equivalent to a SQL table, but instead of rows
and columns, it aggregates documents.

Because non-relational databases can store data in different formats,
each database uses a specific, optimized query language for CRUD opera-
tions. These low-level APIs focus on accessing and manipulating the data,
and not necessarily on the developer experience. By contrast, object-
relational mappers provide a high-level abstraction with a clean and simpli-
fied interface to the query language. So, while MongoDB has the MongoDB
Query Language (MQL), we’ll use Mongoose to access it.

Setting Up MongoDB and Mongoose
Before you start using MongoDB and Mongoose, you must add them to your
sample project. For the sake of simplicity, we’ll use an in-memory imple-
mentation of MongoDB rather than install and maintain a real database
server on our machines. This is appropriate for testing the chapter’s exam-
ples, but not for deploying an actual application, as it does not persist the
data between restarts. You’ll gain experience setting up a real MongoDB
server when you build the Food Finder application in Part II. Chapter 11
will show you how to use a pre-built Docker container that contains the
MongoDB server.

Run this command in the root directory of the refactored Next.js app
from Chapter 6:

$ npm install mongodb-memory-server mongoose

Then create two new folders in the root directory, next to the package
.json file: one for the Mongoose code, called mongoose, with subfolder weather,
and one called middleware, which will hold the necessary middleware.

118 Chapter 7

Defining a Mongoose Model
In order to verify the integrity of our data, we must create a schema-based
Mongoose model, which acts as a direct interface to a MongoDB collection
in a database. All interactions with the database will happen through the
model. Before we create the model, though, we need to create the schema
itself, which defines the structure of the database’s data and maps the
Mongoose instance to the documents in the collection.

Our Mongoose schema will match the schema created for the GraphQL
API in Chapter 6. That’s because we’ll connect the GraphQL API to the
database in Exercise 7 on page 125, allowing us to replace the static JSON
object with datasets we queried from the database.

The Interface
Before writing the Mongoose model and schema in TypeScript, let’s declare
a TypeScript interface. Without a matching interface, we won’t be able to
type the model or schema for TSC, and the code won’t compile. Paste the
code shown in Listing 7-1 into the mongoose/weather/interface.ts file.

export declare interface WeatherInterface {
 zip: string;
 weather: string;
 tempC: string;
 tempF: string;
 friends: string[];
};

Listing 7-1: The interface for the Mongoose weather model

The code is a regular TypeScript interface with properties matching
the GraphQL and Mongoose schemas.

The Schema
Listing 7-2 shows the Mongoose schema. Its top-level properties represent
the fields in the document. Each field has a type and a flag indicating
whether it is required. Fields can also have additional optional proper-
ties, such as custom or built-in validators. Here we use the built-in required
validator; other common built-in validators are minlength and maxlength for
strings, and min and max for numbers. Add the code to the mongoose/weather/
schema.ts file.

import { Schema } from "mongoose";
import { WeatherInterface } from "./interface";

export const WeatherSchema = new Schema<WeatherInterface>({
 zip: {
 type: "String",
 required: true,
 },

MongoDB and Mongoose 119

 weather: {
 type: "String",
 required: true,
 },
 tempC: {
 type: "String",
 required: true,
 },
 tempF: {
 type: "String",
 required: true,
 },
 friends: {
 type: ["String"],
 required: true,
 },
});

Listing 7-2: The schema for the Mongoose weather model

We use an object passed to the schema constructor to create the
schema and set WeatherInterface as its SchemaType. Therefore, we import
the Schema function from the mongoose package and the interface we created
previously.

Like TypeScript, which adds custom types to JavaScript, Mongoose casts
each property to its associated SchemaType, which provides the configuration
of the model. The available types are a mixture of built-in JavaScript types,
like Array, Boolean, Date, Number, and String, and custom types, like Buffer and
ObjectId, the latter of which refers to the default unique _id property that
Mongoose adds to each document upon creation. This is similar to the pri-
mary key you might know from relational databases.

The weather API we created in Chapter 6 returned an object with four
properties: zip, weather, tempC, and tempF, each of which is a string. In addi-
tion, we have one array of strings in the friends property. In this schema, we
define the same properties, then export the schema.

The Model
Now that we have a schema, we can create the Mongoose model. This wrap-
per on the schema will provide access to the MongoDB documents in the
collection for all CRUD operations. We write the model in the mongoose/
weather/model.ts file, whose code is in Listing 7-3. Keep in mind that we
haven’t yet connected it to the MongoDB database on the server.

import mongoose, { model } from "mongoose";
import { WeatherInterface } from "./interface";
import { WeatherSchema } from "./schema";

export default mongoose.models.Weather ||
 model<WeatherInterface>("Weather", WeatherSchema);

Listing 7-3: The Mongoose weather model

120 Chapter 7

First we import the Mongoose module and the model constructor
from the mongoose package, as well as the interface and the schema we
created earlier. Then we set up the Weather model, using WeatherInterface
to type it. We pass it two parameters: the model’s name, Weather, and the
schema, which defines the model’s internal data structure. Mongoose
binds the newly created model to our MongoDB instance’s collection.
The Weathers collection resides in the Weather database, both of which
Mongoose creates. Note that we need to check for an existing Weather
model on mongoose.models before creating a new one; otherwise, Mongoose
will throw an error. We export the model so that we can use it in our fol-
lowing modules.

The Database-Connection Middleware
Several times in this book so far, we’ve mentioned that full-stack develop-
ment covers an application’s frontend, backend, and middleware, which is
often also referred to as “application glue.” Now it’s time to create our first
dedicated middleware.

This middleware will open a connection to the database, then use
Mongoose’s asynchronous helper function to maintain that connection.
Next, it will map Mongoose’s models to the MongoDB collections so that we
can access them through Mongoose. Conveniently, the connection helper
will buffer the operations and reconnect to the database if necessary, so we
don’t need to handle connectivity issues by ourselves. Paste the code from
Listing 7-4 into the middleware/db-connect.ts file.

import mongoose from "mongoose";
import { MongoMemoryServer } from "mongodb-memory-server";

async function dbConnect(): Promise<any | String> {
 const mongoServer = await MongoMemoryServer.create();
 const MONGOIO_URI = mongoServer.getUri();
 await mongoose.disconnect();
 await mongoose.connect(MONGOIO_URI, {
 dbName: "Weather"
 });
}

export default dbConnect;

Listing 7-4: The Mongoose middleware

We import the mongoose package and the mongodb-memory-server data-
base. The async function dbConnect, which we define and then export, man-
ages the connection to the database server through the mongoose.connect
function. We create an instance of the MongoMemoryServer to persist our data
in memory rather than use a real database server, as discussed. Then we
store the connection string in the constant MONGOIO_URI. Because we are
using the in-memory server, this string is dynamic, but for a remote data-
base, it would be a static string representing the database’s server address.

MongoDB and Mongoose 121

Then we close all existing connections and use Mongoose to open a new
connection. The Mongoose models are already mapped and available, so
we’re ready to perform our first queries.

Querying the Database
Now it’s time to write database queries. Instead of sprinkling these queries
around your application code or writing them directly in the GraphQL
resolvers, you should extract them as services.

A service is a function that performs the actual CRUD operations on
the Mongoose model and returns the result. Each GraphQL resolver can
then call a service function, and all internal database access should happen
through these functions. Moreover, each service should be responsible for
only one specific CRUD operation. Mongoose automatically queues the
commands and executes them, maintains the connection, and then pro
cesses the queue as soon as there is a connection to the database.

This section introduces service functions and basic Mongoose com-
mands. However, it isn’t a complete reference. When you start working with
Mongoose on your own projects, look up all the functions you’ll need in
the Mongoose documentation.

Creating a Document
The first and most basic operation is the “create” operation. It is conve
niently called mongoose.create and, fortunately, we can use it to both create
and update a dataset. That’s because Mongoose automatically creates a new
database entry, or document, if the entry doesn’t already exist. Hence, we
don’t need to check whether a dataset exists and then conditionally create it
before updating it.

Listing 7-5 shows a basic implementation of a service function that
stores a dataset in the database. Place the code in the mongoose/weather​/
services.ts file.

import WeatherModel from "./model";
import { WeatherInterface } from "./interface";

export async function storeDocument(doc: WeatherInterface): Promise<boolean> {
 try {
 await WeatherModel.create(doc);
 } catch (error) {
 return false;
 }
 return true;
}

Listing 7-5: Creating a document through Mongoose

To store a document, we create and export the async function
storeDocument, which takes the dataset as the argument. Here we type it

122 Chapter 7

as WeatherInterface. Then we call the create function on the model and
pass the dataset to it. The function will create and insert the document
in WeatherModel, which is the weather collection in the MongoDB instance.
Finally, it returns a Boolean to indicate the status of the operation.

Reading a Document
To implement the “read” operation, we query MongoDB through
Mongoose’s findOne function. It takes one argument, an object with the
properties to look for, and returns the first match. Extend the mongoose/
weather/services.ts file with the code in Listing 7-6. It defines a findByZip
function to find and return the first document from the Weathers collec-
tion whose zip property matches the ZIP code passed to the function as a
parameter.

export async function findByZip(
 paramZip: string
): Promise<Array<WeatherInterface> | null> {
 try {
 return await WeatherModel.findOne({ zip: paramZip });
 } catch (err) {
 console.log(err);
 }
 return [];
}

Listing 7-6: Reading data through Mongoose

We add and export the async function readByZip to the services in the
services.ts file. The function takes one string parameter, the ZIP code, and
returns either an array with documents or an empty array. Inside the new
service function, we call Mongoose’s findOne function on the model and
pass a filter object, looking for the document whose zip field matches the
parameter’s value. Finally, the function returns the result or null.

Updating a Document
We mentioned that we can use the create function to update documents.
However, there is also a specific API for this task: updateOne. It takes two
arguments. The first is the filter object, similar to the filter we used with
findOne, and the second is an object with the new values. You can think of
updateOne as a combination of the “find” and “create” functions. Extend the
mongoose/weather/services.ts file with the code from Listing 7-7.

export async function updateByZip(
 paramZip: string,
 newData: WeatherInterface
): Promise<boolean> {
 try {
 await WeatherModel.updateOne({ zip: paramZip }, newData);
 return true;

MongoDB and Mongoose 123

 } catch (err) {
 console.log(err);
 }
 return false;
}

Listing 7-7: Updating data through Mongoose

The updateByZip function that we add to the services takes two parameters.
The first one is a string, paramZip, which is the ZIP code we use to query for
the document we want to update. The second parameter is the new dataset,
which we type as WeatherInterface. We call Mongoose’s updateOne function on
the model, passing it a filter object and the latest data. The function should
return a Boolean to indicate the status.

Deleting a Document
The last CRUD operation we need to implement is a service to delete a
document. For this, we use Mongoose’s deleteOne function and add the code
from Listing 7-8 to the mongoose/weather/services.ts file. It is similar to the
findOne function, except that it directly deletes the query’s result. Mongoose
queues the operations and deletes the document from the database auto-
matically once there is a connection.

export async function deleteByZip(
 paramZip: string
): Promise<boolean> {
 try {
 await WeatherModel.deleteOne({ zip: paramZip });
 return true;
 } catch (err) {
 console.log(err);
 }
 return false;
}

Listing 7-8: Deleting data through Mongoose

The async function deleteByZip takes one string parameter, zip. We use
it to query the model and find the document to delete, passing the filter to
Mongoose’s deleteOne function. The function should return a Boolean.

Creating an End-to-End Query
In full-stack development, end-to-end typically refers to the ability of data to
travel all the way from the app’s frontend (or from one of its APIs) through
the middleware to the backend, and then all the way back to its original
source. For practice, let’s create a simple end-to-end example using the
/zipcode endpoint of our REST API.

We’ll modify the API to take the query parameter from the URL, find
the weather object for the requested ZIP code in the database, and then

124 Chapter 7

return it, effectively replacing the static JSON response with a dynamic
query result. Modify the file pages/api/v1/weather/[zipcode].ts to match
Listing 7-9.

import type { NextApiRequest, NextApiResponse } from "next";
import { findByZip } from "./../../../../mongoose/weather/services";
import dbConnect from "./../../../..//middleware/db-connect";
dbConnect();

export default async function handler(
 req: NextApiRequest,
 res: NextApiResponse
): Promise<NextApiResponse<WeatherDetailType> | void> {
 let data = await findByZip(req.query.zipcode as string);
 return res.status(200).json(data);
}

Listing 7-9: The end-to-end REST API

Notice the modified API handler. We made two major changes to it.
First we called dbConnect to connect to the database. Then we used the
imported findByZip service and passed it the query parameter cast to a
string type. Instead of the static JSON object as before, we now return the
dynamic data that we receive from the service function.

We need to perform one more step before we can receive data in
response to the API call: seeding the database, or adding initial datasets to
it. For simplicity, we use the storeDocuments service and seed directly in the
dbConnect function. Modify the middleware/db-connect.ts file to match the code
in Listing 7-10, which imports the storeDocument service and adds the datasets
after establishing the database connection.

import mongoose from "mongoose";
import { MongoMemoryServer } from "mongodb-memory-server";
import { storeDocument } from "../mongoose/weather/services";

async function dbConnect(): Promise<any | String> {
 const mongoServer = await MongoMemoryServer.create();
 const MONGOIO_URI = mongoServer.getUri();
 await mongoose.disconnect();

 let db = await mongoose​.connect(MONGOIO​_URI, {
 dbName: "Weather"
 });

 await storeDocument({
 zip: "96815",
 weather: "sunny",
 tempC: "25C",
 tempF: "70F",
 friends: ["96814", "96826"]
 });

MongoDB and Mongoose 125

 await storeDocument({
 zip: "96814",
 weather: "rainy",
 tempC: "20C",
 tempF: "68F",
 friends: ["96815", "96826"]
 });
 await storeDocument({
 zip: "96826",
 weather: "rainy",
 tempC: "30C",
 tempF: "86F",
 friends: ["96815", "96814"]
 });

}
export default dbConnect;

Listing 7-10: The naive data seeding in the dbConnect function

Now we can perform the end-to-end request. Visit the REST API end-
point in the browser at http://localhost:3000​/api​/v1​/weather​/96815. You should
see the dataset from the MongoDB database as the API response. Try
adjusting the query parameter in the URL to another valid ZIP code. You
should get another dataset in the response.

Exercise 7: Connect the GraphQL API to the Database
Let’s rework our weather application’s GraphQL API so that it reads the
response data from the database instead of from a static JSON file. The
code will look familiar, as we’ll use the same patterns as for the REST API
example in the preceding section.

First, verify that you’ve added the MongoDB memory implementa-
tion and Mongoose to your project. If not, add them now by following the
instructions in “Setting Up MongoDB and Mongoose” on page 117. Next,
check that you’ve created the files in the middleware and mongoose folders
described throughout this chapter and that they contain the code from
Listings 7-1 through 7-10.

Now, to connect the GraphQL API to the database, we need to do two
things: implement the database connection and refactor the GraphQL
resolvers to use its datasets.

Connecting to the Database
To query the database through the GraphQL API, we need to have a con-
nection to the database. As you learned in Chapter 6, all API calls have the
same endpoint, /graphql. This fact will now prove incredibly convenient for
us; because all requests have the same entry point, we need to handle the
database connection only once. Hence, we open the file api/graphql.ts and
modify it to match the code in Listing 7-11.

126 Chapter 7

import { ApolloServer } from "@apollo/server";
import { startServerAndCreateNextHandler } from "@as-integrations/next";
import { resolvers } from "../../graphql/resolvers";
import { typeDefs } from "../../graphql/schema";
import { NextApiHandler, NextApiRequest, NextApiResponse } from "next";
import dbConnect from "../../middleware/db-connect";
//@ts-ignore
const server = new ApolloServer({
 resolvers,
 typeDefs
});

const handler = startServerAndCreateNextHandler(server);

const allowCors = (fn: NextApiHandler) =>
 async (req: NextApiRequest, res: NextApiResponse) => {
 res.setHeader("Allow", "POST");
 res.setHeader("Access-Control-Allow-Origin", "*");
 res.setHeader("Access-Control-Allow-Methods", "POST");
 res.setHeader("Access-Control-Allow-Headers", "*");
 res.setHeader("Access-Control-Allow-Credentials", "true");

 if (req.method === "OPTIONS") {
 res.status(200).end();
 }
 return await fn(req, res);
 };

const connectDB = (fn: NextApiHandler) =>
 async (req: NextApiRequest, res: NextApiResponse) => {
 await dbConnect();
 return await fn(req, res);
 };

export default connectDB(allowCors(handler));

Listing 7-11: The api/graphql.ts file including a connection to the database

We made three changes to the file. First we imported the dbConnect func-
tion from the middleware; then we created a new wrapper similar to the
allowCors function and used it to ensure that each API call connects to the
API. We could safely do so because we implemented dbConnect to enforce
only one database connection at the same time. Finally, we wrapped the
handler with the new wrapper and exported it as the default.

Adding Services to GraphQL Resolvers
Now it’s time to add the services to the resolvers. In Chapter 6, you learned
that query resolvers implement the reading of data, whereas mutation
resolvers implement the creation, updating, and deletion of data.

There, we also defined two resolvers: one to return a weather object
for a given ZIP code and one to update a location’s weather data. Now we’ll
add the services findByZip and updateByZip, which we created in this chapter,

MongoDB and Mongoose 127

to the resolvers. Instead of the naïve implementations with the static data
object, we modify the resolvers to query and update the MongoDB docu-
ments through the services.

Listing 7-12 shows the modified code for the graphql/resolvers.ts file in
which we refactor these two resolvers.

import { WeatherInterface } from "../mongoose/weather/interface";
import { findByZip, updateByZip } from "../mongoose/weather/services";

export const resolvers = {
 Query: {
 weather: async (_: any, param: WeatherInterface) => {
 let data = await findByZip(param.zip);
 return [data];
 },
 },
 Mutation: {
 weather: async (_: any, param: { data: WeatherInterface }) => {
 await updateByZip(param.data.zip, param.data);
 let data = await findByZip(param.data.zip);
 return [data];
 },
 },
};

Listing 7-12: The graphql/resolvers.ts file using services

We replace the naive array.filter functionality with the appropriate
services. To query the data, we use the findByZip service and pass it the zip
variable from the request payload and then return the result data wrapped
in an array. For the mutation, we use the updateByZip service. Per type defini-
tion, the weather mutation returns the updated dataset. To do so, we query
for the modified document with the findByZip service once again and return
the result as an array item.

Visit the GraphQL sandbox at http://localhost:3000​/api​/graphql and play
with the API endpoints to read and update documents from the MongoDB
database.

Summary
In this chapter, you explored using the non-relational database MongoDB
and its Mongoose object data modeling tool, which lets you add and enforce
schemas as well as perform CRUD operations on MongoDB instances. We
covered the differences between relational and non-relational databases
and how they store data. Then you created a Mongoose schema and a
model, connected Mongoose to the MongoDB instance, and wrote the
services to perform operations on the MongoDB collection.

Finally, you connected the REST and GraphQL APIs to the MongoDB
database. Now, instead of static datasets, all of your APIs return dynamic
documents, and you can both read and update documents through them.

128 Chapter 7

MongoDB and Mongoose are extensive technologies with a huge
array of functionalities. To learn more about them, consult the official
documentation at https://mongoosejs​.com and read the articles at https://www​
.geeksforgeeks​.org​/mongoose​-module​-introduction/.

The next chapter covers Jest, a modern testing framework for conduct-
ing unit, snapshot, and integration tests.

https://mongoosejs.com
https://www.geeksforgeeks.org/mongoose-module-introduction/
https://www.geeksforgeeks.org/mongoose-module-introduction/

Whenever you modify your code, you risk
causing unforeseen side effects in another

part of your application. As a result, guaran-
teeing the integrity and stability of a code

		 base can be challenging. To do so, developers follow
		 two main strategies.

In the first, an architectural pattern, we split our code into small, self-
contained React components. By nature, these components don’t interfere
with one another. Hence, changing one shouldn’t lead to any side effects.
In the second, we perform automated unit testing, which this chapter cov-
ers using the Jest framework.

In the following sections, we discuss the essentials of automated unit
testing and the benefits of using it. You’ll learn how to write a test suite in
Jest and use its reports to improve your code. You’ll also handle dependen-
cies by using code doubles. Lastly, you’ll explore other kinds of tests you
might want to run against your application.

8
T E S T I N G W I T H T H E J E S T

F R A M E W O R K

130 Chapter 8

Test-Driven Development and Unit Testing
Developers sometimes use the technique of test-driven development (TDD), in
which they write their automated tests before implementing the actual code
to be tested. They first create a test to evaluate that the smallest possible
unit of code would work as expected. Such a test is called a unit test. Next,
they write the minimum amount of code necessary to pass the test.

This approach has distinct benefits. First, it lets you focus on your
app’s requirements by explicitly defining the code’s functionality and
edge cases. Therefore, you have a clear picture of its desired behavior,
and you can identify unclear or missing specifications sooner rather
than later. When you write tests after completing the functionality, they
might reflect the behavior you implemented rather than the behavior you
require.

Second, limiting yourself to writing only necessary code prevents your
functions from becoming too complex and splits your application into
small, understandable sections. Testable code is maintainable code. In
addition, the technique ensures that your tests cover a large portion of the
app’s code, a metric called code coverage, and by running the tests frequently
during development, you’ll instantly recognize bugs introduced by new
lines of code.

Depending on the situation, the unit targeted by a unit test can be a
module, a function, or a line of code. The tests aim to verify that each unit
works in isolation. The single lines inside each test function are the test
steps, and the whole test function is called a test case. Test suites aggregate
test cases into logical blocks. To be considered reproducible, the test must
return the same results every time we run it. As we will explore in this chap-
ter, this means that we must run the tests in a controlled environment with
a defined dataset.

Facebook developed the Jest testing framework in conjunction with
React, but we can use it with any Node.js project. It has a defined syntax for
setting up and writing tests. Its test runner executes these tests, automati-
cally replaces any dependencies in our code, and generates a test-coverage
report. Additional npm modules provide custom code for testing DOM or
React components and, of course, adding TypeScript types.

Using Jest
To use Jest in a project, we must install its required packages, create a direc-
tory for all test files, and add an npm script that will run the tests. Execute
the following in your Next.js application’s root directory to install the
framework, as well as type definitions from DefinitelyTyped as development
dependencies:

$ npm install --save-dev jest @types/jest

Then create the directory in which to save your tests. Jest uses the
__tests__ folder by default, so make one in your root directory. Next, to add

Testing with the Jest Framework 131

the npm script test to your project, open the package.json file and modify the
scripts object to match the one in Listing 8-1.

 "scripts": {
 "dev": "next dev",
 "build": "next build",
 "start": "next start",
 "lint": "next lint",
 "test": "jest"
 },

Listing 8-1: The package.json file with the new text command

Now we can run tests with the npm test command. Usually, build servers
execute this command by default during the build process. Lastly, to enable
TypeScript support in Jest, add the ts-jest transpiler:

$ npm install --save-dev ts-jest

Also create a jest​.config file to add TypeScript by running npx ts-jest
config:init.

Creating an Example Module to Test
Let’s write some example code to help us understand unit testing and TDD.
Say we want to create a new module in our app, ./helpers/sum.ts. It should
export a function, sum, that returns the sum of its parameters. To follow a
TDD pattern, we’ll begin by creating test cases for this module.

First we need to create the function that will run our tests. Create a
file called sum.test.ts in the default test directory and add the code from
Listing 8-2.

import { sum } from "../helpers/sum";

describe("the sum function", () => {

});

Listing 8-2: The empty test suite

We import the sum function we’ll write later and use Jest’s describe func-
tion to create an empty test suite. As soon as we run the (nonexistent) tests
with npm test, Jest should complain that there is no file called sum.ts in the
helpers directory. Create this file and folder now, at the root directory of
your project. Within the file, write the sum function shown in Listing 8-3.

const sum = () => {};
export { sum };

Listing 8-3: The bare bones of the sum function

132 Chapter 8

Now run the tests again with npm test. Because the code just exports a
placeholder sum function that returns nothing, the Jest test runner again
complains. This time, it informs us that the test suite needs to contain at
least one test.

Let’s look at the anatomy of a test case and add a few test cases to the
sum.test.ts file during the process.

Anatomy of a Test Case
There are two types of unit tests: state and interaction based. An interaction-
based test case verifies that the code under evaluation invokes a specific func-
tion, whereas a state-based test case checks the code’s return value or resulting
state. Both types follow the same three steps: arrange, act, and assert.

Arrange
To write independent and reproducible tests, we need to first arrange our
environment by defining prerequisites, such as test data. If we need these
prerequisites for only one particular test case, we define them at the begin-
ning of the case. Otherwise, we set them globally for all tests in the test
suite by using the beforeEach hook, which gets executed before each test
case, or the beforeAll hook, which gets executed before all tests run.

If, for example, we had some reason to use the same global dataset for
each test case and knew that our test steps would modify the dataset, we
would need to re-create the dataset before each test. The beforeEach hook
would be the perfect place to do this. On the other hand, if the test cases
merely consume the data, we’d need to define the datasets only once and so
would use the beforeAll hook.

Let’s define two test cases and create the input values for each. Our
input parameters will be specific to each test case, so we’ll declare them
inside the test cases instead of using a beforeEach or beforeAll hook. Update
the sum.test.ts file with the code from Listing 8-4.

import { sum } from "../helpers/sum";

describe("the sum function", () => {
 test("two plus two is four", () => {
 let first = 2;
 let second = 2;
 let expectation = 4;
 });

 test("minus eight plus four is minus four", () => {
 let first = -8;
 let second = 4;
 let expectation = -4;
 });
});

Listing 8-4: The test suite containing the arrange steps

Testing with the Jest Framework 133

The describe function creates our test suite, which comprises two calls
to the test function, each of which is a test case. For both, the first argu-
ment is the description we see on the test runner’s report.

Each of our tests evaluates the result of the sum function. The first
checks the addition feature, verifying that 2 plus 2 returns 4. The second
test confirms that the function correctly returns negative values as well. It
adds 4 to −8 and expects a result of −4.

You might want to check the return type of the sum function, too. Usually,
we would have done so, but because we’re using TypeScript, there is no
need for this additional test case. Instead, we can define the return type in
the function signature, and TSC will verify it for us.

Act
As soon as the test runner executes a case, the test steps act on our behalf by
invoking the code under test with the data for the particular test case. Each
test case should test exactly one feature or variant of the system. This step is
the line of code that invokes the function to execute. Listing 8-5 adds it to
the test cases in sum.test.ts.

import { sum } from "../helpers/sum";

describe("the sum function", () => {

 test("two plus two is four", () => {
 let first = 2;
 let second = 2;
 let expectation = 4;
 let result = sum(first, second);
 });

 test("minus eight plus four is minus four", () => {
 let first = -8;
 let second = 4;
 let expectation = -4;
 let result = sum(first, second);
 });

});

Listing 8-5: The test suite containing the act steps

Our new lines call the sum function and pass it the values we defined
as parameters. We store the returned values in the result variable. In your
editor, TSC should throw an error along the lines of Expected 0 arguments,
but got 2. This is fine, as the sum function is just an empty placeholder and
doesn’t yet expect any parameters.

Assert
The final step of our test case is the assertion that the code fulfills the expec-
tations we defined. We create this assertion with two parts: the Jest expect

134 Chapter 8

function, used in conjunction with a matcher function from Jest’s assert
library that defines the condition for which we are testing. Depending on
the unit test’s category, this condition could be a specific return value, a
state change, or the invocation of another function. Common matchers
check whether a value is a number, a string, and so on. We can also use
them to assert that a function returns true or false.

Jest’s assert library provides us with a built-in set of basic matchers, and
we can add additional ones from the npm repository. One of the most com-
mon assert packages is testing-library/dom, used to query the DOM for a par
ticular node and assert its characteristics. For example, we can check for a
class name or attribute or work with native DOM events. Another common
assert package, testing-library/react, adds utilities for React and gives us access
to the render function and React hooks in our asserts.

Because each test case evaluates one condition in one unit of code, we
limit each test to one assert. In this way, as soon as the test run succeeds or
fails and the test reporter generates the report, we can easily spot which test
assumption failed. Listing 8-6 adds one assert per test case. Paste it into the
sum.test.ts file.

import { sum } from "../helpers/sum";

describe("the sum function", () => {

 test("two plus two is four", () => {
 let first = 2;
 let second = 2;
 let expectation = 4;
 let result = sum(first, second);
 expect(result).toBe(expectation);
 });

 test("minus eight plus four is minus four", () => {
 let first = -8;
 let second = 4;
 let expectation = -4;
 let result = sum(first, second);
 expect(result).toBe(expectation);
 });

});

Listing 8-6: The test suite containing the assert steps

These lines use the expect assert function with the toBe matcher to com-
pare the expected result to be the same as our expectation. Our test cases
are now complete. Each follows the arrange, act, assert pattern and verifies
one condition. Appendix C lists additional matchers.

Testing with the Jest Framework 135

Using TDD
Our test cases still haven’t executed, and if you run npm test, the test runner
should fail immediately. TSC checks the code and throws an error for the
missing parameter declarations on the sum function:

FAIL __tests__/sum.test.ts
 • Test suite failed to run
--snip--
Test Suites: 2 failed, 2 total
Tests: 0 total
Snapshots: 0 total

It’s time to implement this sum function. Following the principles of
TDD, we’ll incrementally add features to the code and run the test suites
after each addition, continuing this process until all tests pass. First we’ll
add those missing parameters. Replace the code in sum.ts with the contents
of Listing 8-7.

const sum = (a: number, b: number) => {};

export { sum };

Listing 8-7: The sum function with added parameters

We’ve added the parameters and typed them as numbers. Now we
rerun the test cases and, as expected, they fail. The console output tells us
that the sum function doesn’t return the expected results. This shouldn’t
surprise us, because our sum function doesn’t return anything at all:

FAIL __tests__/sum.test.ts (5.151 s)
 the sum function
 × two plus two is four (6 ms)
 × minus eight plus four is minus four (1 ms)

 • the sum function › two plus two is four
 Expected: 4
 Received: undefined

 • the sum function › minus eight plus four is minus four
 Expected: -4
 Received: undefined

Test Suites: 1 failed, 1 total
Tests: 2 failed, 2 total
Snapshots: 0 total
Time: 5.328 s, estimated 11 s

The code in Listing 8-8 adds this functionality to the sum.ts file. We
type the function’s return type as a number and add the two parameters.

136 Chapter 8

const sum = (a: number, b: number): number => a + b;

export { sum };

Listing 8-8: The complete sum function

If we rerun npm test, Jest should report that all test cases succeed:

PASS __tests__/sum.test.ts (8.045 s)
 the sum function
 ✓ two plus two is four (2 ms)
 ✓ minus eight plus four is minus four (2 ms)

Test Suites: 1 passed, 1 total
Tests: 2 passed, 2 total
Snapshots: 0 total
Time: 8.291 s

As you can see, everything worked.

Refactoring Code
Unit tests are particularly useful when we need to refactor our code. As an
example, let’s rewrite the sum function so that, instead of two parameters,
it accepts an array of numbers. The function should return the sum of all
array items.

We begin by rewriting our existing test cases into a more compact form
and then expanding the test suite to verify the new behavior. Replace the
code in the sum.test.file with Listing 8-9.

import { sum } from "../helpers/sum";

describe("the sum function", () => {

 test("two plus two is four", () => {
 expect(sum([2, 2])).toBe(4);
 });

 test("minus eight plus four is minus four", () => {
 expect(sum([-8, 4])).toBe(-4);
 });

 test("two plus two plus minus four is zero", () => {
 expect(sum([2, 2, -4])).toBe(0);
 });

});

Listing 8-9: The test suite for the refactored sum function

Notice that we rewrote the test cases in a more compact form. Explicitly
splitting the arrange, act, and assert statements across multiple lines may

Testing with the Jest Framework 137

be easier to read, but for simple test cases, such as those in Listing 8-9, we
often write them in one line. We’ve changed their functionality to accom-
modate the new requirements. Instead of accepting two values, our sum
function receives an array with numbers. Again, the TSC instantly notifies
us of the mismatching parameters between the sum function in the test suite
and the actual implementation.

Once we’ve written our tests, we can rewrite our code. Listing 8-10
shows the code for the helpers/sum.ts file. Here the sum function now accepts
an array of numbers as a parameter and returns a number.

const sum = (data: number[]): number => {
 return data[0] + data[1];
};

export { sum };

Listing 8-10: The rewritten sum function in the helpers/sum.ts file

We changed the parameter to an array of numbers. This fixes the
TypeScript error caused by the test suite in Listing 8-9. But because we’re
following TDD and making only one functional change at a time, we keep
the function’s original behavior of adding two values. As expected, one of
the test cases fails when we run the automated tests with npm test:

FAIL __tests__/sum.test.ts (7.804 s)
 the sum function
 ✓ two plus two is four (7 ms)
 ✓ minus eight plus four is minus four (1 ms)
 ✕ two plus two plus minus four is zero (9 ms)

 • the sum function › two plus two plus minus four is zero
 Expected: 0
 Received: 4

Test Suites: 1 failed, 1 total
Tests: 1 failed, 2 passed, 3 total
Snapshots: 0 total
Time: 8.057 s, estimated 9 s

The third test case, which tests the new requirement, is the one that
failed. Not only did we expect this result, but we also wanted the test to fail;
this way, we know that the tests themselves are working. If they succeeded
before we implemented the corresponding functionality, the test cases
would be faulty.

With the failing test as the baseline, it is now time to refactor the code
to accommodate the new requirement. Paste the code in Listing 8-11 into
the sum.ts file. Here we refactor the sum function to return the sum of all
array values.

138 Chapter 8

const sum = (data: number[]): number => {
 return data.reduce((a, b) => a + b);
};

export { sum };

Listing 8-11: The corrected sum function with array.reduce

Although we could loop through the array with a for loop, we use mod-
ern JavaScript’s array.reduce function. This native array function runs a call-
back function on each array element. The callback receives the return value
of the previous iteration and the current array item as parameters: exactly
what we need to calculate the sum.

Run all the test cases in our test suite to verify that they are working as
expected:

PASS __tests__/sum.test.ts (7.422 s)
 the sum function
 ✓ two plus two is four (2 ms)
 ✓ minus eight plus four is minus four
 ✓ two plus two plus minus four is zero

Test Suites: 1 passed, 1 total
Tests: 3 passed, 3 total
Snapshots: 0 total
Time: 7.613 s

The test runner should show that the code passed every test.

Evaluating Test Coverage
To measure exactly which lines of code our test suites cover, Jest generates a
test-coverage report. The higher the percentage of code our tests assess, the
more thorough they are, and the more confident we can be about the appli-
cation’s quality and maintainability. As a general rule of thumb, you should
aim for code coverage of 90 percent or above, with a high coverage for the
most critical part of your code. Of course, the test cases should add value by
testing the code’s functions; adding tests just to increase the test coverage is
not the goal we are aiming for. But as soon as you’ve tested your code base
thoroughly, you can refactor existing features and implement new ones
without worrying about introducing regression bugs. A high code coverage
verifies that changes have no hidden side effects.

Modify the npm test script in the package.json file by adding the --coverage
flag to it, as shown in Listing 8-12.

 "scripts": {
 "dev": "next dev",
 "build": "next build",
 "start": "next start",
 "lint": "next lint",

Testing with the Jest Framework 139

 "test": "jest --coverage"
 },

Listing 8-12: Enabling Jest’s test-coverage feature in the package.json file

If we rerun the test suite, Jest should show what percentage of the code
our unit tests cover. It generates a code-coverage report and stores it in the
coverage folder. Compare your output with the following:

PASS __tests__/sum.test.ts (7.324 s)
 the sum function
 ✓ two plus two is four (2 ms)
 ✓ minus eight plus four is minus four
 ✓ two plus two plus minus four is zero (1 ms)

----------|---------|----------|---------|---------|-------------------
File	% Stmts	% Branch	% Funcs	% Lines	Uncovered Line #s
All files | 100 | 100 | 100 | 100 |
 sum.ts | 100 | 100 | 100 | 100 |
----------|---------|----------|---------|---------|-------------------
Test Suites: 1 passed, 1 total
Tests: 3 passed, 3 total
Snapshots: 0 total
Time: 7.687 s, estimated 8 s

The report shows the coverage broken down by statements, branches,
functions, and lines. We see that our simple sum function has a code cover-
age of 100 percent across all categories. Hence, we know that we’ve left no
code untested and can trust that the test cases reflect the function’s quality.

Replacing Dependencies with Fakes, Stubs, and Mocks
We mentioned that our tests should run in isolation, without depending on
external code. You might have wondered how to handle imported modules;
after all, as soon as you import code, you add a dependency to the unit
under evaluation. Those third-party modules might not work as expected,
and we don’t want our code to depend on the assumption that they all oper-
ate correctly. Consequently, you should provide a set of test cases for each
imported module to verify its functionality. They, too, are units to test.

Separately, instead of importing modules into our other code units, we
need to replace them with test doubles that return a defined set of static data
tailored to the test. Test doubles replace an object or a function, effectively
removing a dependency. Because they return a defined dataset, their response
is known and predictable. You can compare them to stunt doubles in movies.

Besides replacing an object or function, test doubles have a second
important purpose: they record their calls and let us spy on them. We can
thus use them to test whether the test double has been called at all, how
often, and which arguments it received. There are three main types of test
doubles: fakes, stubs, and mocks. However, you’ll sometimes hear the term
mock to refer to all three.

140 Chapter 8

Creating a Module with Dependencies
To practice using test doubles in our sum function, we’ll create a new func-
tion that calculates a specified number of values in the Fibonacci sequence.
The Fibonacci sequence is a pattern in which each subsequent number is the
sum of the previous two, a simple use case for a sum module.

All developers must figure out how fine-grained their test cases need
to be. The Fibonacci sequence is a good example, because trying to test
every possible number submitted to the function would be useless, as the
sequence has no end. Instead, we want to verify that the function prop-
erly handles edge cases and that its underlying functionality works. For
instance, we’ll check how it handles an input with a length of 0; in that
case, the function should return an empty string. Then we’ll test how it
calculates a Fibonacci sequence of any length longer than 3. Create the
fibonacci.test.ts test suite inside the __tests__ folder and then add the code
from Listing 8-13 to it.

import { fibonacci } from "../helpers/fibonacci";

describe("the fibonacci sequence", () => {

 test("with a length of 0 is ", () => {
 expect(fibonacci(0)).toBe(" ");
 });

 test("with a length of 5 is '0, 1, 1, 2, 3' ", () => {
 expect(fibonacci(5)).toBe("0, 1, 1, 2, 3");
 });

});

Listing 8-13: The test suite for the fibonacci function

We define two test cases: one that checks for a length input of 0 and
another that calculates a Fibonacci sequence of five numbers. Both tests
follow the arrange, act, assert pattern in the compact variant we used earlier.

After we’ve created the test cases, we can move on to writing the Fibonacci
function code. Create the fibonacci.ts file in the helpers folder, next to the sum.ts
file, and add the code from Listing 8-14 to it.

import { sum } from "./sum";

const fibonacci = (length: number): string => {
 const sequence: number[] = [];
 for (let i = 0; i < length; i++) {
 if (i < 2) {
 sequence.push(sum([0, i]));
 } else {
 sequence.push(sum([sequence[i - 1], sequence[i - 2]]));
 }
 }

Testing with the Jest Framework 141

 return sequence.join(", ");
};

export { fibonacci };

Listing 8-14: The fibonacci function

We import the sum function from the module we created earlier in this
chapter. It is now a dependency that we’ll need to replace with a test double
later. Then we implement the fibonacci function, which accepts the length
of the sequence to calculate and returns a string. We store the current
sequence in an array so that we have a simple way to access the two previous
values needed to calculate the next one. Notice that the first number in the
sequence is always 0 and the second is always 1. Finally, we return a string
with the requested number of values. If you save this code and rerun the
test suites, both sum.test.js and fibonacci.test.ts should pass successfully.

Creating a Doubles Folder
Because we import the sum function in the Fibonacci module, our code has
an external dependency. This is problematic for testing purposes: if the sum
function breaks, the test for the Fibonacci sequence will fail as well, even if
the logic of the Fibonacci implementation is correct.

To decouple the test from the dependency, we’ll replace the sum func-
tion in the fibonacci.ts file with a test double. Jest can replace any module
that has an identically named file saved in a __mocks__ subdirectory adja-
cent to the test file during the test run. Create such a folder in the helpers
folder next to the test file and place a sum.ts file inside it. Leave the file
empty for now.

To enable the test double, we call the jest.mock function, passing it the
path to the original module saved in the test file. In Listing 8-15, we add
this call to fibonacci.test.ts.

import { fibonacci } from "../helpers/fibonacci";

jest.mock("../helpers/sum");

describe("the fibonacci sequence", () => {
 test("with a length of 0 is ", () => {
 expect(fibonacci(0)).toBe(" ");
 });

 test("with a length of 5 is '0, 1, 1, 2, 3' ", () => {
 expect(fibonacci(5)).toBe("0, 1, 1, 2, 3");
 });
});

Listing 8-15: The test suite for the fibonacci function with the test double

This new line replaces the sum module with the test double. Now let’s
create all three basic types of test doubles, adding their code to the file in
the __mocks__ folder.

142 Chapter 8

Using a Stub
Stubs are merely objects that return some predefined data. This makes
them very simple to implement but limited in use; often, returning the
same data isn’t enough to mimic a dependency’s original actions. Listing 8-16
shows a stub implementation for the sum function’s test double. Paste the
code into the sum.ts file inside the __mocks__ folder.

const sum = (data: number[]): number => 999;

export { sum };

Listing 8-16: A stub for the sum function

The stubbed function has the same signature as the original function.
It accepts the same arguments, an array of numbers, and returns a string.
Unlike the original, however, this test double always returns the same num-
ber, 999, regardless of the data it received.

To successfully run the test suites with this stub function, we’d need to
adjust our expectations about what our code will do. Instead of returning
five numbers in the Fibonacci sequence, it would produce the string 999,
999, 999, 999, 999. If we see such a string, we know that the sum function was
called five times. Experiment with the stub, modifying the test suite’s expec-
tations to match it. Then restore the matchers to those shown in Listing 8-15
so that you can use them for the upcoming tests.

Using a Fake
Fakes are the most complex kind of test double. They are working imple-
mentations of the original functionality, but unlike the real implementa-
tion, they provide only the functionality necessary for the unit test. Their
implementation is simplified and often doesn’t cater to edge cases.

The fake for the sum adds the first and second items of the array manu-
ally, instead of using array.reduce. This simplified implementation strips the
sum function of the ability to sum more than two data points, but for the
Fibonacci sequence, it is sufficient. The reduced complexity makes it easy
to understand and less prone to error. Replace the content of the sum.ts file
inside the __mocks__ folder with the code in Listing 8-17.

const sum = (data: number[]): number => {
 return data[0] + data[1];
}

export { sum };

Listing 8-17: A fake for the sum function

Our fake uses a simple mathematical plus operator (+) to add the first
and second items of the data parameter. Its main benefit is that it returns a
result similar to that of the actual implementation. We can now run the test

Testing with the Jest Framework 143

suites, and they should pass successfully without our having to adjust our
expectations, returning the Fibonacci sequence.

Using a Mock
Mocks lie somewhere between stubs and fakes. Although less sophisticated
than fakes, they return more realistic data than stubs. While they don’t sim-
ulate a dependency’s true behavior, they can react to the data they receive.

For example, our naive mock implementation of the sum function
will return a result from a hardcoded hash map. Replace the code in
the __mocks__/sum.ts file with the code from Listing 8-18, which inspects
the request and enables the Fibonacci calculator to use the original test
suites.

type resultMap = {
 [key: string]: number;
}

const results : resultMap= {
 "0 + 0": 0,
 "0 + 1": 1,
 "1 + 0": 1,
 "1 + 1": 2,
 "2 + 1": 3
};

const sum = (data: number[]): number => {
 return results[data.join("+")];
}

export { sum };

Listing 8-18: A mock for the sum function

We create a type, called resultMap, that uses a string as a key and a num-
ber as a value. Then we use the newly created type for a hash map that stores
our desired responses. Next, we define the mock function with the same
interface as the original implementation. Inside the mock, we calculate the
key to use in the hash map based on the parameters we receive. This lets us
return the correct dataset and produce an actual Fibonacci sequence. The
main benefit of using the mock over sum is that we can control its outcome,
as it returns values from a known dataset.

Conveniently, Jest provides us with helpers to work with test doubles.
The jest.mock function replaces imported modules with mocks. The jest.fn
API creates a basic mock that can return any kind of predefined data, and
jest.spyOn lets us record calls to any function without modifying it. We will
use all of those in Exercise 8 on page 146.

In typical developer contexts, you won’t bother with the subtle dif-
ferences between stubs, fakes, and mocks and will use the term mock as a
generic term for test doubles. Don’t spend too much time overengineering
your mocks; they’re just tools to help you test your code.

144 Chapter 8

Additional Types of Tests
The tests covered in this chapter so far are the most common ones you’ll
encounter as a full-stack developer. This section briefly explains additional
types of tests and when to use them. These aren’t meant to replace unit
tests; rather, they supplement unit tests by covering specific aspects of your
implementation that aren’t otherwise testable. For example, because unit
tests run in isolation, they can’t evaluate the interaction between modules.
Theoretically, if every function and module passes its test, the whole pro-
gram should work as expected. Practically, you’ll often face issues caused
by faulty module documentation. Commonly, the documentation will claim
that an API returns a specific type, but the actual implementation will
return a different one.

Functional Tests
While unit tests examine the implementation of a feature from a devel-
oper’s perspective, functional tests cover the user’s perspective by verifying
that code works as the user expects it to work. Put otherwise, these tests
check that a given input results in an expected output. Most functional tests
are a type of black-box test, which ignores the module’s internal code, side
effects, and intermediate results and tests only the interfaces. Functional
tests do not generate a code-coverage report. Generally, a quality assurance
manager will write and use functional tests during a system testing stage. By
contrast, developers write and use unit tests during development.

Integration Tests
You learned that the goal of a unit test is to check the smallest possible sec-
tion of code in isolation. An integration test is the complete opposite. It veri-
fies the behavior of entire subsystems, whether they be layers of code, such
as an app’s data storage mechanism, or specific functions consisting of mul-
tiple modules. Integration tests check the integration of the subsystem in
the context of the current environment. Hence, they never run in isolation
and typically don’t use test doubles.

Integration tests are helpful for finding three types of problems. The
first type is problems related to inter-module communication, which is the com-
munication between modules. Common problems are faulty internal API
integrations and undetected side effects, such as a function that doesn’t
delete old files before writing new data to the filesystem. The second type
is problems related to the environment, which describes the hardware and
software setup the code runs on. Different software versions or hardware
configurations can introduce significant issues for your code. The most
common problem for full-stack developers involves differences in Node.js
versions and outdated dependencies in the modules.

The third type is problems related to gateway communications, which
relates to testing any API communication with a third-party API gateway.
Any communication with external APIs should be tested with integration
tests. This is the only instance in which integration tests might use test

Testing with the Jest Framework 145

doubles, such as stubbed versions of the external API, in order to simulate
a specific API behavior, like a timeout or successful request. As with func-
tional tests, a quality assurance manager generally writes and uses integra-
tion tests. Developers do so less often.

End-to-End Tests
You can think of the end-to-end test as a combination of functional tests and
integration tests. As another kind of black-box test, they examine the appli-
cation’s functionality across the full stack, from the frontend to the back-
end, in a specific environment. These business-facing tests should provide
confidence that the overall application is still working as expected.

End-to-end tests run the application in a specific environment. Often,
the complexity of the many dependencies increases the risk of flaky tests
in which the application works correctly but the environment causes the
tests to fail. End-to-end tests are thus the most time-consuming to cre-
ate and maintain. Due to their complexity, we must craft them carefully.
During execution, they are known to be slow, prone to encountering time-
outs, and, like nearly all black-box tests, unable to provide detailed error
reports. Therefore, they test only the most critical business-facing scenarios.
Generally, a quality assurance manager writes them.

Snapshot Tests
The tests described earlier in this chapter check the code against some
assertion. By contrast, a snapshot test compares the application’s current
visual (or user interface) state to a previous version of it. Hence, these tests
are also called visual regression tests. In each test, we create new snapshots
and then compare them with ones stored earlier, providing a cheap way to
test user interface components and complete pages. Instead of manually
creating and maintaining tests that describe every property of an interface,
such as a component’s height, width, position, and colors, we can establish a
snapshot containing all of these properties.

One way to perform this type of test is to create and compare screen-
shots. Generally, a headless browser renders the component; the test
runner waits for the page to render and then captures an image of it.
Unfortunately, this process is relatively slow, and headless browsers are
flaky. Jest takes a different approach to snapshot testing. Instead of working
with headless browsers and image files, it renders the React user interface
components to the virtual DOM, serializes them, and saves them as plain-
text in snap files stored in the __snapshots__ directory. Hence, Jest snap-
shot tests are much more performant and less flawed. The Food Finder
application you’ll build in Part II will use snapshot tests to verify the integ-
rity of the build and test your React components.

146 Chapter 8

Exercise 8: Add Test Cases to the Weather App
As long as you follow the basic principles we’ve discussed, there is no right
or wrong way to test your code. Unit, snapshot, and end-to-end tests are all
different tools in your tool belt, and you must strike a balance between the
time you spend writing the tests and the usefulness of each. There is also
no consensus on what to test. While you should strive for 90 percent code
coverage or higher, the general rule of thumb is to cover at least the most
critical parts of your application with unit tests and then write some inte-
gration tests to verify that your application works on each deployment.

When it comes to our weather application, we’ll want our test cases to
cover four core aspects. First we’ll add unit tests to evaluate the middleware
and services. Even though the REST API endpoints and React user inter-
face component are easy to test directly in the browser, we’ll add test cases
for both of them: a basic snapshot test for the user interface component and
an end-to-end test for the REST API endpoint /v1/weather/[zipcode].ts.

We’ve opted to test the REST endpoint rather than the GraphQL
API for simplicity’s sake, as each REST endpoint has its own file, while all
GraphQL APIs share an entry point, making their testing more complex.
However, testing this GraphQL API would make an excellent exercise for
exploring end-to-end-tests after you’ve finished the chapter.

Testing the Middleware with Spies
The middleware to connect to the database is a core part of the applica-
tion, but we can’t access it directly, as it doesn’t expose any API. We can only
implicitly test it by examining the database or by running a query through
Mongoose, some service, or an API endpoint. Each of these methods would
work, but if we want to test the connection to the database as a unit test, we
need to do so in a way that isolates that component as much as possible.

To do so, we’ll use Jest’s built-in spies to verify that our middleware suc-
cessfully calls all the functions necessary for establishing the connection to
the MongoDB memory server. Navigate to your __tests__ folder and create
a new folder, middleware, and a file, db-connect.test.ts, inside it. Then copy the
code from Listing 8-19 into the file.

/**
 * @jest-environment node
 */

import dbConnect from "../../middleware/db-connect";
import mongoose from "mongoose";
import { MongoMemoryServer } from "mongodb-memory-server";

describe("dbConnect ", () => {

 let connection: any;

 afterEach(async () => {
 jest.clearAllMocks();

Testing with the Jest Framework 147

 await connection.stop();
 await mongoose.disconnect();
 });

 afterAll(async () => {
 jest.restoreAllMocks();
 });

 test("calls MongoMemoryServer.create()", async () => {
 const spy = jest.spyOn(MongoMemoryServer, "create");
 connection = await dbConnect();
 expect(spy).toHaveBeenCalled();
 });

 test("calls mongoose.disconnect()", async () => {
 const spy = jest.spyOn(mongoose, "disconnect");
 connection = await dbConnect();
 expect(spy).toHaveBeenCalled();
 });

 test("calls mongoose​.connect()", async () => {
 const spy = jest.spyOn(mongoose, "connect");
 connection = await dbConnect();
 const MONGO_URI = connection.getUri();
 expect(spy).toHaveBeenCalledWith(MONGO_URI, {dbName: "Weather"});
 });

});

Listing 8-19: The __tests__/middleware/db-connect.test.ts suite for the
database connection

Most of this code resembles the test suites you wrote earlier in this
chapter. But instead of testing simplified example code, we’re now testing
real code, which requires us to make some adjustments.

First we set the testing environment for Jest to node, which simulates a
Node.js runtime. Later, when writing snapshot tests, we’ll use Jest’s default
environment, called jsdom, which simulates a browser by providing a window
object, as well as all the usual DOM properties and functions. By always
setting these environments in the file, we avoid issues caused by using the
wrong environment. Then, as usual, we import the packages we need.

Now we can start writing the test suite for the dbConnect function. We
define a connection variable in the test suite’s scope to store the database
connection, and then we can access the MongoDB’s server instance, includ-
ing its methods and properties. For example, we’ll use these to stop the
connection and disconnect from the server after each test to guarantee that
each test case is independent.

To be able to store the connection, we first need to return the mongoServer
constant from the dbConnect function in the file db-connect.ts. Open the file
and add the line return mongoServer to the dbConnect function right before the
function’s closing curly bracket (}). From time to time, you’ll need to modify

148 Chapter 8

the code you wrote earlier to accommodate the requirements of your tests. In
other words, you need to adapt the code to make it testable.

Now we use the connection we just exposed and set up the afterEach
hook, which runs after each test case, to reset the mocked functions to
their initial mocked state, thus clearing all previously gathered data. This
is necessary, because otherwise, the spies would report information gained
during the previous calls, as they retain their state across all test suites.
Also, we re-create the database connection for each test case. Therefore,
we need to stop the current connection and explicitly disconnect from
the database after each test. Then we set up the afterAll hook to remove
all mocks and restore the original functions through the restoreAllMocks
function.

Our test cases should all follow the arrange, act, assert pattern. As we
review them, you might find it useful to open the db-connect.ts file in the
middleware folder and follow along. The initial test case verifies the call
to the create function on the MongoMemoryServer, as this is the first function
that we call in the db-connect.ts file. To do so, we create a spy with the jest
.spyOn method. As arguments, this method takes the name of an object
and the object’s method on which to spy. Then we act on the code under
test and call the dbConnect function. Finally, we assert that the spy has been
called.

The second test case works similarly except that it spies on a different
method. We use it to check that mongoose.disconnect was called successfully
during the execution of dbConnect. The third test case introduces a new
matcher. Instead of verifying only the call itself with toHaveBeenCalled, we
now also verify the call’s arguments using toHaveBeenCalledWith. Here we
grab the connection string directly from the connection and store it in the
variable MONGO_URI. We also hardcode the database we want to connect to.
Then we call the matcher, passing it the expected arguments and verifying
that they meet our expectations.

Now run the test suites with npm test. All tests should pass with
100 percent test coverage.

Creating Mocks to Test the Services
While the tests we wrote for the middleware were quite simple, the service
tests are a bit more complicated. If you open the mongoose/weather​/services.ts
file, you’ll see that the services depend on WeatherModel, which is Mongoose’s
gateway to the MongoDB collection. Each service calls a method on the
model that, in turn, requires a database connection. We won’t reevaluate
those database connections here; instead, the goal of this test suite will be
to verify that the service functions call the correct WeatherModel functions. To
do so, we’ll create a mock WeatherModel that exposes the same set of APIs as
mocked functions.

We first write the mocked model. Following convention, we cre-
ate the file mongoose/weather/__mocks__/model.ts and add the code in
Listing 8-20.

Testing with the Jest Framework 149

import { WeatherInterface } from "../interface";

type param = {
 [key: string]: string;
};

const WeatherModel = {
 create: jest.fn((newData: WeatherInterface) => Promise.resolve(true)),
 findOne: jest.fn(({ zip: paramZip }: param) => Promise.resolve(true)),
 updateOne: jest.fn(({ zip: paramZip }: param, newData: WeatherInterface) =>
 Promise.resolve(true)
),
 deleteOne: jest.fn(({ zip: paramZip }: param) => Promise.resolve(true))
};
export default WeatherModel;

Listing 8-20: The mock for the WeatherModel

We implement WeatherInterface and define the new param type, which is
an object with key-value pairs that we use to type the first parameter. We
make the mocked WeatherModel the default export and use an object that
implements the four methods of the actual WeatherModel, each of which takes
the same parameters as the original. They also take the original Mongoose
model’s method. Because they are asynchronous functions, we return a
promise resolved to true.

Now we can write the test suite for the services. These check that each
service returns true upon success and calls the correct method of the mocked
WeatherModel. Create the file /__tests__/mongoose/weather/services.test.ts and add
the code from Listing 8-21 to it.

/**
 * @jest-environment node
 */
import { WeatherInterface } from "../../../mongoose/weather/interface";
import {
 findByZip,
 storeDocument,
 updateByZip,
 deleteByZip,
} from "../../../mongoose/weather/services";

import WeatherModel from "../../../mongoose/weather/model";
jest.mock("../../../mongoose/weather/model");

describe("the weather services", () => {

 let doc: WeatherInterface = {
 zip: "test",
 weather: "weather",
 tempC: "00",
 tempF: "01",
 friends: []
 };

150 Chapter 8

 afterEach(async () => {
 jest.clearAllMocks();
 });

 afterAll(async () => {
 jest.restoreAllMocks();
 });

 describe("API storeDocument", () => {
 test("returns true", async () => {
 const result = await storeDocument(doc);
 expect(result).toBeTruthy();
 });
 test("passes the document to Model.create()", async () => {
 const spy = jest.spyOn(WeatherModel, "create");
 await storeDocument(doc);
 expect(spy).toHaveBeenCalledWith(doc);
 });
 });

 describe("API findByZip", () => {
 test("returns true", async () => {
 const result = await findByZip(doc.zip);
 expect(result).toBeTruthy();
 });
 test("passes the zip code to Model.findOne()", async () => {
 const spy = jest.spyOn(WeatherModel, "findOne");
 await findByZip(doc.zip);
 expect(spy).toHaveBeenCalledWith({ zip: doc.zip });
 });
 });

 describe("API updateByZip", () => {
 test("returns true", async () => {
 const result = await updateByZip(doc.zip, doc);
 expect(result).toBeTruthy();
 });
 test("passes the zip code and the new data to Model.updateOne()", async () => {
 const spy = jest.spyOn(WeatherModel, "updateOne");
 const result = await updateByZip(doc.zip, doc);
 expect(spy).toHaveBeenCalledWith({ zip: doc.zip }, doc);
 });
 });

 describe("API deleteByZip", () => {
 test("returns true", async () => {
 const result = await deleteByZip(doc.zip);
 expect(result).toBeTruthy();
 });
 test("passes the zip code Model.deleteOne()", async () => {
 const spy = jest.spyOn(WeatherModel, "deleteOne");
 const result = await deleteByZip(doc.zip);

Testing with the Jest Framework 151

 expect(spy).toHaveBeenCalledWith({ zip: doc.zip });
 });
 });

});

Listing 8-21: The updated test suite in __tests__/mongoose/weather/services.test.ts

As in the previous test suite, we begin by setting up the environment
and importing modules. We also import WeatherModel and call jest.mock with
the path to the mocked model we created, effectively replacing the origi-
nal model in the code under test. Then we create a document containing
some test data. We store it in the constant doc and will pass it to the mocked
model’s methods. As done previously, we use the afterEach hook to reset
all mocks after each test and the afterAll hook to remove the mocks and
restore the original functions after all test cases have been finished.

We create a nested test suite for each of the four services. Each has the
same two unit tests: one to verify the return value upon success with the
toBeTruthy matcher and one to spy on a particular WeatherModel mock func-
tion. The code follows the same pattern as the previous test suite and uses
the same matchers as well.

The code-coverage report we receive after running npm test shows that
we tested around 70 percent of the service code. If you take a look at the
uncovered lines listed in the last column, you’ll see that they contain the
console.log(err); output. This output is used whenever an asynchronous call
to the model’s methods fails:

PASS __tests__/mongoose/weather/services.test.ts
PASS __tests__/middleware/dbconnect.test.ts (7.193 s)

--------------------|---------|----------|---------|---------|-------------------
File	% Stmts	% Branch	% Funcs	% Lines	Uncovered Lines
All files | 83.63 | 100 | 88.23 | 82.35 |
 middleware | 100 | 100 | 100 | 100 |
 db-connect.test.ts| 100 | 100 | 100 | 100 |
 mongoose/weather. | 77.41 | 100 | 100 | 75.86 |
 services.test.ts | 70.83 | 100 | 100 | 70.83 |8,20-22,33-35,43-45
--------------------|---------|----------|---------|---------|-------------------

For the purposes of this chapter, we’ll leave these lines uncovered. Other
wise, we could modify the mocked model to throw an error—for example, by
supplying an invalid document—and then add a third test case per service
verifying the error.

Performing an End-to-End Test of the REST API
Sophisticated API tests might use a dedicated API testing library such as
SuperTest, which provides matchers for HTTP status codes and simplifies
the handling of requests and responses. Alternatively, they might use a GUI

152 Chapter 8

tool like Postman. In this example, we’ll merely test that the returned data
matches our expectations by using the native fetch method.

Unlike the previous tests, this one doesn’t isolate any single component,
as our goal is to verify that all components of the system work together as
expected. To check whether the API returns a proper response from the
database when supplied some input, our end-to-end test will make certain
assumptions: that all layers have already been tested independently, that
the database contains its initial seed data, and that our application runs at
http://localhost:3000​/.

To verify our first assumption, open the API endpoint file pages/api/v1/
weather/[zipcode].ts. You’ll notice that the API code imports two functions,
findByZip from the service module and the middleware’s dbConnect, both
of which we’ve already tested. The second assumption is also satisfied; the
database loads the initial seed on each startup. Create the file zipcode.e2e
.test.ts in __tests__/pages/api/v1/weather/ and add the code from Listing 8-22.

/**
 * @jest-environment node
 */

describe("The API /v1/weather/[zipcode]", () => {
 test("returns the correct data for the zipcode 96815", async () => {
 const zip = "96815";
 �let response = await fetch(`http://localhost:3000/api/v1/weather/${zip}`);
 let body = await response.json();
 expect(body.zip).toEqual(zip);
 });
});

export {};

Listing 8-22: The test suite for the REST API

We set the environment to node and then define the test suite with one
test case. In it, we supply a ZIP code that matches one of the initial seed data-
sets. Then we use the native fetch method, which has been available since
Node.js version 17.5, to call our weather API on our localhost and check
whether the returned ZIP code is the same as the one passed as a parameter.
We add an empty export statement to define this file as an ES6 module.

The test should pass and have 100 percent code coverage. Now that
we’re confident that the core of our application is working as expected, we
can test the user interface components.

When using fetch, there are two common error messages you might
encounter. The first, ECONNREFUSED, tells you that fetch could not connect
to your application because it is not running. Use npm run dev to start the
application or adjust the port in the fetch call if you’re not using port 3000.
The second error mentions that the test exceeded the timeout of 5,000 ms
for a test. If you started your application for the purposes of testing and did
not use a previously running application, Next.js compiles the API route as
soon as the test consumes it. Depending on your environment, this might
take longer than the default timeout. Add the line jest.setTimeout(20000);

Testing with the Jest Framework 153

before the describe method at the top of your file to increase the timeout
and make the test wait 20,000 ms instead of 5,000 ms.

Evaluating the User Interface with a Snapshot Test
Snapshot tests verify that a page’s rendered HTML didn’t change between
two test runs. To achieve this with Jest, we must first prepare our environ-
ment. Add the jsdom environment, react-testing-library, and the react-test​
-renderer to the project:

$ npm install --save-dev jest-environment-jsdom
$ npm install --save-dev @testing-library/react @testing-library/jest-dom
$ npm install --save-dev @types/react-test-renderer react-test-renderer

We’ll need these to simulate a browser environment and render React
components during our test cases. Now we’ll modify the jest​.config​.js file in our
root directory accordingly. Replace its content with the code in Listing 8-23.

const nextJest = require("next/jest");
const createJestConfig = nextJest({});

module.exports = createJestConfig(nextJest({}));

Listing 8-23: The updated jest.config.js file

This code imports the next/jest package and exports a Jest configuration
with the default properties of a Next.js project. It is the simplest form of
Next.js-compatible Jest configuration. If you take a look at the official Next.js
setup guide at https://nextjs​.org​/docs​/testing, you’ll see that it outlines some
basic configuration options, none of which we need.

The First Version

A snapshot test renders a component or a page, takes a snapshot of it as seri-
alized JSON, and stores it in a __snapshots__ folder next to the test suite. On
each consecutive run, Jest compares the current snapshot with the stored
reference. As long as they are the same, the snapshot test passes. To gener-
ate the initial snapshot, create a new folder, __tests__/pages/components, and
the file weather.snapshot.test.tsx, and then add the code in Listing 8-24 to it.

/**
 * @jest-environment node
 */

import { act, create } from "react-test-renderer";
import PageComponentWeather from "../../../pages/components/weather";

describe("PageComponentWeather", () => {
 test("renders correctly", async () => {
 let component: any;
 await act(async () => {
 component =

https://nextjs.org/docs/testing

154 Chapter 8

 await create(<PageComponentWeather></PageComponentWeather>);
 });
 expect(component.toJSON()).toMatchSnapshot();
 });
});

Listing 8-24: The snapshot test for PageComponentWeather

The first lines of our snapshot test set the environment to jsdom and
import the test renderer’s act and create methods to test the React compo-
nent, which we import in the next line.

Next, we write the simulated user behavior and wrap the component’s
creation in the asynchronous act function. As you might have guessed, this
function draws its name from the arrange, act, assert pattern and ensures that
all relevant updates to the DOM have been applied before proceeding with
the test case. It is required for all statements that cause updates to the React
state, and here, it delays the test execution until after the useEffect hook runs.

Then we write a test case that awaits the create function, which renders
the JSX component. This lets us generate HTML in a simulated browser
environment and store the result in a variable. We await the component’s
rendering so that the HTML is available for our follow-up interactions
before we continue with the test case. Then we serialize the rendered com-
ponent to a JSON string and use a new matcher, toMatchSnapshot, which com-
pares the current JSON string with the stored reference.

A trial run shows that all tests succeed. We see two interesting things—
that the test created one snapshot and that we achieved a test coverage of
81 percent:

PASS __tests__/mongoose/weather/services.test.ts
PASS __tests__/pages/api/v1/weather/zipcode.e2e.test.ts
PASS __tests__/middleware/dbconnect.test.ts (7.193 s)
PASS __tests__/pages/components/weather.snapshot.test.tsx

---------------------|---------|----------|---------|---------|-------------------
File	% Stmts	% Branch	% Funcs	% Lines	Uncovered Lines
All files | 83.63 | 100 | 88.23 | 82.35 |
 middleware | 100 | 100 | 100 | 100 |
 db-connect.test.ts | 100 | 100 | 100 | 100 |
 mongoose/weather | 77.41 | 100 | 100 | 75.86 |
 services.test.ts | 70.83 | 100 | 100 | 70.83 |8,20-22,33-35,43-45
 pages/api/v1/ | | | | |
 weather | | | | |
 [zipcode].ts | 100 | 100 | 100 | 100 |
 pages/components | 81.81 | 100 | 60 | 80 |
weather.tsx	81.81	100	60	80	8,12
Snapshot Summary
 › 1 snapshot written from 1 test suite.

Testing with the Jest Framework 155

You can look at the created snapshot by opening the weather.snapshot​
.test.tsx.snap file in the __snapshots__ folder. It should look fairly similar to
the code in Listing 8-25, and you’ll see that it is nothing more than the
rendered HTML saved as a multiline template literal. Your HTML might
not be identical to that shown here; the important aspect is that it looks the
same after each test run when react-test-renderer rendered the component.

// Jest Snapshot v1, https://goo.gl/fbAQLP

exports[`PageComponentWeather renders correctly 1`] = `
<h1
 data-testid="h1"
 onClick={[Function]}
>
 The weather is
 sunny
 , and the counter shows
 0
</h1>
`;

Listing 8-25: The weather.snapshot.test.tsx.snap file with the serialized HTML

We also see that the counter is set to 0, which indicates that the useEffect
did not run before we created the snapshot. If you open the component’s
file and check the uncovered lines, you’ll learn that they relate to the click
handler that increases the state variable and, as suspected, the useEffect
hook. We want to test these core functionalities as well.

The Second Version

We’ll modify the test code to cover the previously untested functionalities.
Paste the code from Listing 8-26 into the snapshot test file.

/**
 * @jest-environment node
 */

import { act, create } from "react-test-renderer";
import PageComponentWeather from "../../../pages/components/weather";

describe("PageComponentWeather", () => {
 test("renders correctly", async () => {
 let component: any;
 await act(async () => {
 component = await create(<PageComponentWeather></PageComponentWeather>);
 });
 expect(component.toJSON()).toMatchSnapshot();
 });

 test("clicks the h1 element and updates the state", async () => {
 let component: any;

156 Chapter 8

 await act(async () => {
 component = await create(<PageComponentWeather></PageComponentWeather>);
 component.root.findByType("h1").props.onClick();
 });
 expect(component.toJSON()).toMatchSnapshot();
 });

});

Listing 8-26: The updated snapshot test

In the updated code, we’ve added another test case that finds the head-
line on the page and simulates a user clicking it. Remember from previous
chapters that this increases the state variable counter. Again, we await the
creation of the component and use the act function.

If you rerun the tests, you should see a failure. The test runner tells us
that the snapshots do not match:

FAIL __tests__/pages/components/weather.snapshot.test.tsx
 • PageComponentWeather › renders correctly
--snip--
 › 1 snapshot failed.
--snip--
Snapshot Summary
 › 1 snapshot failed from 1 test suite.
› Inspect your code changes or run `npm test -- -u` to update them.

Because we modified the test case to wait for the useEffect hook and set
the state variable counter to 1 instead of 0, the DOM changed as well. Follow
the test runner’s advice and rerun the tests with npm test -- -u to create a
new, updated snapshot. The tests should now succeed, reporting a test cov-
erage of 100 percent for our component.

Try experimenting with your newfound knowledge. For example, can
you write a snapshot test for the page routes in the pages directory or a set of
end-to-end tests for the GraphQL API?

Summary
You should now be able to create automated tests with Jest and, more
broadly, design a testing plan on your own to strike a balance between
effort and reward. We discussed the benefits of TDD and unit testing and
then used the arrange, act, assert pattern to develop a simple sum function
following test-driven principles. Next, we used three types of test doubles to
replace the sum function while calculating the Fibonacci sequence. Finally,
we added unit and snapshot tests to our existing Next.js application, created
a mock of a Mongoose model, and used spies to verify our assumptions.

To learn more about Jest and automated testing, consult the official
Jest documentation at https://jestjs​.io​/docs​/getting​-started. In the next chapter,
you’ll explore the differences between authorization and authentication
and how you can leverage OAuth in your applications.

https://jestjs.io/docs/getting-started

Certain apps store data about users as part
of a login workflow. There are many ways to

implement this authentication and authoriza-
tion, but one of the easiest is to use OAuth2

		 to piggyback on the existing accounts of well-known
		 companies. OAuth2, or simply OAuth, is an open
		 standard for access delegation, and you’ve probably
		 encountered it if you’ve ever used an app’s “log in with
		 Facebook, GitHub, or Google Account” feature.

The OAuth protocol essentially allows our web application to access
another application’s login data without requiring the third party to share
a user’s credentials with us. To do so, the user grants our application access
rights to their third-party account through the creation of an access token.
OAuth is the accepted standard for authorization-based access delegation,
and Amazon, Google, Facebook, Microsoft, and GitHub all support OAuth
workflows.

9
A U T H O R I Z A T I O N W I T H O A U T H

158 Chapter 9

This chapter will introduce you to the OAuth workflow and then explore
the structure of the bearer tokens used for its access delegation, laying the
foundation for implementing OAuth2 into your Food Finder application in
Part II. In Exercise 9 on page 168, we won’t update our sample Next.js appli-
cation with an OAuth flow but instead manually walk through the OAuth
authorization process.

How OAuth Works
Before we explore OAuth, you need to understand the differences between
authentication and authorization. In short, we use authentication to verify
the identity of a user, whereas authorization specifies the permissions that
the authenticated user possesses and enforces those permissions. OAuth
allows for that process to be delegated to a third party with which the user
already has an account, which simplifies the login process for the user.

Authentication vs. Authorization
Every time an app receives a login request, it checks the user’s credentials
before allowing access, a process called authentication. Usually, those creden-
tials consist of a username and a password, but they could also be hardware
tokens or involve biometric factors such as fingerprints or facial recogni-
tion. The application then verifies that the credentials match the ones
stored in the database.

The simplest form of authentication is single-factor authentication, which
requires only one factor, usually a password. Unfortunately, it is also the
least secure method of implementing authentication. A more robust and
recommended form is multifactor authentication, in which a user must sup-
ply at least two factors. These might be something the user knows, such as
a password, as well as something the user has, such as a physical token, or
something the user is, such as the owner of a fingerprint. You probably use
multifactor authentication when you log in to PayPal or Google, both of
which require you to supply your password and an additional one-time pass-
word (OTP).

The OTP is a code that is created based on a secret shared between you
and the application when you register your account. Both actors regenerate
the pair in short intervals. Yours may be generated by an authenticator app,
like Google Authenticator, or received in a text message. The application
at which you have the account (for example, PayPal or Google) generates
its own OTP code and keeps it on the server. As soon as you send yours, the
server verifies that the codes cryptographically match.

We perform authorization after we’ve authenticated a user. Broadly
speaking, this involves looking at the user’s data and deciding whether they
have the access rights needed to access a resource. A typical full-stack appli-
cation can either handle this user data or enable users to log in without
providing user data. There are benefits to the latter approach, as handling
and storing user data can be inconvenient. It also comes with additional

Authorization with OAuth 159

responsibilities, such as the need to adhere to stricter privacy and data
retention laws, and requires your users to create another account.

Suppose you provide users with the option to log in with an existing
account through an authorization provider. In that case, you’ve removed an
entry barrier. Also, you don’t need to worry about handling their data. If
you need user data—for example, to bill your customers—you can use an
OAuth workflow and save the data you receive from the provider, such as
the user’s payment details, in your own database if necessary.

The Role of OAuth
Every time a web application enables you to log in through a third-party
provider such as Facebook, GitHub, or Google, it uses the OAuth authori-
zation code flow behind the scenes. OAuth isn’t authentication; rather, it’s
a way of authorizing the web application you use to perform actions or to
access resources on your behalf. Common actions include posting to your
Facebook feed and accessing data such as your name, profile picture, or
email address. Consequently, each time you use an OAuth-based login func-
tion, the application asks for particular permissions and can use only those
you grant to it.

To understand OAuth, you must understand its terminology. Each
OAuth flow uses a set of RESTful APIs to authorize the client (an appli-
cation) to get resources (such as the user’s profile information) from a
resource provider (such as Facebook, GitHub, or Google) that has the pro-
tected resources the client wants to access. In addition, we call the server
that provides the OAuth API endpoints the authorization server, and the
party that owns the access rights (and, hence, has the ability to grant an
application access to a resource) the resource owner. In most scenarios, the
resource owner is the application’s end user.

To get the resource owner’s authorization, the client application sends
its client credentials, the ID, the secret, and the user credentials to the autho-
rization server, which usually is part of the same system as the resource pro-
vider. The authorization server authenticates the resource owner and handles
the OAuth flow that results in granting them an access token, which allows the
user to access the protected resources on the resource provider. Both the
authorization server and the resource provider are two sets of APIs on the
same system.

The client ID is a public identifier for the client app; you can make it
public and store it in the code. Unlike the client ID, the client secret should
be kept private; it is the app-specific password, and you should never store
it in your code. Instead, handle it using Next.js’s environment files or your
server’s environment variables.

Grant Types
There are several variants of the OAuth flow. Each of these grant types cov-
ers a specific use case, but all result in the generation of an access token.
OAuth specifies four grant types: the client credentials flow, the implicit

160 Chapter 9

flow, the authorization code flow, and the resource owner password creden-
tials flow.

The client credentials flow covers machine-to-machine communication;
we use it when no actual end user authorization is necessary, as in the case
of automated tasks that connect to an API. Here, the task itself is both the
client and the resource owner. It knows the resource owner’s credentials,
the client ID, and the client secret and passes these to the authorization
server to receive an access token.

The most common grant type for full-stack web development is the
authorization code flow. In this scenario, our web application is a client, and
it makes two calls to two separate API endpoints. The first is to receive an
authorization grant code, and the second is to exchange this authorization
grant for an access token. “The Authorization Code Flow” on page 161 pro-
vides a deep dive into this process.

The last two grant types shouldn’t be used. The implicit flow is similar
to the authorization code flow, but instead of making separate requests
to receive the authorization grant and access token, the client receives
the access token directly. This flow skips the authorization step, doesn’t
include client authentication, and is deprecated. The resource owner password
credentials flow should be avoided because it involves the end user passing
their user credentials to the client and then the client sending these cre-
dentials to the OAuth server to exchange them for the access token. While
this sounds straightforward, sending actual user credentials to the remote
authorization server is an immense security risk.

Bearer Tokens
After the client application initiates an OAuth flow, it receives a shared access
token, most commonly a bearer token that is easy to implement. This access
token replaces the user’s credentials; hence, anyone who has the token can
access the data. To prevent security gaps caused by stolen tokens, a bearer
token usually has a defined shelf life. Upon expiration, the token can be
refreshed only with a valid refresh token. These are long-lived tokens that we use
to generate new bearer tokens.

Refreshing the token can be done implicitly or explicitly, and there are
multiple strategies for preventing stolen refresh tokens from compromising
the OAuth access. For example, the OAuth provider can require a unique
ID or the client secret to issue a new token. The provider usually rotates the
refresh token each time a new bearer token is issued and accepts each refresh
token only once. From our perspective as OAuth clients, the details of the
refresh token are unimportant, as the OAuth provider handles this token.

The bearer token that contains the user session and authentication
data is a JSON Web Token (JWT). JWT is an open standard for securely trans-
mitting data in a JSON object. Because JSON is fairly compact, JWTs can be
sent as URL parameters, as part of the POST data, or even inside an HTTP
header, all without impacting the application’s performance.

JWT tokens can be signed as well as encrypted, saving the application
from needing to make an additional request to verify it or retrieve extra

Authorization with OAuth 161

data. Encrypted tokens hide the contained data from other parties. These
aren’t very common in OAuth due to their additional overhead, so we can
ignore them for now. Signed tokens guarantee the integrity of the contained
data, because any modification to the token would change its signature.
Thus, the application can trust the information stored in it.

The most common cryptographic algorithm for signing JWTs is hash-
based message authentication code (HMAC) with the SHA-256 hash algorithm.
An HMAC is a type of message authentication code (MAC). A MAC’s main
feature is that it enables you to verify the authenticity of a message by cal-
culating a checksum from the message. The checksum uses a mathematical
function to produce a unique, reproducible value or data string based on
the initial message. If the message changes, the checksum changes as well.
This way, we can quickly verify the integrity of the data. For the JWT token,
we use two checks: the authenticity check confirms that the actual sender
sent the message, whereas the data integrity checks verify that the message’s
content did not change.

Unlike other types of MACs, HMAC uses a cryptographic hash function
and a secret key. You can freely choose the cryptographic hash function,
but the strength of your HMAC implementation depends on the crypto-
graphic strength of the selected function. JWTs commonly use the SHA-256
hash function, a fast and collision-resistant cryptographic function from
the SHA-2 collection also used for authenticating Debian software packages
and Bitcoin transactions. In cryptography, collisions occur when two differ
ent inputs result in the same output. The higher the possibility of a colli-
sion, the less we can trust the checksum of the hash function. If a collision
is likely, our message could be replaced with a different one, but the hash
function could indicate that it hasn’t changed. Therefore, we want collision-
resistant cryptographic functions.

The Authorization Code Flow
To understand how an OAuth interaction takes place using the authori-
zation code flow mentioned earlier, let’s return to our fictional weather
service. Imagine that you want to grant weather stations the ability to write
data to the application by using the API, but a station should be able to
modify only its own ZIP code. You also want the application to display the
weather stations’ locations and additional details about them. Additionally,
you prefer not to deal with the maintenance of user accounts or to manu-
ally set up permissions for each station, so using OAuth is your best bet.

Let’s assume that each weather station already has a social media account
for publishing weather updates. These accounts include typical user informa-
tion and the stations’ ZIP codes. We could easily use the social media provider
as an OAuth authorization provider to access this data. The stations would
log in to the weather app using the social media provider, and the app would
request access to the weather station’s user profile. We could then check the
ZIP code stored in the OAuth session against the one in our dataset, provide
the appropriate write access, and retrieve any other data we need.

162 Chapter 9

Only a few steps are necessary for implementing this authorization code
flow. Figure 9-1 is a simplified description of these steps. Usually, devel-
opers use an SDK or a Node.js module to implement the steps and need
to provide only a few properties, such as the client ID, client secret, and
callback URL.

Our application
(OAuth client)

Requests authorization
Grants authorization

Sends authorization grant
Receives access token

Sends access token
Grants access to resource

1
The user

(resource owner)

Authorization server
(for example,

GitHub)

Resource server
(for example,

 GitHub)

2

3

Figure 9-1: A simplified OAuth authorization grant flow

To register our app as an OAuth client, we need to provide GitHub
with a callback URL to our application, to which GitHub will redirect the
user after the authorization request. This endpoint on our application
receives the authorization grant. Recent OAuth implementations require
the callback URL to use HTTPS as a way to protect the token from being
intercepted.

Our app must use the resource owner’s credentials and the client cre-
dentials, an ID, and a secret to communicate with GitHub’s authorization
server. The ID identifies the client, and the secret authenticates it. The
app can then request the authorization to access specific resources, such
as a weather station’s profile data. To do so, the weather station user needs
to log in to GitHub’s authorization server. They’ll see a prompt that sum-
marizes the requested access resources, such as read and write access to
the profile or stream. If the user authorizes the requests with their user
credentials, the OAuth client receives the authorization grant as a GET
parameter in the callback URL, and the OAuth SDK we use in our applica-
tion exchanges the authorization grant for an access token at the authoriza-
tion server in the next step of the flow.

Here, the OAuth client uses the client credentials, which are the client
ID and client secret, in combination with the previously received authoriza-
tion grant to request an access token from the OAuth provider’s authori-
zation server. It is part of the GitHub infrastructure, and to complete the
authorization flow, the authorization server authenticates the identity and
verifies that the grant is valid for this identity. Finally, the app receives the
bearer token from here and stores it in the user session.

With the token and the user session received from the OAuth pro-
vider, our app can now act on the user’s behalf and access their protected

Authorization with OAuth 163

resources, such as the profile data from the resource server. To act on their
behalf, we add the bearer token to the Authorization header in the HTTP
requests; the OAuth provider checks our granted permission and verifies
our identity with this token. To access the user’s data, we simply extract it
from the session data and use it in our application’s code.

For the weather application, we could use the second option to query
location-specific weather data from our database. We’d need to read the
location property from the user’s session data and use that value as the ZIP
code supplied to our API endpoint. In addition, we can access other prop-
erties, such as the description and the name or profile picture, to display
them on the weather application’s status page for each station.

Creating a JWT Token
Most bearer tokens are JWTs, and while the authorization server automati-
cally issues them, it’s good to know what kind of information you can find
in them. This section will walk you through the process of creating an
example OAuth JWT for the weather service app. The JWT is a string made
up of three sections divided by periods (.): the header, the payload, and the
signature. The first two sections are Base64-encoded JSON objects, whereas
the signature is a checksum of the previous two.

The Header
The first string we create is the header, which defines basic metadata such
as the token’s type and the signatures used for the signing algorithm.
Listing 9-1 shows the creation of a simple header in JavaScript with the most
essential metadata.

const headerObject = {
 "typ": "JWT",
 "alg": "HS256"
}

Listing 9-1: The JWT header for the OAuth2 weather service

We set the type of the weather service’s token to JWT and specify that we
use the HMAC-SHA-256 algorithm to calculate the signature later. Finally,
we store the JSON object in a constant to use later.

The Payload
Next, we create the second string, the payload, which stores the token’s
data. Each property of the payload is called a claim. In OAuth, the claims
describe the user object and, usually, the session data. The JWT specifica-
tion contains three types of claims: registered, public, and private.

164 Chapter 9

Registered Claims

There are seven registered claims, each three letters long. While not nec-
essary in general JWTs, the iss, sub, auth, and exp registered claims are
required for OAuth JWTs.

The issuer claim, iss, contains a unique identifier for the entity that
issued the JWT. A good value might be the application’s URL, as shown in
Listing 9-2.

{
 "iss": "https://www.usemodernfullstack.dev/
}

Listing 9-2: A registered issuer claim

The subject claim, sub, identifies the principal to which the JWT belongs.
For an OAuth client authentication flow, the subject claim must be the cli-
ent ID of the OAuth client, whereas for an OAuth authorization grant, the
subject should identify the resource owner or should pseudonymously iden-
tify an anonymous user. We create a sample subject claim in Listing 9-3.

{
 "sub": "THE_CLIENT_ID"
}

Listing 9-3: A registered subject claim

The audience claim, aud, identifies the token’s recipient. Its value could
be the token endpoint URL on the authorization server or anything else
that identifies the recipient, such as an application ID. See Listing 9-4 for
an example.

{
 "aud": "api://endpoint"
}

Listing 9-4: A registered audience claim

The expiration claim, exp, identifies the time window during which the
token is valid. After that period, the authorization server will reject the
token and you’ll need to request a new one. An expiration claim’s value is
a number whose date is defined in “seconds since the Unix Epoch,” a com-
mon format for timestamps. It is calculated by counting the number of sec-
onds that have elapsed since January 1, 1970. Listing 9-5 shows an example.

{
 "exp": 1134156400
}

Listing 9-5: A registered expiration claim

Authorization with OAuth 165

The issued at claim, iat, is optional and identifies the time at which
the authorization server issued the token. You can determine a token’s age
from this claim, which is also defined in seconds since the Unix Epoch, as
shown in Listing 9-6.

{
 "iat": 1134156200
}

Listing 9-6: A registered issued at claim

The not before claim, nfb, is optional and identifies the time at which the
authorization server should start accepting the token. The authorization
server will reject every token with an nfb claim in the future. We define it as
a number in seconds since the Unix Epoch, as you can see in Listing 9-7.

{
 "nfb": 1134156100
}

Listing 9-7: A registered not before claim

The JWT claim, jti, is optional and sets a unique ID for the token (see
Listing 9-8).

{
 "jti": "b5f8f86f-82ab-451e-b391-bf6a07041787"
}

Listing 9-8: A registered JWT claim

The authorization server might keep a list of recent tokens and their
expiration dates to check whether the token is being reused in a replay
attack, which occurs when an attacker tries to access data by reusing a previ-
ously issued token.

Public Claims

A token’s issuer can define public claims for the purpose of adding an
application-specific public API. Unlike private claims, these are custom
properties defined for public access. The issuer should register these claims
in the JWT Claims registry or use collision-resistant names with custom
namespaces—for example, a UUID or the application’s name. Also, as pub-
lic claims are meant for public consumption, they should never include pri-
vate or sensitive information.

A public claim for the OAuth JWT of our fictional weather service
might include the ZIP code to directly provide each station’s location data.
By making the ZIP code a public claim, we won’t need to parse the user
object and extract the ZIP code manually. Also, as the location is publicly
available information on social media profiles, it’s not sensitive.

166 Chapter 9

Private Claims

Private claims are custom claims that are neither registered claims nor pub-
lic claims. We can define them to our liking, and they can be specific to our
application or use case. Even though they don’t need to be collision resis-
tant, using a private namespace is recommended. Unlike public claims, pri-
vate claims contain information specific to the application and are intended
to be used only internally. Whereas the public claims store generic informa-
tion such as the name, the private claims contain the application’s user ID
and role. For example, we could define a private claim for the OAuth JWT
of our fictional weather service to specify the type of service we are using.

Now that you understand the payload object’s possible properties, you
can create a complete payload like the one in Listing 9-9, which specifies
GitHub as the service.

const payloadObject = {
 "exp": 234133423,
 "weather_public_zip": "96815",
 "weather_private_type": "GitHub"
}

Listing 9-9: The JWT payload for the OAuth weather service

Again, we create a constant and store the object there. Our payload has
three claims, each of a different type. It’s up to the publisher of the JWT
token to decide which claims to include; for this example, we limit the size
of the token to one of each type. The registered claim exp sets the expira-
tion date and time, zip is a public claim, and role is a private claim. Both
use the custom namespace weather to minimize the risk of a collision.

The Signature
With the header and payload in place, we create a JWT signature by
using the algorithm specified in the header to calculate the checksum.
We pass the header and payload as Base64-encoded strings and a custom
secret to the checksum function. As an exercise, we’ll create the signature
in TypeScript with the code from Listing 9-10. You’ll see that the secret is
hardcoded for simplicity here. In production code, this secret should be
stored in an environment variable.

Save the code as index.ts in a TypeScript project, or use npx ts-node
index.ts to run it locally. If you prefer, you can also use a TypeScript sand-
box at https://codesandbox​.io or https://stackblitz​.com to run it. Generate a fresh
secret (https://www​.usemodernfullstack​.dev​/generate​-secret) and use it instead of
the one in the listing to see how the token changes.

import { createHmac } from "crypto";

const base64UrlEncode = (data: string): string => {
 return Buffer.from(data, "utf-8").toString("base64");
};

https://codesandbox.io
https://stackblitz.com
https://www.usemodernfullstack.dev/generate-secret

Authorization with OAuth 167

const headerObject = {
 typ: "JWT",
 alg: "HS256"
};

const payloadObject = {
 exp: 234133423,
 weather_public_zip: "96815",
 weather_private_type: "GitHub"
};

const createJWT = () => {
 const base64Header = base64UrlEncode(JSON.stringify(headerObject));
 const base64Payload = base64UrlEncode(JSON.stringify(payloadObject));

 const secret = "59c4b48eac7e9ac37c046ba88964870d";

 const signature: string = createHmac("sha256", secret)
 .update(`${base64Header}.${base64Payload}`)
 .digest("hex");

 return [base64Header, base64Payload, signature].join(".");
};

console.log(createJWT());

Listing 9-10: An index.ts file to calculate the JWT signature for the OAuth2 weather
service

We use Node.js’s standard crypto module and then create a library
for transforming the JSON objects into Base64-encoded strings via buf-
fers. We pass the strings and the secret to the crypto module’s createHmac
function to initialize the HMAC object with sha256 as the hashing algo-
rithm, Then we feed the Base64-encoded header and payload string, sepa-
rated by a period, to the HMAC object. Finally, we convert the result to a
hexadecimal format.

To obtain the JWT string, we create an array containing the Base64-
encoded strings from the header and payload objects, as well as the Base64-
encoded signature. To convert the array into a string that uses a period
to separate every part, we call Array.join with a period as a separator and
return the resulting JWT.

To generate the JWT, we run the script. The final JWT token logged to
the console should look similar to the one in Listing 9-11.

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjIzNDEzMzQyMywid2VhdGhlcl9wdWJsa
WNfemlwIjoiOTY4MTUiLCJ3ZWF0aGVyX3ByaXZhdGVfdHlwZSI6IkdpdEh1YiJ9.f667c81749886e
e01831376a38fbdba4d7f59a14c14f3a60e1bbee977c993ac9

Listing 9-11: The final JWT token for the OAuth2 weather service

168 Chapter 9

In the next section, we’ll use our new knowledge to walk through an
actual OAuth flow.

Exercise 9: Access a Protected Resource
Now that you understand OAuth’s components and the theory behind
the authorization code flow, let’s work with a practical example. We’ll try
to access the protected resource hosted by an OAuth server at https://www​
.usemodernfullstack​.dev​/protected​/resource. Run the exercise’s cURL commands
from your terminal to follow along.

First, attempt to access the protected resource without an access token
by sending a GET request for it:

$ curl -i \
 -X GET 'https://www.usemodernfullstack.dev/protected/resource' \
 -H 'Accept: text/html'
--snip--
HTTP/2 401
Content-Type: text/html; charset=utf-8
--snip--
<h1>Unauthorized request: no authentication given</h1>

We use the -i flag to output the headers, and when we search the
response for the HTTP code, we see a 401 status code, which tells us that
we’re not authorized to access the resource and must obtain an access
token.

To get an access token, we’ll set up an OAuth client by creating a user
account and registering it with the provider to receive a client ID and cli-
ent secret. Then we’ll make a request to the /oauth/authorize endpoint, log
in with the user’s credentials, and receive the authorization grant on our
callback URL. Next, we’ll exchange the grant code for an access token on
the /oauth/access_token endpoint. Finally, we’ll make the same request again,
providing the access token in the header.

The callback URL can be any URL here, as we’re not sending any
actual data to it. But for a real authorization grant flow, it needs to be an
endpoint on your application. Usually, an OAuth SDK provides these, as it
handles the response and tokens.

Setting Up the Client
Before we start the OAuth flow, we need to create a user and register
an OAuth client. Open https://www​.usemodernfullstack​.dev​/register in your
browser. On the form shown in Figure 9-2, create a user account with a
username and password of your choice.

https://www.usemodernfullstack.dev/protected/resource
https://www.usemodernfullstack.dev/protected/resource
https://www.usemodernfullstack.dev/register

Authorization with OAuth 169

Figure 9-2: Creating a user account with the OAuth provider

Then proceed to register a client by providing a callback URL (Figure 9-3).
This callback URL points to the OAuth callback endpoint on our application.
Usually, the SDK or the OAuth provider supplies you with instructions on how
to set this up.

Figure 9-3: Registering a client application with the OAuth server to receive the client
credentials

170 Chapter 9

The form is prefilled with a callback URL similar to a typical OAuth
callback structure. Usually, you find them in the SDK’s documentation.
Don’t worry that the URL http://localhost:3000​/oauth​/callback doesn’t exist
on your application. For this exercise, we won’t send any actual data to it;
instead, we’ll see that it’s part of the request and response flow when we go
through the API calls. Click the button to move on to the next step, where
you create the OAuth client. Make sure to write down your username, pass-
word, client ID, and client secret. You’ll need all of these for the next steps.
Then click Register Your OAuth Client to complete the process.

Logging In to Receive the Authorization Grant
Now the user we registered must use their credentials to log in to the
OAuth provider, allowing the client application to access their resources.
We call the OAuth REST API endpoint /oauth/authorize and (as the resource
owner) log in with our user credentials, which is the first step of the flow.
The API response returns a redirect to the callback URL, which contains
the authorization grant in the URL parameter code.

In a real application, the resource owner would click some “Log in with
OAuth” button and enter their credentials, and the API calls would happen
behind the scenes. But for the purposes of this exercise, we’ll perform all
API requests manually. By using the raw API calls, we’ll see the actions that
SDKs usually abstract. Call the REST endpoint directly with the following
cURL command:

$ curl -i \
 -X POST 'https://www.usemodernfullstack.dev/oauth/authenticate' \
 -H 'Accept: text/html' \
 -H 'Content-Type: application/x-www-form-urlencoded' \
 -d "response_type=code\
&client_id=<OAUTH_CLIENT_ID>\
&state=4nBjkh31\
&scope=read\
&redirect_uri=http://localhost:3000/oauth/callback\
&username=<OAUTH_USER>\
&password=<OAUTH_PASSWORD>"
--snip--
HTTP/2 302
Content-Type: text/html; charset=utf-8
location: http://localhost:3000/oauth/callback?code=<AUTHORIZATION_GRANT>&state=4nBjkh31

This POST request logs in to the OAuth provider. We set the URL to
the oauth/authenticate endpoint, as well as our Accept header and the appro-
priate Content-Type header, application/x-www-form-urlencoded, for form data.

We use the -d flag to send the POST data indicating that we’re look-
ing for an authorization code. To split the POST data into readable
chunks, we need to use double quotes (") to wrap it and the backslash
(\) for line breaks. We add the client ID we received from the OAuth
provider and the callback URL we discussed earlier. The scope parameter
specifies the permissions we’re asking for, while the state parameter

Authorization with OAuth 171

contains a unique random string that mitigates cross-site request forgery
(CSRF) attacks. The OAuth provider should return this state parameter
along with the authorization code so that we can verify that its value
hasn’t changed, proving that the response originated from the correct
API and not from a third party. In addition, we send the user credentials
we registered before.

The response headers show us that everything worked as expected.
The OAuth API responds with a status code of 302 and redirects to the
callback URL we provided. As you can see in the location header, the
redirect to the callback URL contains the authorization grant in the code
parameter, as well as the state parameter we sent. Unlike the state, which
is just being reflected, the authorization grant is unique and depends on
the request data.

Using the Authorization Grant to Get the Access Token
Next, we use the authorization grant to request an access token from the
OAuth server. Copy the code you received in the preceding step and use
it to request the bearer access token with the client credentials from the
/oauth/access_token API endpoint:

$ curl -i \
 -X POST 'https://www.usemodernfullstack.dev/oauth/access_token' \
 -H 'Accept: text/html, application/json' \
 -H 'Content-Type: application/x-www-form-urlencoded' \
 -d "code=<AUTHORIZATION_GRANT>\
&grant_type=authorization_code\
&redirect_uri=http://localhost:3000/oauth/callback\
&client_id=<OAUTH_CLIENT_ID>\
&client_secret=<OAUTH_CLIENT_SECRET>"
--snip--
HTTP/2 200 OK
Content-Type: application/json; charset=utf-8

{
 "access_token":"9bd55e2acf046128a54b76eada1ea6e0f909ca53",
 "token_type":"Bearer",
 "expires_in":3599,
 "refresh_token":"79a22d2b37c635a6095f5548ca08ea632deae573",
 "scope":"read"
}

This POST request to the OAuth server uses the Accept header to accept
a JSON response and sets the Content-Type header to a value for POST form
data. We send the form data itself with the data-raw flag. The data contains the
authorization grant we received in the code parameter, a grant_type parameter
that tells the API endpoint to expect an authorization grant flow, and the
same redirect URL as before. We also pass in the client ID and secret.

The response has an HTTP status code of 200, which means the
request succeeded. In the response body, we received the access token and
additional details. Copy the access token’s value for the next step.

172 Chapter 9

Using the Access Token to Get the Protected Resource
We now have an access token from the OAuth server that we can use
to retrieve the protected resource we couldn’t access at the beginning
of this exercise. Use the same cURL command to request https://www​
.usemodernfullstack​.dev​/protected​/resource, and replace the ACCESS_TOKEN place-
holder with the access token:

$ curl -i \
 -X GET 'https://www.usemodernfullstack.dev/protected/resource' \
 -H 'Accept: text/html' \
 -H 'Authorization: Bearer <ACCESS_TOKEN>'
--snip--
HTTP/2 200 OK
Content-Type: text/html; charset=utf-8
--snip--
<h1>This page is secured.</h1>
--snip--

We use the Authorization header with the Bearer keyword and the access
token we received from the authorization grant flow in the access_token
property. When we search for the HTTP status code, we see that instead of
a code of 401, we receive a code of 200. On closer inspection, we also see
that the response’s body contains the secured content.

We manually walked through all the necessary steps for receiving a
working access token. This exercise is appropriate for educational pur-
poses only; as mentioned earlier in this chapter, we usually use an SDK or a
library such as next-auth to implement an OAuth flow.

Summary
Authentication involves using credentials to authorize access, whereas
authorization defines and grants access rights. This chapter covered imple-
menting authorization with the OAuth2 protocol. You became familiar with
the authorization grant flow, the most common OAuth flow used in full-
stack web applications, and learned how to create JWTs. Then you practiced
manually working with OAuth, getting and using the JWT bearer token,
and applying the OAuth flow to your application from a bird’s-eye view.

You can find additional resources, tutorials, and specifications at https://
oauth​.net. The next chapter covers Docker, a containerization platform that
decouples your development environment from your local machine.

https://www.usemodernfullstack.dev/protected/resource
https://www.usemodernfullstack.dev/protected/resource
https://oauth.net
https://oauth.net

Professional full-stack developers frequently
work with Docker and, more broadly, con-

tainers. Docker, an open source containeriza-
tion platform, solves three common problems.

First, it lets us run a particular version of some software, such as Node.js,
for each of our projects. Second, it decouples the development environment
from our local machine and creates a reproducible way to run the applica-
tion. Third, unlike traditional virtual machines, Docker containers run on
a shared host. Therefore, they are smaller in size and consume less memory
than classic virtual machines, which emulate a complete system and are often
hardware specific. As a result, container-based applications are lightweight
and easy to scale. These advantages have made Docker the most appreciated
development platform in recent years.

This chapter covers the fundamentals of Docker. We first walk through
the steps required to containerize our Next.js application by creating a Docker
container running the latest Node.js version and serving the application from
inside the container. Then we explore the concept of a microservice architec-
ture and create two microservices using Docker.

10
C O N T A I N E R I Z A T I O N

W I T H D O C K E R

174 Chapter 10

The Containerization Architecture
In their daily lives, developers must regularly switch between applica-
tions that require different versions of the same library. For example, a
JavaScript-focused developer might need a different Node.js or TypeScript
version for each of their projects. Of course, they could switch the installed
Node.js version on their local machine with tools such as nvm whenever
they need to work on a different project. But instead of resorting to crude
hacks, they could choose a more elegant solution.

Using Docker, we can separate our application or its services into
independent containers, each of which provides a service-specific environ-
ment. These containers run on an operating system of our choosing (often
Debian, Ubuntu, or Alpine), with only the dependencies necessary to this
particular application. Containers are isolated from one another and com-
municate through defined APIs.

When we use a Docker container during the development process,
we facilitate the application’s later deployment. After all, the container
provides a location-independent version of our application that is plat-
form agnostic. Therefore, we already know that our application works
with the installed dependencies and that no conflicts or additional instal-
lation steps are necessary. Instead of setting up a remote server with the
required software and then deploying and testing our application after-
ward, we can simply move our Docker container to the server and spin it
up there.

In situations when we need to move to a different server, scale our
application, add additional database servers, or distribute instances across
several locations, Docker lets us deploy our application by using the same
straightforward process. Instead of managing different hosts and configura-
tions, we can effectively build a platform-agnostic application and run the
same containers everywhere.

Installing Docker
To check whether you already have Docker installed, open the command
line and run docker -v. If you see a version number higher than 20, you
should be able to follow along with the examples in this chapter. Otherwise,
you’ll need to install the most recent version of Docker from Docker Inc.
Go to https://www​.docker​.com​/products​/docker​-desktop​/. Then choose the Docker
desktop installer for your operating system and download it. Execute the
application and check the Docker version number on the command line. It
should match the one you downloaded.

Creating a Docker Container
Docker has several components. The physical or virtual machine on which
the Docker daemon runs is the host system. While you’re developing your

https://www.docker.com/products/docker-desktop/

Containerization with Docker 175

application locally, the host is your physical machine, and when you deploy
your container, the host is the server that runs the application.

We use the Docker daemon service on the host system to interact with all
components of the Docker platform. The daemon provides Docker’s func-
tionality through APIs and is the actual Docker application installed on our
machine. Access the daemon using the docker command from the command
line. Run docker --help to display all possible interactions.

We use Docker containers to run our containerized applications. These
containers are running instances of a particular Docker image, which is
the artifact that contains the application. Each Docker image relies on a
Dockerfile, which defines the configuration and the content of the Docker
image.

Writing the Dockerfile
A Dockerfile is a text file containing the information we need to set up a
Docker image. It commonly builds upon some existing base image, such as
a bare-bones Linux machine on which we’ve installed additional software
or a pre-provisioned environment. For example, we might use a Linux
image with Node.js, MongoDB, and all relevant dependencies installed.

Often, we can build upon an official image. For example, Listing 10-1
shows the basic Dockerfile we use to containerize our refactored Next.js
application. Dockerfiles contain keywords followed by commands, and we
use the FROM keyword here to select the official Node.js Docker image. Create
a file called Dockerfile in your project’s root directory, next to the package.json
file, and add the code in Listing 10-1 to it.

FROM node:current

WORKDIR /home/node
COPY package.json package-lock.json /home/node/
EXPOSE 3000

Listing 10-1: A simple Dockerfile for a typical Node.js-based application

The image we’ve selected contains a preconfigured Node.js system
running on Debian. The version tag current gives you the most recent
Node.js version; alternatively, we could provide a particular version
number here. Hence, if you need to lock any application to a specific
Node.js version, this is the line to do so. You could also use the slimmer
node:current-slim image, a lightweight Debian distribution that contains
only the software packages necessary to run Node.js. However, we need
MongoDB’s in-memory server, so we’ll choose the regular image. You can
see a list of the available images at https://hub​.docker​.com. Other images
you’ll probably use in your career include those for WordPress, MySQL,
Redis, Apache, and NGINX.

Finally, we use the WORKDIR keyword to set the working directory inside
the Docker image to the user’s home directory. All future commands will

https://hub.docker.com

176 Chapter 10

now execute in this directory. We use the COPY keyword to add the package
.json and package-lock.json files to the working directory. A Node.js applica-
tion runs on port 3000 by default, so we use the EXPORT keyword to choose
port 3000 for TCP connections. This connection will provide access to the
application from outside the container.

Building the Docker Image
To create a Docker image from the Dockerfile, we use the docker image
build command. During the build process, the Docker daemon reads the
Dockerfile and executes the commands defined there to download and
install software, copy local files into the image, and configure the environ-
ment. Run the following next to your Dockerfile to build the image from it:

$ docker image build --tag nextjs:latest .
[+] Building 11.9s (10/10) FINISHED
 => [internal] load build definition from Dockerfile 0.1s
 => => transferring dockerfile: 136B 0.0s
 => [1/2] FROM docker.io/library/node:current-alpine@sha256:HASH 0.0s
 => [2/2] WORKDIR /home/node 0.0s
 => => naming to docker.io/library/ nextjs:latest

The --tag flag gives the image the name nextjs and sets its version to
latest. Now we can easily refer to this specific image at a later time. We use a
period (.) at the end of the command to set the build context, limiting the
docker build command’s file access to the current directory. In the output,
the Docker daemon indicates that it successfully built the tagged image.

Now, to verify that we have access to the image, run the following. This
command lists all locally available Docker images:

$ docker image ls
REPOSITORY TAG IMAGE
nextjs latest 98b28358e19a

As expected, our newly created image has a random ID (98b28358e19a), is
tagged as nextjs, and is available in the latest version. The Docker daemon
may also display additional information, such as the size and age of the
image, which aren’t relevant to us for now.

Docker provides additional commands for managing local and remote
images. You can view a list of all available commands by running docker
image --help. For example, to remove an existing image from your local
machine, use docker image rm:

$ docker image rm <name:version or ID>

After a while, you’ll find that you’ve collected unused or outdated ver-
sions of your images, so deleting them to free up space on your machine
with docker image prune is a good practice.

Containerization with Docker 177

Serving the Application from the Docker Container
Docker containers are running instances of Docker images. You could use
the same Docker image to spin up multiple containers, each with a unique
name or ID. Once the container is running, you can synchronize local files
to it. It listens on an exposed TCP or UDP port, so you can connect to it
and execute commands inside it using SSH.

Let’s containerize our application. We’ll spin up the Docker container
from our image, map the local Next.js files to the working directory, pub-
lish the exposed port, and finally start the Next.js development server. We
can do all of this using docker container run:

$ docker container run \
--name nextjs_container \
--volume ~/nextjs_refactored/:/home/node/ \
--publish-all \
nextjs:latest npm run dev
> refactored-app@0.1.0 dev
> next dev

ready - started server on 0.0.0.0:3000, url: http://localhost:3000
event - compiled client and server successfully in 10.9s (208 modules)

At first glance, this command might look complicated, but once we
take a closer look at it, you’ll easily understand what it is doing. We pass
it several flags, starting with the --name flag, which assigns a unique name
to the running container. We’ll use this name to identify the container
later.

Then we use the --volume flag to create a Docker volume. Volumes are a
simple way to share data between containers. Docker itself manages them,
and they let us synchronize our application files to the home/node/ direc-
tory inside the container. We use the format source:destination to define a
volume, and depending on your file structure, you might need to adjust the
absolute path to this folder. In this example, we map /nextjs_refactored/ from
the user’s home folder into the container.

The --publish-all flag publishes all exported ports and assigns them
to random ports on the host system. We use docker container ls later to
view the ports for our application. The last two arguments are intuitive:
nextjs:latest points to the Docker image we want to use for the container,
and npm run dev starts the Next.js development server as usual. The console
output shows that the Node.js app inside the container is running and lis-
tening on port 3000.

Locating the Exposed Docker Port
Unfortunately, as soon as we try to access our Next.js application on port 3000,
the browser notifies us that it isn’t accessible; no application is listening there.
The problem is that we didn’t map the exposed Docker port 3000 to the
host’s port 3000. Instead, we used the --publish-all flag and assigned a
random port to the exposed Docker port.

178 Chapter 10

Let’s run docker container ls to see details about all running Docker
containers:

$ docker container ls
CONTAINER ID IMAGE PORTS NAMES
dff681898013 nextjs:latest 0.0.0.0:55000->3000/tcp nextjs_container

Search for the name we assigned to our container, nextjs_container, and
notice that port 55000 on the host maps to the Docker port 3000. Hence,
we can access our application at http://localhost:55000. Open this URL in
your browser. You should see the Next.js application.

If you glance at the URL bar, you’ll notice that the port we use to access
the application is different from the one used in previous chapters because
it is now running inside the Docker container. Try to access all of the pages
and APIs we created previously before moving to the next section.

Interacting with the Container
You can view a list of all Docker commands for interacting with containers
by running docker container --help. In most contexts, though, you’ll find it
sufficient to know just a few of these. For example, use exec to execute com-
mands inside an already running Docker container. We could use exec to
connect to a shell inside the container by passing it the -it flag and the path
to the shell, such as /bin/sh. The -i flag is short for --interactive, whereas -t
runs a pseudoterminal. The interactive option lets us interact with the con-
tainer, and the tty pseudoterminal keeps the Docker container running so
that we can actually interact with it:

$ docker container exec -it <container ID or name> /bin/sh

The kill command stops a running Docker container:

$ docker container kill <containerid or name>

We can select the container by name or by using the container ID
shown in the list of local running containers.

Creating Microservices with Docker Compose
Docker provides us with a way to break up an application into small, autono-
mous units, called microservices. A microservice-driven architecture splits an
application into a collection of self-contained services that communicate
through well-defined APIs. It’s a relatively new architectural concept that
gained traction around the late 2000s to early 2010s, when Docker and
other tools that allowed for easier partitioning and orchestration of server
resources became available. These tools form the technical foundation of a
microservice architecture.

Microservices have several advantages. First, each independent service has
a single purpose, which reduces its complexity. Therefore, it is more testable

Containerization with Docker 179

and maintainable. We can also deploy the microservices separately, spin up
multiple instances of a single microservice to improve its performance, or
swap it out altogether without affecting the whole application. Contrast these
features with a traditional monolithic application whose user interface, mid-
dleware, and data storage exist in one single program built from a single code
base. Even if a monolith uses a more modular approach, the code base couples
them tightly, and you can’t swap out the elements easily.

Another characteristic feature of microservices is that dedicated teams
can own just a single service and its code base. This means that they can
select the appropriate tools, frameworks, and programming languages on
a per-service basis. On the other hand, you’d typically use a single core lan-
guage to write a monolithic application.

Now that you know how to create a single container from scratch,
we’ll practice creating multiple containers; each will serve one part of an
application. One way to use microservices is to create one service for the
frontend and a second for the backend. The Food Finder application we’ll
create in Part II will use this structure. The main benefit of this approach
is that it lets us use a preconfigured MongoDB image for the database. For
the example in this chapter, we’ll create a second service that watches our
weather service and reruns its test suite as soon as the file changes. To do
so, we’ll use the Docker Compose interface and define our microservice
architecture in a docker-compose.yml file.

Writing the docker-compose.yml File
We define all services in docker-compose.yml, a text file in the YAML format.
This file also sets the properties, dependencies, and volumes for each
service. Most properties are similar to the command line flags you specify
when creating Docker images and containers. Create the file in the root
folder of your application and add the code from Listing 10-2 to it.

version: "3.0"
services:
 application:
 image:
 nextjs:latest
 ports:
 - "3000:3000"
 volumes:
 - ./:/home/node/
 command:
 "npm run dev"
 jest:
 image:
 nextjs:latest
 volumes:
 - ./:/home/node/
 command:
 "npx jest ./__tests__/mongoose/weather/services.test.ts --watchAll"

Listing 10-2: A basic docker-compose.yml file that defines the application and Jest services

180 Chapter 10

Every docker-compose.yml file starts by setting the version of the Docker
Compose specification used. Depending on the version, we can use differ
ent properties and values. We then define each service as a single property
under services. As discussed, we want to have two services: our Next.js appli-
cation running on port 3000 and the Jest service, which watches the services
.test.ts file we created in Chapter 8 and reruns the tests as soon as we change
a file. We limit the watch command to retest only the services. This limits
the scope of the exercises, but of course, you can rerun all tests if you’d like.

Each service follows roughly the same structure. First we define the
image from which Docker Compose should create each container. This can
be an official distribution or a locally built one. We use the nextjs image in
the latest version for both services. Then, instead of using the --publishAll
flag, we map the ports directly from 3000 to 3000. By doing so, we can con-
nect to the application’s port 3000 from the host’s port 3000.

With the volumes property, we synchronize the files and paths from the
host system into the container. This is similar to the mapping we used in
the docker run command, but instead of supplying an absolute path, we can
use relative paths for the source. Here we map the whole local directory ./
into the container’s working directory /home/node. As before, we can edit
the TypeScript files locally, and the application inside the container always
uses the latest version of the files.

Until now, these properties have matched the command line arguments
we used in the docker run command. Now we add the command property, which
specifies the command that each container executes on startup. For the
application service, we’ll start Next.js with the usual npm run dev command,
whereas the Jest service should call Jest directly through npx. Providing the
path to the test file and the --watchAll flag causes Jest to rerun the tests
when the source code changes.

Running the Containers
Start the multi-container app with the docker compose up command. The out-
put should look similar to what is shown here:

$ docker compose up
 [+] Running 2/2
 ⠿ Container application-1 Created 0.0s
 ⠿ Container jest-1 Recreated 0.4s
Attaching to application-1, jest-1
application-1 |
application-1 | > refactored-app@0.1.0 dev
application-1 | > next dev
application-1 |
application-1 | ready - started server on 0.0.0.0:3000, URL:
application-1 | http://localhost:3000
jest-1 | PASS __tests__/mongoose/weather/services.test.ts
jest-1 | the weather services
jest-1 | API storeDocument
jest-1 | ✓ returns true (9 ms)
jest-1 | ✓ passes the document to Model.create() (6 ms)

Containerization with Docker 181

jest-1 | API findByZip
jest-1 | ✓ returns true (1 ms)
jest-1 | ✓ passes the zip code to Model.findOne() (1 ms)
jest-1 | API updateByZip
jest-1 | ✓ returns true (1 ms)
jest-1 | ✓ passes the zip code and the new data to
jest-1 | Model.updateOne() (1 ms)
jest-1 | API deleteByZip
jest-1 | ✓ returns true (1 ms)
jest-1 | ✓ passes the zip code Model.deleteOne() (1 ms)
jest-1 |
jest-1 | Test Suites: 1 passed, 1 total
jest-1 | Tests: 8 passed, 8 total
jest-1 | 0 total
jest-1 | Time: 4.059 s
jest-1 | Ran all test suites matching
jest-1 | /.\/__tests__\/mongoose\/weather\/services.test.ts/i.

The Docker daemon spins up all services. As soon as the application is
ready, we see the status message from the Express.js server and can connect
to it on the exposed port 3000. At the same time, the Jest container runs
the tests for the weather services and reports that all are successful.

Rerunning the Tests
Now that we’ve started the Docker environment, let’s verify that the
command to look for changes in the code and rerun tests is working as
intended. To do so, we need to modify the source code to trigger Jest.
Therefore, we open the mongoose/weather/service.ts file and modify the con-
tents by adding a blank line and then saving the file. Jest should rerun the
test inside the container, as you can see from the output in Listing 10-3.

jest-1 | Ran all test suites matching
jest-1 | /.\/__tests__\/mongoose\/weather\/services.test.ts/i.
jest-1 |
jest-1 | PASS __tests__/mongoose/weather/services.test.ts
jest-1 | the weather services
jest-1 | API storeDocument
jest-1 | ✓ returns true (9 ms)
jest-1 | ✓ passes the document to Model.create() (6 ms)
jest-1 | API findByZip
jest-1 | ✓ returns true (1 ms)
jest-1 | ✓ passes the zip code to Model.findOne() (1 ms)
jest-1 | API updateByZip
jest-1 | ✓ returns true (1 ms)
jest-1 | ✓ passes the zip code and the new data to
jest-1 | Model.updateOne() (1 ms)
jest-1 | API deleteByZip
jest-1 | ✓ returns true (1 ms)
jest-1 | ✓ passes the zip code Model.deleteOne() (1 ms)
jest-1 |
jest-1 | Test Suites: 1 passed, 1 total
jest-1 | Tests: 8 passed, 8 total

182 Chapter 10

jest-1 | 0 total
jest-1 | Time: 7.089 s
jest-1 | Ran all test suites matching
jest-1 | /.\/__tests__\/mongoose\/weather\/services.test.ts/i

Listing 10-3: Rerunning the tests on files changed with jest --watchAll

All tests continue to pass. Connect to http://localhost:3000 and verify that
your browser can still render the application.

Interacting with Docker Compose
Docker Compose provides a complete interface for managing microservice
applications. You can see a list of available commands by running docker
compose --help. The following are the most essential.

We use docker compose ls to get a list of all locally running Docker appli-
cations defined in docker-compose.yml files. The command returns the name
and status of the application:

$ docker compose ls

To shut down all running services defined in the docker-compose.yml file
in the current directory, run docker compose kill, which sends a SIGKILL com-
mand to the primary process inside each container:

$ docker compose kill

To kill the services with a more graceful SIGTERM command, use the
following:

$ docker compose down

Instead of forcing a shutdown, this command gracefully removes all
processes, containers, networks, and volumes created by docker compose up.

Summary
Using the Docker containerization platform makes it easy to deploy appli-
cations and use a microservice architecture. This chapter covered the
building blocks of the Docker ecosystem: the host, the Docker daemon,
Dockerfiles, images, and containers. Using Docker Compose and Docker
volumes, you split your application into single, self-contained services.

To unleash the full potential of Docker, read the official tutorials at
https://docs​.docker​.com​/get​-started​/ or those at https://docker​-curriculum​.com. In
the next chapter, you’ll start to build the Food Finder application. This full-
stack web application will build upon the knowledge you’ve gained in all
previous chapters.

https://docs.docker.com/get-started/
https://docker-curriculum.com

PART II
T H E F U L L - S T A C K A P P L I C A T I O N

In this part of the book, you’ll build a full-
stack application from scratch by using the

knowledge you’ve acquired so far. While
previous chapters explained parts of the

		 technology stack, the remaining chapters focus on
		 the code in more detail.

This chapter describes the application you’ll build and walks you through
configuring the environment using Docker. While I recommend reading pre-
vious chapters before you start writing code, the only real requirement is that
you have Docker installed and running before moving on. Consult Chapter 10
for instructions on doing so.

N O T E 	 You can download the complete source code for the Food Finder application at http://
www​.usemodernfullstack​.dev​/downloads​/food​-finder and a ZIP file with only
the required assets from http://www​.usemodernfullstack​.dev​/downloads​/assets.

11
S E T T I N G U P T H E D O C K E R

E N V I R O N M E N T

http://www.usemodernfullstack.dev/downloads/food-finder
http://www.usemodernfullstack.dev/downloads/food-finder
http://www.usemodernfullstack.dev/downloads/assets

186 Chapter 11

The Food Finder Application
The Food Finder application shows a list of restaurants and their locations.
The user can click these to see additional details about each location. In
addition, they can log in to the app with their GitHub accounts by using
OAuth so that they can maintain a wish list of locations.

Behind the scenes, we’ll write this simple single-page application in
TypeScript. After setting up the local environment, we’ll build the backend
and middleware with Next.js, Mongoose, and MongoDB, which we’ll seed
with initial data. Then we’ll add GraphQL to expose an API layer through
which we can access a user’s wish list. To build the frontend, we’ll use our
knowledge of React components, Next.js pages, and routing. We’ll also add
an OAuth authorization flow with next-auth to let users log in with GitHub.
Finally, we’ll write automated tests with Jest to verify the integrity and stabil-
ity of the application.

Building the Local Environment with Docker
Docker decouples the development environment from our local machine.
We’ll use it to create self-contained services for each part of our application.
In the docker-compose file, we’ll add one service for the backend, which pro-
vides the MongoDB database, and a second to run the Next.js application
hosting the frontend and the middleware.

To start the development, create a new empty folder, code. This folder
will serve as the application’s root and contain all the code for the Food
Finder application. Later in this chapter, we’ll use the create-next-app helper
command to add files to it.

Next, create an empty docker-compose.yml file and a .docker folder in this
root folder. In the file, we will define the two services for our environment
and store the seed data we need to create the container.

The Backend Container
The backend container provides nothing but the app’s MongoDB instance.
For this reason, we can use the official MongoDB image, which Docker can
download automatically, from the Docker registry without creating a cus-
tom Dockerfile.

Seeding the Database

We want MongoDB to begin with a prefilled database that contains a valid
set of initial datasets. This process is called seeding the database, and
we can automate it by copying the seeding script seed-mongodb.js into the
container’s /docker-entrypoint-initdb.d/ directory on startup. The MongoDB
image executes the scripts in this folder against the database defined in the
MONGO_INITDB_DATABASE environment variable if there is no data in the contain-
er’s /data/db directory on startup.

Setting Up the Docker Environment 187

Create a new folder, foodfinder-backend, in the .docker folder, and then
copy into the newly created folder the seed-mongodb.js file from the assets.zip
file you downloaded earlier. The seed file’s content should look similar to
Listing 11-1.

db.locations.insert([
 {
 address: "6220 Avenue U",
 zipcode: "NY 11234",
 borough: "Brooklyn",
 cuisine: "Cafe",
 grade: "A",
 name: "The Roasted Bean",
 on_wishlist: [],
 location_id: "56018",
 },
--snip--
 {
 address: "405 Lexington Avenue",
 zipcode: "NY 10174",
 borough: "Manhattan",
 cuisine: "American",
 grade: "A",
 name: "The Diner At The Corner",
 on_wishlist: [],
 location_id: "63426",
 }
]);

Listing 11-1: The seed-mongodb.js file

You can see that the script interacts directly with a collection in the
MongoDB instance that we’ll set up in the next section. We use MongoDB’s
insert method to fill the database’s location collection with the documents.
Note that we are working with the native MongoDB driver to insert the
documents instead of using Mongoose. We do so because Mongoose is not
installed on the default MongoDB Docker image, and inserting the docu-
ments is a relatively simple task. Although we do not use Mongoose for seed-
ing the database, the documents we insert need to match the schema we
define with Mongoose later.

Creating the Backend Service

We can now define the backend service in the Docker setup. Add the code
from Listing 11-2 into the empty docker-compose.yml file we created earlier.

version: "3.0"
services:
 backend:
 container_name: foodfinder-backend
 image: mongo:latest
 restart: always

188 Chapter 11

 environment:
 DB_NAME: foodfinder
 MONGO_INITDB_DATABASE: foodfinder
 ports:
 - 27017:27017
 volumes:
 - "./.docker/foodfinder-backend/seed-mongodb.js:
/docker-entrypoint-initdb.d/seed-mongodb.js"
 - mongodb_data_container:/data/db

volumes:
 mongodb_data_container:

Listing 11-2: The docker-compose.yml file with the backend service

We first define the container’s name so that we can easily reference it
later. As discussed earlier, we use the latest version of the official MongoDB
image and specify that this container should always be restarted if it stops.
Next, we use the environment variables to define the collections we’ll use
with MongoDB. We define two of those: DB_NAME points to the collection we’ll
use with Mongoose, and MONGO_INITDB_DATABASE points to the seed script. The
scripts in /docker-entrypoint-initdb.d/ use this latter collection by default.

We want the script to populate our application’s database, so we set
both variables to the same name, foodfinder, and thus we have a prefilled
database for our Mongoose model.

Then we map and expose the container’s internal port 27017 to the
host’s port 27017 so that the MongoDB instance is accessible to the applica-
tion at mongodb://backend:27017/foodfinder. Notice that the connection string
contains the service name, the port, and the database. Later, we store this
connection string in the environment variables and use it to connect to the
database from the middleware. Finally, we map and copy the seed script to
the setup location and save the database data from /data/db into the Docker
volume mongodb_data_container. Because we want to split the string across
two lines, we need to wrap it in double quotes (") according to the YAML
conventions.

Now complete the Docker setup with docker compose up:

$ docker compose up
[+] Running 2/2
 ⠿ Network foodfinder_default Created 0.1s
 ⠿ Container foodfinder-backend Created 0.3s
Attaching to foodfinder-backend

foodfinder-backend | /usr/local/bin/docker-entrypoint.sh: running /docker
 /entrypoint-initdb.d/seed-mongodb.js

The output shows us that the Docker daemon successfully created the
foodfinder-backend container and that the seeding script was executed dur-
ing startup. Instead of going through the hassle of installing and maintain-
ing MongoDB locally or finding a free or low-cost cloud instance, we’ve

Setting Up the Docker Environment 189

added MongoDB to our project with just a few lines of code in the docker
-compose file.

Stop the container with crtl-C and remove it with docker compose down:

$ docker compose down
[+] Running 2/2
 ⠿ Container foodfinder-backend Removed 0.0s
 ⠿ Network foodfinder_default Removed

Now we can add the frontend container.

The Frontend Container
Now we’ll create the containerized infrastructure for the frontend and
middleware. Our approach will involve using create-next-app to scaffold
the Next.js application, as we did in Chapter 5, relying on the official
Node.js Docker image to decouple the application from any local Node.js
installation.

As we’ll execute all Node.js-related commands inside this container,
we technically don’t even need Node.js installed on our local machine;
nor must we make sure the Node.js versions we use comply with Next.js’s
requirements. Also, npm might install packages that are optimized for the
operating system on which it is running, so by using npm inside the con-
tainer, we ensure that npm installs the correct versions for Linux.

Nonetheless, we’ll want Docker to synchronize the Node.js modules
folder to our local system. This will allow our IDE to automatically use the
installed dependencies, such as the TypeScript compiler and ESLint. Let’s
start by creating a minimal Dockerfile.

Creating the Application Service

We add the combined frontend and middleware service to our Docker setup
by placing the code from Listing 11-3 into the services property of the proj
ect’s docker-compose.yml file.

--snip--
services:

 application:
 container_name: foodfinder-application
 image: node:lts-alpine
 ports:
 - "3000:3000"
 volumes:
 - ./code:/home/node/code
 working_dir: /home/node/code/
 depends_on:
 - backend
 environment:
 - HOST=0.0.0.0

190 Chapter 11

 - CHOKIDAR_USEPOLLING=true
 - CHOKIDAR_INTERVAL=100
 tty: true
 backend:
--snip--

Listing 11-3: The docker-compose.yml file with the backend and application service

The service for the Food Finder application follows the same structure as
the service for the backend. First we set the container’s name. Then we define
the image to be used for this particular service. While the backend service
used the official MongoDB image, we now use the official Node.js image with
the current LTS version running on Alpine Linux, a lightweight Linux distri-
bution that requires significantly less memory than a Debian-based image.

We then expose and map port 3000, making the application available
on http://localhost:3000, and map the local application’s code directory into
the container. Next, we set the working directory to the code directory. We
specify that our container requires a running backend service, because
the Next.js application will need a working connection to the MongoDB
instance. In addition, we add environment variables. In particular, chokidar
supports hot-reloading for the Next.js code. Finally, setting the tty property
to true makes the container provide an interactive shell instead of shutting
down. We’ll need the shell to execute commands inside the container.

Installing Next.js

With both services in place, we can now install Next.js inside the container.
To do so, we need to start the container with docker compose up:

$ docker compose up

[+] Running 3/3
 ⠿ Network foodfinder_default Created 0.1s
 ⠿ Container foodfinder-backend Created 0.3s
 ⠿ Container foodfinder-application Created 0.3s
Attaching to foodfinder-application, foodfinder-backend
--snip--
foodfinder-application | Welcome to Node.js ...
--snip--

Compare this command line output with the previous docker compose up
output. You should see that the application container started successfully
and that it runs a Node.js interactive shell.

Now we can use docker exec to execute commands inside the running
container. Doing so has two main advantages. First, we don’t need any
particular version of Node.js (or any version at all) on our local machine.
Second, we run the Node.js application and npm commands on the Node.js
Linux Alpine image so that the dependencies will be optimized for Alpine
instead of for our host system.

To run npm commands inside the container, use docker exec -it
foodfinder-application followed by the command to run. The Docker

Setting Up the Docker Environment 191

daemon connects to the terminal inside the container and executes the
provided command in the application container’s working directory, /home/
node/code, which we set previously. Let’s install the Next.js application there
using the npx command discussed in Chapter 5:

/home/node/code# docker exec -it foodfinder-application \
npx create-next-app@latest foodfinder-application \
--typescript --use-npm
Need to install the following packages:
 create-next-app
Ok to proceed? (y)
✔ Would you like to use ESLint with this project? ... No / Yes
Creating a new Next.js app in /home/node/code/foodfinder-application.

Success! Created foodfinder-application at /home/node/code/foodfinder-application

We set the project name to foodfinder-application and accept the defaults.
The rest of the output should look familiar to you.

As soon as the scaffolding is done, we can start the Next.js application
with npm run dev. If you visit http://localhost:3000 in your browser, you should
see the familiar Next.js splash screen. The foodfinder-application folder
should be mapped into the local code folder, so we can edit the Next.js-​related
files locally.

Adjusting the Application Service for Restarts

Currently, connecting to the application container requires running docker
exec after each restart through docker compose up and then calling npm run dev
manually. Let’s make two minor adjustments in our application service to
allow for a more convenient setup. Modify the file to match Listing 11-4.

--snip--
services:
--snip--
 application:
--snip--
 volumes:
 - ./code:/home/node/code
 working_dir: /home/node/code/foodfinder-application
--snip--
 command: "npm run dev"
--snip--

Listing 11-4: The docker-compose.yml file to start Next.js automatically

First, change the working_dir property. Because we’re working with
Next.js, we set it to the Next.js application’s root folder, /home/node/code/
foodfinder-application, which contains the package.json file. Then we add the
command property with a value of npm run dev. With these two modifications,
each docker compose up call should instantly start the Next.js application. Try

192 Chapter 11

starting the containers with docker compose up; the console output should
show that Next.js runs and that it’s available at http://localhost:3000:

$ docker compose up
[+] Running 3/3
 ⠿ Network foodfinder_default Created 0.1s
 ⠿ Container foodfinder-backend Created 0.3s
 ⠿ Container foodfinder-application Created 0.3s
Attaching to foodfinder-application, foodfinder-backend
foodfinder-application |
foodfinder-application | > foodfinder-application@0.1.0 dev
foodfinder-application | > next dev
foodfinder-application |
foodfinder-application | ready - started server on 0.0.0.0:3000,
foodfinder-application | url: foodfinder-application | http://localhost:3000
foodfinder-application | info - Loaded env from /home/node/code/foodfinder-
foodfinder-application | application/.env.local

If you visit http://localhost:3000 in your browser, you should see the
Next.js splash screen without having to start the Next.js application
manually.

Note that, if you’re using Linux or macOS without being the admin-
istrator or root user, you’ll need to adjust the application service and the
startup command. Because the Docker daemon runs as a root user by
default, all files it creates require root privileges. Your regular user doesn’t
have those and cannot access those files. To avoid these possible issues,
modify your setup so that the Docker daemon transfers the ownership to
your user. Start by adding the code in Listing 11-5 to the application service
in the docker-compose file.

services:
--snip--
 application:
--snip--
 user: ${MY_USER}
--snip--

Listing 11-5: The docker-compose.yml file with the user property

We add the user property to the application service and use the environ-
ment variable MY_USER as the property’s value. Then we modify the docker
compose commands so that, on startup, we add the current user’s user ID and
group ID to this environment variable. Instead of a plain docker compose up
call, we use the following code:

MY_USER=$(id -u):$(id -g) docker compose up

We use the id helper program to save the user ID and group ID in the
format userid:groupid to our environment variable, which the docker-compose
file then picks up. The -u flag returns the user ID, and the -g flag returns
the group ID.

Setting Up the Docker Environment 193

Summary
We’ve set up our local development environment with Docker containers.
With the docker-compose.yml file we created in this chapter, we decoupled the
application development from our local host system. Now we can switch
our host systems and, at the same time, ensure that the Food Finder appli-
cation always runs with the same Node.js version. In addition, we added a
container running our MongoDB server, to which we’ll connect in the next
chapter when we implement our application’s middleware.

The middleware is the software glue con-
necting the frontend we’ll create later

to the existing MongoDB instance in the
backend container. In this chapter, we’ll set

		 up Mongoose, connect it to our database, and then
		 create a Mongoose model for the application. In the
		 next chapter, we’ll complete the middleware by writing
		 a GraphQL API.

This middleware is part of Next.js; hence, we’ll work with the applica-
tion container. But because the Docker daemon ensures that the files in
our local application directory are instantly available within the working
directory inside the application container, we can use our local code editor
or IDE to modify files on our local machine. There is no need to connect to
the container shell, let alone interact with docker compose; you should see all
changes instantly on http://localhost:3000.

12
B U I L D I N G T H E M I D D L E W A R E

196 Chapter 12

Configuring Next.js to Use Absolute Imports
Before we write our first line of code in Next.js, let’s make a minor adjust-
ment to the Next.js configuration. We want the paths of any module imports
to be absolute, meaning they start from the application’s root folder rather
than the location of the file that is importing them. The imports in Listing 12-1,
which come from the pages/api/graphql.ts file we created in Chapter 6, are
examples of relative imports.

import { resolvers } from "../../graphql/resolvers";
import { typeDefs } from "../../graphql/schema";

Listing 12-1: The import statements in pages/api/graphql.ts

You should see that they start from the file’s location, then go up two
levels to the root folder, and finally find the graphql folder containing the
resolvers and schema TypeScript files.

The more complex our application becomes, the more levels of nest-
ing we’ll have, and the more inconvenient we’ll find this manual traversing
of the directories up to the root folder. This is why we want to use absolute
imports that start directly from the root folder, as shown in Listing 12-2.

import { resolvers } from "graphql/resolvers";
import { typeDefs } from "graphql/schema";

Listing 12-2: The absolute import statements for pages/api/graphql.ts

Notice that we don’t need to traverse up to the root level before import-
ing files. To achieve this, open the tsconfig.json file that create-next-app cre-
ated in the application’s code root directory, code/foodfinder-application, on
your local machine, and add a line that sets the baseUrl to the root folder
(Listing 12-3).

{
 "compilerOptions": {
 "baseUrl": ".",
--snip--
 }
}

Listing 12-3: Using absolute URLs

Restart the application’s container, as well as the Next.js application, with
docker compose restart foodfinder-application in a new command line tab.

Connecting Mongoose
Now it’s time to start working on the middleware. We’ll begin by add-
ing Mongoose to the application. Connect to the application’s container
terminal:

Building the Middleware 197

$ docker exec -it foodfinder-application npm install mongoose

Here we use npm install mongoose to install the package. As long as the
containers are running, we don’t need to rebuild the frontend image imme-
diately, as we’ve installed the packages directly into the running container.

Writing the Database Connection
To connect the Next.js application to the MongoDB instance, we’ll define
the environment variable MONGO_URI and assign it a connection string that
matches the backend’s exposed port and location. Create a new .env.local
file in the application’s root directory, next to the tsconfig.json file, and add
this line to it:

MONGO_URI=mongodb://backend:27017/foodfinder

Now we can connect the application to the MongoDB instance that the
Docker container exposes on port 27017. Create a folder, middleware, in the
root folder code/foodfinder-application. Here we’ll place all the middleware-
related TypeScript files. Create a new file, db-connect.ts, in this folder and
paste in the code from Listing 12-4.

import mongoose, { ConnectOptions } from "mongoose";

const MONGO_URI = process.env.MONGO_URI || " ";

if (!MONGO_URI.length) {
 throw new Error(
 "Please define the MONGO_URI environment variable (.env.local)"
);
}
let cached = global.mongoose;

if (!cached) {
 cached = global.mongoose = { conn: null, promise: null };
}

async function dbConnect(): Promise<any> {

 if (cached.conn) {
 return cached.conn;
 }

 if (!cached.promise) {

 const opts: ConnectOptions = {
 bufferCommands: false,
 maxIdleTimeMS: 10000,
 serverSelectionTimeoutMS: 10000,
 socketTimeoutMS: 20000,
 };

198 Chapter 12

 cached.promise = mongoose
 .connect(MONGO_URI, opts)
 .then((mongoose) => mongoose)
 .catch((err) => {
 throw new Error(String(err));
 });
 }

 try {
 cached.conn = await cached.promise;
 } catch (err) {
 throw new Error(String(err));
 }

 return cached.conn;
}

export default dbConnect;

Listing 12-4: The TypeScript code to connect the application to the database in
db-connect.ts

We import the mongoose package and the ConnectOptions type, both of
which we need to connect to the database. We then load the connection
string from the environment variables and verify that the string is not empty.

Next, we set up our connection cache. We use a global variable to main-
tain the connection across hot-reloads and ensure that multiple calls to our
dbConnect function always return the same connection. Otherwise, there is
the risk that our application will create new connections during each hot-
reload or on each call of the function, both of which would fill up our mem-
ory quickly. If there’s no cached connection, we initialize it with a dummy
object.

We create the asynchronous function dbConnect, which actually opens
and handles the connection. The database is remote and not instantly avail-
able, so we use an async function that we export as the module’s default
function. Inside the function’s body, we first check for an already existing
cached connection and directly return any existing ones. Otherwise, we
create a new one. Therefore, we define the connection options, and then
we create a new connection; here, we use the promise pattern to remind us
of the two possible ways to handle asynchronous calls. Finally, we await the
connection to be available, and then return the Mongoose instance.

To open a cached connection to MongoDB through Mongoose, we can
now import the dbConnect function from the middleware/db-connect module
and await the Mongoose connection.

Fixing the TypeScript Warning
In your IDE, you should immediately see that TSC warns us about using
global.mongoose. A closer look at the message, Element implicitly has an 'any'
type because type 'typeof globalThis' has no index signature.ts (7017), tells us
that we need to add the mongoose property to the globalThis object.

Building the Middleware 199

As we discussed in Chapter 3, we use the custom.d.ts file to define cus-
tom global types. Create a new file, custom.d.ts, next to the middleware folder
in the root directory. As soon as you paste the code from Listing 12-5 into
it, the global namespace should contain the mongoose property typed as
mongoose, and TSC can find it.

import mongoose from "mongoose";

declare global {
 var mongoose: mongoose;
}

Listing 12-5: The code in custom.d.ts used to define the custom global type mongoose

With the custom global type definition in place, the TSC should no lon-
ger complain about the missing type definition for global.mongoose. We can
move on to create the Mongoose model for our full-stack application.

The Mongoose Model
Our application has one database containing a collection of documents
representing location data, as you saw in the seed script from Chapter 11.
We’ll create a Mongoose model for this location collection. In Chapter 7,
you learned that this requires having an interface to type the documents
for TypeScript, a schema to describe the documents for the model, a type
definition, and a set of custom types to define the Mongoose model. In
addition, we’ll create a set of custom types to perform the CRUD operations
on the locations model for the application.

Create a mongoose folder with the subfolder locations next to the middle-
ware folder in Next.js’s root directory. The mongoose folder will host all files
relevant to Mongoose in general, and the locations folder will contain all
files specific to the location model.

Creating the Schema
In Chapter 7, you learned that the schema describes the structure of a data-
base’s documents and that you need to create a TypeScript interface before
creating a schema so that you can type the schema and model accordingly.
Technically, in versions of Mongoose later than 6.3.1, we don’t need to define
this interface by ourselves. Instead, we can automatically infer the interface as
a type from the schema. Create the file schema.ts inside the mongoose/locations
folder and paste the code from Listing 12-6 into it.

import { Schema, InferSchemaType } from "mongoose";

export const LocationSchema: Schema = new Schema<LocationType>({
 address: {
 type: "String",
 required: true,
 },

200 Chapter 12

 street: {
 type: "String",
 required: true,
 },
 zipcode: {
 type: "String",
 required: true,
 },
 borough: {
 type: "String",
 required: true,
 },
 cuisine: {
 type: "String",
 required: true,
 },
 grade: {
 type: "String",
 required: true,
 },
 name: {
 type: "String",
 required: true,
 },
 on_wishlist: {
 type: ["String"],
 required: true,
 },
 location_id: {
 type: "String",
 required: true,
 },
});

export declare type LocationType = InferSchemaType<typeof LocationSchema>;

Listing 12-6: The mongoose/locations/schema.ts file

We import the Schema constructor and InferSchemaType, the function for
inferring the schema type, both of which are part of the Mongoose module.
Then we define and directly export the schema. The schema itself is straight-
forward. A document in the location collection has a few self-explanatory
properties that are all typed as strings except for the on_wishlist property,
which is an array of strings. To keep the application simple, we will store
the IDs of users who added a particular location to their wish list directly
in a location’s document instead of creating a new Mongoose model and
MongoDB document for each user’s wish list. This isn’t a great design for a
real application, but it’s fine for our purposes. Lastly, we infer and export
the LocationType directly from the schema instead of creating the interface
manually.

Building the Middleware 201

Creating the Location Model
With the schema and required interface in place, it’s time to create the
model. Create the file model.ts in the mongoose/location folder and paste the
code from Listing 12-7 into it.

import mongoose, { model } from "mongoose";
import { LocationSchema, LocationType } from "mongoose/locations/schema";

export default mongoose.models.locations ||
 model<LocationType>("locations", LocationSchema);

Listing 12-7: The mongoose/locations/model.ts file

After importing the required dependencies from the Mongoose pack-
age, we import the LocationSchema and LocationType from the schema.ts file we
created previously. Then we use these to create and export our locations
model, unless there is already a model called locations initialized and pre
sent. In this case, we return the existing one.

At this point, we’ve successfully created the Mongoose model and con-
nected it to the database. We can now access the MongoDB instance and
create, read, update, and delete documents in the locations collection
through Mongoose’s API.

To test that everything is working, try creating a temporary REST API
that initializes a connection to the database and then queries all documents
through the model. You can make this new file, test-middleware.ts, in the
application’s pages/api folder and paste the code from Listing 12-8 into it.

import type { NextApiRequest, NextApiResponse } from "next";

import dbConnect from "middleware/db-connect";
import Locations from "mongoose/locations/model";

export default async function handler(
 req: NextApiRequest, res: NextApiResponse<any>
) {
 await dbConnect();
 const locations = await Locations.find({});
 res.status(200).json(locations);
}

Listing 12-8: A temporary REST API to test the database connection

This API imports required dependencies from Next.js, the dbConnect
function, and the Locations model we created earlier. In the asynchronous
API handler, it calls the dbConnect function and waits until Mongoose con-
nects to the database. Then it calls Mongoose’s find API on the Locations
model with an empty filter object. Once it receives the locations, the API
handler will send them to the client.

If you open http://localhost:3000​/api​/test​-middleware, you should see a
JSON object with all available locations, similar to Figure 12-1.

202 Chapter 12

Figure 12-1: The API to test the middleware returns a JSON object with all locations stored
in the database.

You’ve successfully created the Mongoose model and run your first
database query.

The Model’s Services
Chapter 6 discussed how we usually abstract database CRUD operations
into service calls to simplify the implementation of GraphQL APIs down
the line. This is what we’ll do now, and as a first step, let’s outline the
required functionality.

We need one public service that queries all available locations so that
they can be displayed in the app’s overview page. To display a location’s
details, we need another public service that can find a specific location.
We’ll opt to use the location’s ID as a parameter for the service and then
look up the location by ID. To handle the wish list functionality, we need a
service that can update a user’s wish list, as well as another service that we
can use to decide whether a given location is currently on the user’s wish
list; depending on the result, we’ll display either an Add To or Remove
From button.

To design the service calls that find and return locations, we’ll create
one public function for each public API and a unified internal function,
findLocations, that calls Mongoose’s find function. The public APIs construct
the filter object that Mongoose uses to filter the documents in the collec-
tion. In other words, it creates the database query. Also, it sets up additional
options we’ll pass to the Mongoose API. This design should reduce the
amount of code we need to write and prevent repetition.

Building the Middleware 203

Creating the Location Service’s Custom Types
You may have noticed that we’ll need two custom types for the parameters
to the unified findLocations function. One parameter defines the proper-
ties for a find operation related to the wish list, and one is a location’s ID.
Create the file custom.d.ts in the mongoose/location folder to define these
types, as shown in Listing 12-9.

export declare type FilterLocationType = {
 location_id: string | string[];
};

export declare type FilterWishlistType = {
 on_wishlist: {
 $in: string[];
 };
};

Listing 12-9: The mongoose/locations/custom.d.ts file

We define and directly export these two custom types. FilterLocationType
is straightforward. It defines an object with one property, the location’s ID,
which is either a string or an array of strings. We use it to find a location
by its ID. The second type is FilterWishlistType, which we’ll use to find all
locations that contain the user’s ID in their on_wishlist property. We set the
value for Mongoose’s $in operator as an array of strings.

Creating the Location Services
Now that we’ve created custom types for the services, we can implement
them. As usual, we create a file services.ts in the mongoose/location folder and
add the code from Listing 12-10 to it.

import Locations from "mongoose/locations/model";
import {
 FilterWishlistType,
 FilterLocationType,
} from "mongoose/locations/custom";
import { LocationType } from "mongoose/locations/schema";
import { QueryOptions } from "mongoose";

async function findLocations(
 filter: FilterLocationType | FilterWishlistType | {}
): Promise<LocationType[] | []> {
 try {
 let result: Array<LocationType | undefined> = await Locations.find(
 filter
);
 return result as LocationType[];
 } catch (err) {
 console.log(err);

204 Chapter 12

 }
 return [];
}

export async function findAllLocations(): Promise<LocationType[] | []> {
 let filter = {};
 return await findLocations(filter);
}

export async function findLocationsById(
 location_ids: string[]
): Promise<LocationType[] | []> {
 let filter = { location_id: location_ids };
 return await findLocations(filter);
}

export async function onUserWishlist(
 user_id: string
): Promise<LocationType[] | []> {
 let filter: FilterWishlistType = {
 on_wishlist: {
 $in: [user_id],
 },
 };
 return await findLocations(filter);
}

export async function updateWishlist(
 location_id: string,
 user_id: string,
 action: string
) : Promise<LocationType | null | {}>
 {
 let filter = { location_id: location_id };
 let options: QueryOptions = { upsert: true, returnDocument: "after" };
 let update = {};

 switch (action) {
 case "add":
 update = { $push: { on_wishlist: user_id } };
 break;
 case "remove":
 update = { $pull: { on_wishlist: user_id } };
 break;
 }

 try {
 let result: LocationType | null = await Locations.findOneAndUpdate(
 filter,
 update,
 options
);
 return result;

Building the Middleware 205

 } catch (err) {
 console.log(err);
 }
 return {};
}

Listing 12-10: The mongoose/locations/services.ts file

After importing dependencies, we create the function that will actually
call Mongoose’s find API on the model and await the data from the data-
base. This function will query the database for all public services that use
find, so it’s the foundation of all our services. Its one parameter, the filter
object, can be passed to the model’s find function to retrieve the documents
that match the filter. The filter is either an empty object that returns all loca-
tions or one of our custom types, FilterLocationType or FilterWishlistType. As
soon as we have the data from the database, we cast it to the LocationType and
then return it. If there is an error, we log it and then return an empty array
to match the defined return types: either an array of LocationTypes or an
empty array.

The following three functions are the public services, which will pro-
vide database access to other TypeScript modules and the user interface. All
follow the same structure. First, within the findLocationsById function, we set
the filter object to a particular parameter. Then we call the findLocations
function with this service-specific filter object. Because every service calls
the same function, services also have the same return signature, and each
returns an array of locations or an empty array. The first uses an empty
object. Hence, it filters for nothing and instead returns all documents from
the collection. The function findLocationsById uses the FilterLocationType
and returns the documents that match the given location IDs.

The next function, onUserWishlist, uses a slightly more complex filter
object. It has the type FilterWishlistType, and we pass it to the findLocations
function to get all locations whose on_wishlist array contains the given user
ID. Note that we type the filter objects explicitly upon declaration. This
deviates from the advice given in Chapter 3, but we do it here to ensure that
TSC verifies the object properties, as it cannot infer the types from their
usage in this case.

Finally, we implement the updateWishlist function. It is slightly differ
ent from the previous ones, but the overall structure should look familiar.
Again, we build the filter object from the first parameter, and we use the
second one, the user ID, to update the on_wishlist array. Unlike in previ-
ous functions, however, we use another parameter to specify whether
we want to add or remove the user ID to or from the array. Using a switch/
case statement here is a convenient way to reduce the number of exposed
services. Depending on the action parameter, we fill the update object with
either the $push operator, which adds the user ID to the on_wishlist array,
or the $pull operator, which removes the user ID. We pass the object to
Mongoose’s findOneAndUpdate API to look for the first document that matches
the filter, and we directly update the record and then return the updated
document or an empty object.

206 Chapter 12

Testing the Services
Let’s use our temporary REST API to evaluate the services. Open the
test-middleware.ts file we created earlier and update it with the code from
Listing 12-11.

import type { NextApiRequest, NextApiResponse } from "next";
import dbConnect from "middleware/db-connect";

import { findAllLocations } from "mongoose/locations/services";

export default async function handler(
 req: NextApiRequest,
 res: NextApiResponse<any>
) {
 await dbConnect();
 const locations = await findAllLocations();
 res.status(200).json(locations);
}

Listing 12-11: The pages/api/test-middleware.ts file using the services

Instead of directly importing the model and using Mongoose’s find
method on it, we import the location services and query all locations with
the findAllLocations service. If you open the API at http://localhost:3000​/api​/
test​-middleware in your browser, you should once again see a JSON object
with all available locations.

Summary
We’ve successfully created the first part of the middleware. With the code
in this chapter, we can use a Mongoose model to create, read, update, and
delete documents in the MongoDB collection. To perform these actions,
we set up the services we’ll connect to our upcoming GraphQL API. In
the next chapter, we’ll delete the temporary testing API middleware and
replace it with a proper GraphQL API.

In this chapter, you’ll add a GraphQL API
to the middleware by defining its schema, as

well as resolvers for each query and mutation.
These resolvers will complement the Mongoose

		� services created in Chapter 12. The queries will be public;
however, we’ll expose our mutations as protected APIs by
adding an authorization layer via OAuth.

Unlike in the GraphQL API of Chapter 6, we’ll follow a pattern of
modularization to implement these schemas and resolvers. Instead of writ-
ing everything in one big file, we’ll split the elements into separate files.
Like using modules in modern JavaScript, this approach has the benefit of
breaking down the code into smaller logical units, each with a clear focus.
These units enhance the code’s readability and maintainability.

13
B U I L D I N G T H E G R A P H Q L A P I

208 Chapter 13

Setting Up
We’ll create the API’s single-entry point /api/graphql with the Apollo server,
which integrates into Next.js with the @as-integrations/next package. Start
by installing the packages necessary for the GraphQL setup from the npm
registry:

$ docker exec -it foodfinder-application npm install @apollo/server graphql graphql-tag
@as-integrations/next \

After the installation is complete, create the folder graphql/locations next
to the middleware folder in the application’s root.

The Schemas
The first step to writing the schemas is to define the query and mutation
typedefs, as well as any custom types we use for the schema. To do so, we’ll
split the schema into three files, custom.gql.ts, queries.gql.ts, and mutations.gql.ts,
in the graphql/locations folder. Then we’ll use an ordinary template literal to
merge them into the final schema definition.

The Custom Types and Directives
Add the code from Listing 13-1 to the custom.gql.ts file to define the schema
for the GraphQL queries.

export default `
 directive @cacheControl(maxAge: Int) on FIELD_DEFINITION | OBJECT
 type Location @cacheControl(maxAge: 86400) {
 address: String
 street: String
 zipcode: String
 borough: String
 cuisine: String
 grade: String
 name: String
 on_wishlist: [String] @cacheControl(maxAge: 60)
 location_id: String
 }
`;

Listing 13-1: The graphql/locations/custom.gql.ts file

The GraphQL API will return location objects from the Mongoose
schema. Therefore, we must define a custom type representing these loca-
tion objects. Create a custom Location type. To instruct the server to cache
the retrieved values, set an @cacheControl directive for the whole custom type
and a shorter one for the on_wishlist property because we expect this partic
ular property to change frequently.

Building the GraphQL API 209

The Query Schema
Now add the code from Listing 13-2 to the queries.gql.ts file to define the
schema for the queries.

export default `
 allLocations: [Location]!
 locationsById(location_ids: [String]!): [Location]!
 onUserWishlist(user_id: String!): [Location]!
`;

Listing 13-2: The graphql/locations/queries.gql.ts file

We define a template literal with three GraphQL queries, all of which
are entry points to the services we implemented for the Mongoose locations
model in Chapter 12. The names and parameters are similar to those in the
services, and the queries follow the GraphQL syntax you learned about in
Chapter 6.

The Mutation Schema
To define the mutation schema, paste the code from Listing 13-3 into the
mutations.gql.ts file.

export default `
 addWishlist(location_id: String!, user_id: String!): Location!
 removeWishlist(location_id: String!, user_id: String!): Location!
`;

Listing 13-3: The graphql/locations/mutations.gql.ts file

We create two mutations as template literals using GraphQL syntax:
one for adding an item to the user’s wish list and one for removing it.
Both will use the updateWishlist function we implemented on the location
services, so they require the location_id and the user_id as parameters.

Merging the Typedefs into the Final Schema
We’ve split the location schema into two files, one for the queries and one
for the mutations, and placed their custom types in a third file; however, to
initiate the Apollo server, we’ll need a unified schema. Luckily, the typedefs
are nothing more than template literals, and if we use template literal
placeholders, the parser can interpolate these into a complete string. To
accomplish this, create a new file, schema.ts, in the graphql folder and add
the code from Listing 13-4.

import gql from "graphql-tag";

import locationTypeDefsCustom from "graphql/locations/custom.gql";
import locationTypeDefsQueries from "graphql/locations/queries.gql";
import locationTypeDefsMutations from "graphql/locations/mutations.gql";

210 Chapter 13

export const typeDefs = gql`

 ${locationTypeDefsCustom}

 type Query {
 ${locationTypeDefsQueries}
 }

 type Mutation {
 ${locationTypeDefsMutations}
 }

`;

Listing 13-4: The graphql/schema.ts file

We import the gql tag from the graphql-tag package. Even though
doing so is optional when working with the Apollo server, we keep the gql
tag in front of our tagged template to ensure compatibility with all other
GraphQL implementations. This also produces proper syntax highlighting
in the IDE, which statically analyzes type definitions as GraphQL tags.

Next, we import the dependencies and schema fragments we’ll use
to implement the unified schema. Finally, we create a tagged template
literal with the gql function, using template literal placeholders to merge
the schema fragments into the schema skeleton. We add the custom
Location type and then merge the queries’ typedefs into the Query object
and the Mutations into the mutation object and export the schema const as
typedefs.

The GraphQL Resolvers
Now that we have the schema, we’ll turn to the resolvers. We’ll use a similar
development pattern, writing the queries and mutations in separate files,
then merging them into the single file we need for the Apollo server. Start
by creating the queries.ts and mutations.ts files in the graphql/locations folder
and then add the code from Listing 13-5 to queries.ts.

import {
 findAllLocations,
 findLocationsById,
 onUserWishlist,
} from "mongoose/locations/services";

export const locationQueries = {
 allLocations: async (_: any) => {
 return await findAllLocations();
 },
 locationsById: async (_: any, param: { location_ids: string[] }) => {
 return await findLocationsById(param.location_ids);
 },

Building the GraphQL API 211

 onUserWishlist: async (_: any, param: { user_id: string }) => {
 return await onUserWishlist(param.user_id);
 },
};

Listing 13-5: The graphql/locations/queries.ts file

We import our services from the Mongoose folder and then create and
export the location query object. The structure of each query follows the
structure discussed in Chapter 6. We make one query for each service, and
their parameters match those in the services.

For our mutations, add the code from Listing 13-6 to the mutations.ts file.

import { updateWishlist } from "mongoose/locations/services";

interface UpdateWishlistInterface {
 user_id: string;
 location_id: string;
}

export const locationMutations = {
 removeWishlist: async (
 _: any,
 param: UpdateWishlistInterface,
 context: {}
) => {
 return await updateWishlist(param.location_id, param​.user​_id,
 "remove"
);
 },
 addWishlist: async (_: any, param: UpdateWishlistInterface, context: {}) => {
 return await updateWishlist(param.location_id, param​.user​_id, "add");
 },
};

Listing 13-6: The graphql/locations/mutations.ts file

Here we import only the updateWishlist function from our services.
This is because we defined it as the single entry point for updating our
documents, and we opted to use the third parameter, with the value add or
remove, to distinguish between the two actions the mutation should perform.
We also create the UpdateWishlistInterface, which we don’t export. Instead,
we’ll use it inside this file to avoid repeating code when we define the inter-
face for the functions’ param argument.

As mutations, we create two functions at the locationMutations object,
one for adding an item from a user’s wish list and one for removing it.
Both use the updateWishlist service and supply the value parameter cor-
responding to the action the user would like to take. The two mutations,
removeWishlist and addWishlist, also take a third object called context.
For now, it’s an empty object, but in Chapter 15, we’ll replace it with the

212 Chapter 13

session information necessary to verify the identity of the user performing
the action.

Create the final resolvers file, resolvers.ts, in the graphql folder and add
the code from Listing 13-7 to it. This code will merge the mutation and
query definitions.

import { locationQueries } from "graphql/locations/queries";
import { locationMutations } from "graphql/locations/mutations";

export const resolvers = {
 Query: {
  ...locationQueries,
 },
 Mutation: {
  ...locationMutations,
 },
};

Listing 13-7: The graphql/resolvers.ts file

In addition to the schema, we must pass the Apollo server an object
containing all resolvers, as discussed in Chapter 6. To be able to do so, we
must import the queries and mutations. Then we use the spread operator
to merge the imported objects into the resolvers object, which we export.
Now, with the schema and resolvers object available, we can create the API
endpoint and instantiate the Apollo server.

Adding the API Endpoint to Next.js
When we discussed the differences between REST and GraphQL APIs,
we pointed out that unlike REST, where every API has its own endpoint,
GraphQL provides only one endpoint, typically exposed as /graphql. To cre-
ate this endpoint, we’ll use the Apollo server’s Next.js integration, as we did
in Chapter 6.

Create the graphql.ts file in the pages/api folder and copy the code in
Listing 13-8, which defines the API handler and its single entry point.

import { ApolloServer, BaseContext } from "@apollo/server";
import { startServerAndCreateNextHandler } from "@as-integrations/next";

import { resolvers } from "graphql/resolvers";
import { typeDefs } from "graphql/schema";
import dbConnect from "middleware/db-connect";

import { NextApiHandler, NextApiRequest, NextApiResponse } from "next";

1 const server = new ApolloServer<BaseContext>({
 resolvers,
 typeDefs,
});

Building the GraphQL API 213

2 const handler = startServerAndCreateNextHandler(server, {
 context: async () => {
 const token = {};
 return { token };
 },
});

3 const allowCors =
 (fn: NextApiHandler) =>
 async (req: NextApiRequest, res: NextApiResponse) => {
 res.setHeader("Allow", "POST");
 res.setHeader("Access-Control-Allow-Origin", "*");
 res.setHeader("Access-Control-Allow-Methods", "POST");
 res.setHeader("Access-Control-Allow-Headers", "*");
 res.setHeader("Access-Control-Allow-Credentials", "true");

 if (req.method === "OPTIONS") {
 res.status(200).end();
 }
 return await fn(req, res);
 };

4 const connectDB =
 (fn: NextApiHandler) =>
 async (req: NextApiRequest, res: NextApiResponse) => {
 await dbConnect();
 return await fn(req, res);
 };

export default connectDB(allowCors(handler));

Listing 13-8: The pages/api/graphql.ts file

We import all the elements we need to create the API handler: the
Apollo server, a helper for the Apollo–Next.js integration, our resolvers, the
GraphQL schema files, the function used to connect to the database, and
the Next.js API helpers.

We create a new Apollo server with the resolvers and schema 1. Then
we use the Next.js integration helper 2 to start the Apollo server and
return a Next.js handler. The integration helper uses a serverless Apollo
setup to smoothly integrate into the Next.js custom server instead of creat-
ing its own. In addition, we pass the context with an empty token to the han-
dler. This is how we’ll access the JWT we receive in the OAuth flow and pass
it to the resolvers later.

Next, we create the wrapper functions discussed in Chapter 6 to add
the CORS headers 3 and ensure that we have a database connection on
each API call 4. We can safely do so because we set up our database con-
nection in a way that returns the existing cached connection. Finally, we
export the returned asynchronous wrapped handler.

Visit the Apollo sandbox at http:​/localhost:3000​/api​/graphql and run a
few queries to test the GraphQL API before moving on to the next chapter.

214 Chapter 13

If you see the weather queries and mutations instead of the Food Finder’s,
clear your browser’s cache and do a hard reload.

Summary
We’ve successfully added the GraphQL API to the middleware. With the
code in this chapter, we can now use the Apollo sandbox to read and
update values in the database. We’ve also already prepared the Apollo
handler for authentication by providing it with an empty token. Now we’re
ready to use the JWT token we’ll receive from the OAuth flow in Chapter 15
to protect the API’s mutations. But before we add this authentication, let’s
build the frontend.

In this chapter, you’ll build the frontend
using React components and Next.js pages,

discussed in Chapters 4 and 5. By the end,
you’ll have an initial version of the app to which

		 you can add OAuth authentication.

Overview of the User Interface
Our application will consist of three Next.js pages. The start page will show
the list of locations retrieved from the database. Each item in the list will
link to its respective location detail page, whose URL we’ll construct using the
location’s ID, like this: /location/:location_id. The third page is the user’s wish
list page. It resembles the start page and follows the same dynamic URL pat-
tern as the location detail page, except it supplies the user’s ID instead of the
location’s. This page shows only the locations already added to the wish list.

We must also consider what rendering strategy to use for each page.
Because the content of the start page never changes, we’ll use static site
generation (SSG) to render the HTML on build time. Because the detail

14
B U I L D I N G T H E F R O N T E N D

216 Chapter 14

page and wish list page will change based on the user’s actions, we’ll use
static site rendering (SSR) to regenerate them upon every request.

Lastly, all three pages should have headers containing the logo and a
link to the start page. When we add the OAuth data in the next chapter,
we’ll show the user’s name, a link to the user’s wish list, and the sign-in/
sign-out button in the header as well.

To achieve this, we need to create the following React components:

•	 The locations list component, which will use the locations list item com-
ponent to render the list of locations on the start page. Later, we’ll use
these same components to implement the list of locations on a user’s
wish list page.

•	 The overall layout component, header component, and logo compo-
nent, which define the global layout of each page.

•	 The authentication element component, which lets users log in or out
in the header.

•	 A universal button component we’ll use for different tasks.

Let’s begin with the components necessary for the start page.

The Start Page
We’ll begin by crafting the smallest parts of the user interface and then use
these to build the more complex components and pages. On the start page,
we need the layout component, the locations list component, and the loca-
tions list item component, which is the smallest building block, so we’ll
start there.

Create the components folder in the application’s root directory, next to
the middleware folder. This is where we’ll place all our React components, in
their own folders.

The List Item
The locations list item component represents a single item in a list of locations.
Create the locations-list-item folder and add two files, index.tsx and index.module.css,
following the pattern we discussed in Chapter 5. Then add the code in Listing 14-1
to index.module.css. We’ll use this CSS to style the component.

.root {
 background-color: #fff;
 border-radius: 5px;
 color: #1d1f21;
 cursor: pointer;
 list-style: none;
 margin: 0.5rem 0;
 padding: 0.5rem;
 transition: background-color 0.25s ease-in, color 0.25s ease-in;
 will-change: background-color, color;
}

Building the Frontend 217

.root:hover {
 background-color: rgba(0, 118, 255, 0.9);
 color: #fff;
}

.root h2 {
 margin: 0;
 padding: 0;
}

.root small {
 font-weight: 300;
 padding: 0 1rem;
}

Listing 14-1: The components/locations-list-item/index.module.css file

The CSS module uses dark letters on a white background. In addition,
it adds a simple hover effect, causing the background to turn blue and the
font color white when a user hovers over it. We remove the list marker and
set the margin and padding accordingly.

Now add the code from Listing 14-2 to the index.tsx file.

import Link from "next/link";
import styles from "./index.module.css";
import { LocationType } from "mongoose/locations/schema";

interface PropsInterface {
 location: LocationType;
}

const LocationsListItem = (props: PropsInterface): JSX.Element => {
 const location = props.location;
 return (
 <>
 {location && (
 <li className={styles.root}>
 <Link href={`/location/${location.location_id}`}>
 <h2>
 {location.name}
 <small className={styles.details}>
 {location.cuisine} in {location.borough}
 </small>
 </h2>
 </Link>

)}
 </>
);
};

export default LocationsListItem;

Listing 14-2: The components/locations-list-item/index.tsx file

218 Chapter 14

You should be familiar with this file’s structure from Chapter 5. First we
import the next/link component, which we need to create a link to the detail
page, the styles we just added, and the LocationType from the Mongoose
schema.

We then define the PropsInterface, a private interface used for the com-
ponent’s properties object. The component has the usual props parameter
whose structure defines the PropsInterface and returns a JSX element. These
props hold the data in the location property, which we pass to the compo-
nent through its location attribute. Finally, we define the LocationsListItem
component and store it in a constant that we export at the end of the file.

In the component itself, we have a list item that contains a Next.js Link
element linking to the location’s detail page. These links use a dynamic
URL pattern that incorporates the respective location’s ID, so we create the
link target to match /location/:location_id. In addition, we render the loca-
tion’s name, cuisine, and borough values to the component. Keep in mind that
until we create the page for the route /location/:location_id, clicking those
links will result in a 404 error page.

The Locations List
Using the list item component, we’ll build the locations list. This compo-
nent will loop through an array of locations and display them on the start
page and wish list page. Create the components/locations-list folder and
then add the files index.tsx and index.module.css to them. Copy the code in
Listing 14-3 to the index.module.css file.

.root {
 margin: 0;
 padding: 0;
}

Listing 14-3: The components/locations-list/index.module.css file

The styles for the locations list component are simple; we remove the
margin and padding from the component’s root element. We create the
component itself in Listing 14-4, which you should copy to index.tsx.

import LocationsListItem from "components/locations-list-item";
import styles from "./index.module.css";
import { LocationType } from "mongoose/locations/schema";

interface PropsInterface {
 locations: LocationType[];
}

const LocationsList = (props: PropsInterface): JSX.Element => {
 return (
 <ul className={styles.root}>
 { props.locations.map((location) => {
 return (
 <LocationsListItem
 location={location}

Building the Frontend 219

 key={location.location_id}
 />
);
 })}

);
};

export default LocationsList;

Listing 14-4: The components/locations-list/index.tsx file

We import the LocationsListItem we just implemented, along with the
module’s styles and the LocationType from Mongoose’s schema. We then
define the component’s PropsInterface to describe the component’s props
object. In the LocationsList component, we use the array map function to iter-
ate over the location objects, rendering a LocationsListItem component for
each array item and using the location attribute to pass the location details
to the components. React requires that each item rendered in a loop have a
unique ID. We use the location IDs for this purpose.

We can now create the start page and pass all available locations to this
component. Later, we’ll use the same component for the wish list page to
return the locations on the user’s wish list.

The Page
At this point, we have the components we need for the start page, which
is a basic Next.js page. Save this page’s global styles in styles/globals.css and
its code in pages/index.tsx. Listing 14-5 contains the styles. Delete all other
files from the styles directory. Those are default styles we don’t need for the
application.

html,
body {
 font-family: -apple-system, Segoe UI, Roboto, sans-serif;
 margin: 0;
 padding: 0;
}

* {
 box-sizing: border-box;
}

h1 {
 font-size: 3rem;
}

a {
 color: inherit;
 text-decoration: none;
}

Listing 14-5: The styles/globals.css file

220 Chapter 14

We set a few global styles, such as the default font family, and change
the box model to the more intuitive border-box for all elements. By using
a border-box instead of a content-box, an element adopts whatever width we
assign to it with the width property. Otherwise, the width property would
define only the width of the content, and we’d need to add the border and
padding to calculate the actual dimensions of the element on the page.
We set the font families to the defaults for each operating system to ensure
readability.

Now replace the existing content of the pages/index.tsx file with the code
in Listing 14-6.

import Head from "next/head";
import type { GetStaticProps, InferGetStaticPropsType, NextPage } from "next";

import LocationsList from "components/locations-list";
import dbConnect from "middleware/db-connect";
import { findAllLocations } from "mongoose/locations/services";
import { LocationType } from "mongoose/locations/schema";

1 const Home: NextPage = (
 props: InferGetStaticPropsType<typeof getStaticProps>
) => {

 2 const locations: LocationType[] = JSON.parse(props.data?.locations);
 let title = `The Food Finder - Home`;

 return (
 <div>
 <Head>
 <title>{title}</title>
 <meta name="description" content="The Food Finder - Home" />
 </Head>

 <h1>Welcome to the Food Finder!</h1>
 <LocationsList locations={locations} />
 </div>
);
};

3 export const getStaticProps: GetStaticProps = async () => {
 let locations: LocationType[] | [];
 try {
 await dbConnect();
 4 locations = await findAllLocations();
 } catch (err: any) {
 return { notFound: true };
 }
 5 return {
 props: {
 data: { locations: JSON.stringify(locations) },
 },

Building the Frontend 221

 };
};

export default Home;

Listing 14-6: The pages/index.tsx file

We implemented the Next.js page, similar to the structure discussed in
Chapter 5. First we import all dependencies; then we create the NextPage and
store it in a constant that we export at the end of the file 1.

The Next.js page’s props object, the page properties, contains the data
we return from the getStaticProps function 5, discussed in Chapter 5. In this
asynchronous function, we connect to the database 3. As soon as the con-
nection is ready, we call the service method to retrieve all locations 4 and
then pass them as a JSON string to the NextPage in the data.locations property
of the props object. Next.js calls the getStaticProps function on build time
and generates the HTML for this page only once. We can use this rendering
method because the list of available locations never changes; it is static.

Then we retrieve the locations from the page properties 2, parse the
JSON string back to an array, and store the page title in a variable. We type
the locations constant explicitly because TSC cannot easily infer the type.
Then we construct the JSX. In the first step, we use the next/head component
to set the page-specific metadata. Then we call the LocationList component
we previously implemented with the locations array in the locations attri-
bute. By doing so, the LocationList component renders all locations as an
overview list.

As soon as you save the file, you should see, in the Docker command
line, that Next.js recompiles the application. Open the web application
at http://localhost:3000 in your browser to see a list of locations similar to
Figure 14-1.

Figure 14-1: The start page showing all available locations

222 Chapter 14

Now we’ll move on to styling the frontend and adding basic global com-
ponents, such as the application’s header with the Food Finder logo.

The Global Layout Components
Now it’s time to create the three global components. These include the
overall layout component, which we’ll use to format the start and wish list
page content, a sticky header (which is always visible, “sticking” to the brows-
er’s upper edge), and the Food Finder logo to go in the header. Again, we’ll
start with the smallest units and then use those as building blocks for the
overall components.

The Logo
The smallest component, the logo, is nothing more than a next/image com-
ponent wrapped in a next/link element; when users click the logo image,
they’ll be redirected to the start page. Add a header folder to the components
folder, then add a logo folder to the header folder and create two files there,
index.tsx and index.module.css, into which you should paste the code in
Listing 14-7.

.root {
 display: inline-block;
 height: 35px;
 position: relative;
 width: 119px;
}

@media (min-width: 600px) {
 .root {
 height: 50px;
 width: 169px;
 }
}

Listing 14-7: The components/header/logo/index.module.css file

These basic styles for the component’s root element set the image’s
dimensions. We use a mobile-first design pattern by initially defining the styles
to use on smaller screens and then, using a standard CSS media query,
modifying them for screens bigger than 600px. We’ll use a bigger image on
bigger screens.

Now let’s create the logo component. Create an assets subfolder in the
Next.js public folder and place the logo.svg file extracted from assets.zip into
it. Then add the code in Listing 14-8 to the logo’s index.tsx file.

import Image from "next/image";
import Link from "next/link";
import logo from "/public/assets/logo.svg";
import styles from "./index.module.css";

Building the Frontend 223

const Logo = (): JSX.Element => {
 return (
 <Link href="/" passHref className={styles.root}>
 <Image
 src={logo}
 alt="Logo: Food Finder"
 sizes="100vw"
 fill
 priority
 />
 </Link>
);
};

export default Logo;

Listing 14-8: The components/header/logo/index.tsx file

As usual, we import the dependencies and then create an exported con-
stant that contains the JSX code. We don’t pass any data to it through attri-
butes or child elements; hence, we don’t need to define the component’s
props object here.

We use a basic next/image inside a next/link element to link back to
the start page and set the next/image’s attributes to fill the available space
defined in the CSS file.

The Header
The header component will wrap the logo component we just created.
Create the index.tsx file and index.module.css file in the header folder, then
add the code in Listing 14-9 to the CSS file.

.root {
 background: white;
 border-bottom: 1px solid #eaeaea;
 padding: 1rem 0;
 position: sticky;
 top: 0;
 width: 100%;
 z-index: 1;
}

Listing 14-9: The components/header/index.module.css file

We use the CSS definitions position: sticky and top: 0 to stick the header
to the upper edge of the browser. Now the header will automatically stay there
even when users scroll down the page; the page’s content should scroll below
the header because we set the header’s z-index, placing the header in front of
the other elements. You can think of the z-index as determining which floor
of a building an element is on.

Listing 14-10 shows the code for the header component. Copy it into
the component’s index.tsx file.

224 Chapter 14

import styles from "./index.module.css";
import Logo from "components/header/logo";

const Header = (): JSX.Element => {
 return (
 <header className={styles.root}>
 <div className="layout-grid">
 <Logo />
 </div>
 </header>
);
};

export default Header;

Listing 14-10: The components/header/index.tsx file

We define a basic component that displays the logo. Then we wrap the
imported Logo component in an element with a global layout-grid class,
which we’ll define in the next section.

The Layout
Currently, we have one Next.js page (the start page) and a header compo-
nent. The easiest way to add the header to the page would be to import it
into the Next.js page and place it directly into the JSX. However, we’ll add
two more pages to the app, the wish list page and the location detail page,
so we want to avoid importing the header three times.

To streamline the overall app design, Next.js provides the concept of a
layout, which is really just another component, and we can use it to add the
header component as a sibling element to a page’s content. Let’s create a new
layout component. First, to create this component’s CSS file, add layout.css to
the styles folder and paste the code in Listing 14-11 into it.

.layout-grid {
 align-items: center;
 display: flex;
 flex-direction: column;
 justify-content: space-between;
 margin: 0 auto;
 max-width: 800px;
 padding: 0 1rem;
 width: 100%;
}

@media (min-width: 600px) {
 .layout-grid {
 flex-direction: row;
 padding: 0 2rem;
 }
}

Listing 14-11: The styles/layout.css file

Building the Frontend 225

We use the mobile-first pattern once again to define a basic grid wrap-
per, setting the global padding and maximum width for the content area.
We set the wrapper’s left and right margins to auto, which centers the con-
tainer, because the margins take up all available space between the fixed-
width wrapper and the window’s edges.

We use flexbox to set the direction of the wrapper’s direct child ele
ments to column, displaying them one on top of the next. Because the logo
and all other upcoming header elements are direct children of an element
with the layout-grid class, they are affected by the flexbox layout. In contrast,
the location items aren’t direct siblings. Hence, they won’t change their
direction when switching between screen sizes.

Then we use a media query to adjust the styles for screens whose width
is greater than 600px. Here we increase the padding and change the layout
order of the direct child elements. Instead of using column, we set it to row,
and immediately we display the elements next to one another.

Because this is a global styles file and not a CSS module, Next.js won’t
automatically scope the class names. Hence, we prefix them with layout-
and don’t import the styles into the component before using them.

Now create a layout folder inside the components folder and add the
index.tsx file to it with the component code in Listing 14-12.

import Header from "components/header";

interface PropsInterface {
 children: React.ReactNode;
}

const Layout = (props: PropsInterface): JSX.Element => {
 return (
 <>
 <Header />
 <main className="layout-grid">
 {props.children}
 </main>
 </>
);
};
export default Layout;

Listing 14-12: The components/layout/index.tsx file

In the layout component, we define a private interface and the compo-
nent with the usual structure. Inside the component, we add the Header and
the main element that uses the global layout styles and acts as a wrapper for
the children elements we’ll pass to this component in the _app.tsx file.

Open the _app.tsx file and modify it as shown in Listing 14-13.

import "../styles/globals.css";
import "../styles/layout.css";
import type { AppProps } from "next/app";
import Layout from "components/layout";

226 Chapter 14

export default function App({ Component, pageProps }: AppProps) {
 return (
 <Layout>
 <Component {...pageProps} />
 </Layout>
);
}

Listing 14-13: The pages/_app.tsx file

First we add layout.css as a global style. As for the layout, we have only
one layout component we’ll use for all pages, and we import it here. Then
we wrap our application, the pages, with the layout and pass the current
page in the component’s children property.

Now all our Next.js pages will follow the same structure: they’ll have
the Header component next to the main element containing the page’s
content. One advantage of following this pattern is that the component’s
state will be preserved across page changes and React component
re-rendering.

Once Next.js has recompiled the application, try reloading the
application at http://localhost:3000 in your browser. It should look like
Figure 14-2.

Figure 14-2: The start page with the header and layout component

You should now see the header, and the new layout component centers
the content.

Building the Frontend 227

The Location Details Page
Our application now has a start page with a header and a list of all available
locations. The list items link to their particular location’s detail page because
we added a next/link component to them, but those pages don’t exist yet. If
you click one of the links, you’ll get a 404 error. To display the location details
pages, we first need to implement the component that lists a particular loca-
tion’s details and then create a new Next.js page.

The Component
Let’s start with the details component. Create the location-details folder in
the components directory and add the index.module.css and index.tsx files to it.
Then add the code from Listing 14-14 to the CSS module.

.root {
 margin: 0 0 2rem 0;
 padding: 0;
}
.root li {
 list-style: none;
 margin: 0 0 0.5rem 0;
}

Listing 14-14: The components/locations-details/index.module.css file

The styles for the component are basic. We remove the default margin
and padding, as well as the list styles, and then add a custom margin at the
end of each list item and root element.

To implement the location details component, add the code from
Listing 14-15 to the index.tsx file in the components/locations-details folder.

import { LocationType } from "mongoose/locations/schema";
import styles from "./index.module.css";

interface PropsInterface {
 location: LocationType;
}

const LocationDetail = (props: PropsInterface): JSX.Element => {
 let location = props.location;
 return (
 <div>
 {location && (
 <ul className={styles.root}>

 Address:
 {location.address}

 Zipcode:
 {location.zipcode}

228 Chapter 14

 Borough:
 {location.borough}

 Cuisine:
 {location.cuisine}

 Grade:
 {location.grade}

)}
 </div>
);
};
export default LocationDetail;

Listing 14-15: The components/locations-details/index.tsx file

The locations detail component is structurally similar to the locations
list item. Both take an object containing the location’s data and add a spe-
cific set of properties to the returned JSX element. The main difference
is in the JSX structure we create. Otherwise, we follow the known pattern,
importing the required styles and type, defining the component’s props
interface using the LocationType, and then returning a JSX element with the
location details.

The Page
We mentioned in “Overview of the User Interface” on page 215 that a loca-
tion’s detail page should be available at the dynamic URL location/:location
_id. To implement this, create the location folder in the pages directory and
add the [locationId].tsx file containing the code in Listing 14-16.

import Head from "next/head";
import type {
 GetServerSideProps,
 GetServerSidePropsContext,
 InferGetServerSidePropsType,
 PreviewData,
 NextPage,
} from "next";
import LocationDetail from "components/location-details";
import dbConnect from "middleware/db-connect";
import { findLocationsById } from "mongoose/locations/services";
import { LocationType } from "mongoose/locations/schema";
import { ParsedUrlQuery } from "querystring";

Building the Frontend 229

const Location: NextPage = (
 props: InferGetServerSidePropsType<typeof getServerSideProps>
) => {
 let location: LocationType = JSON.parse(props.data?.location);
 1 let title = `The Food Finder - Details for ${location?.name}`;
 return (
 <div>
 <Head>
 <title>{title}</title>
 <meta
 name="description"
 content={`The Food Finder.
 Details for ${location?.name}`}
 />
 </Head>
 <h1>{location?.name}</h1>
 2 <LocationDetail location={location} />
 </div>
);
};

3 export const getServerSideProps: GetServerSideProps = async (
 context: GetServerSidePropsContext<ParsedUrlQuery, PreviewData>
) => {
 let locations: LocationType[] | [];
 4 let { locationId } = context.query;
 try {
 await dbConnect();
 locations = await findLocationsById([locationId as string]);
 5 if (!locations.length) {
 throw new Error(`Locations ${locationId} not found`);
 }
 } catch (err: any) {
 return {
 notFound: true,
 };
 }
 return {
 6 props: { data: { location: JSON.stringify(locations.pop()) } },
 };
};

Listing 14-16: The pages/location/[locationId].tsx file

The start page and location detail page look fairly similar. The only
visual difference is the page’s title, which we construct with the loca-
tion’s name 1, and instead of the LocationsList component, we use the
LocationDetail component with a single location object 2.

From a functional perspective, however, the pages are not similar.
Unlike the start page, which uses SSG, the location detail page uses SSR
with getServerSideProp 3. This is because as soon as we add the wish list
functionality and implement the Add To/Remove button, the page’s

230 Chapter 14

content should change along with a user’s action. Hence, we need to regen-
erate the HTML on each request. We discussed the differences between
SSR and SSG in depth in Chapter 5.

We use the page’s context and its query property to get the location ID
from the dynamic URL 4. Then we use the ID to get the matching loca-
tion from the database. As before, we use the service directly instead of
calling the publicly exposed API, as Next.js runs both get...Prop functions
on the server side and can directly access the services in our application’s
middleware.

We also implement two exit scenarios. First, if there is no result, we
throw an error to step into the catch block 5, and by doing so, redirect the
user to the 404 Not Found error page. Otherwise, we store the first location
from the results in the location property 6 and pass it to the Next.js page
function we export in the last line.

Summary
We’ve successfully built the frontend for the Food Finder application. At
this point, you’ve implemented a full-stack web application that reads data
from a MongoDB database and renders the results as React user interface
components in Next.js. Next, we’ll add an OAuth authentication flow with
GitHub so that users can log in with their GitHub account and store a per-
sonalized wish list.

In this chapter, you’ll add OAuth authenti-
cation to the Food Finder app, giving users

the opportunity to log in with their GitHub
accounts. You’ll also implement the wish list

		 page to which authenticated users can add and remove
		 locations, as well as the button component needed
		 to accomplish this. Lastly, you’ll learn how to protect
		 your GraphQL mutations from unauthenticated users.

Adding OAuth with next-auth
Developers usually use third-party libraries or SDKs to implement OAuth.
For the Food Finder application, we’ll use the next-auth package from Auth.js,
which comes with an extensive set of preconfigured templates that allow us to
connect to an OAuth service easily. These templates are called providers, and
we’ll use one of them: the GitHub provider, which adds a Log In with GitHub

15
A D D I N G O A U T H

232 Chapter 15

button to our app. For a refresher on the OAuth authentication process,
return to Chapter 9.

Creating a GitHub OAuth App
First we need to create an OAuth application using GitHub. This should give
us the client ID and client secret that the Food Finder application needs to
connect to GitHub. If you don’t already have a GitHub account, create one
now at https://github​.com, then log in. Navigate to https://github​.com​/settings​/
developers and create a new OAuth app in the OAuth Apps section. Enter the
Food Finder app’s details in the resulting form, which should look similar
to Figure 15-1.

Figure 15-1: The GitHub user interface for adding a new OAuth application

Enter Food Finder as the name, set the home page URL to http://
localhost:3000​/, and set the authorization callback URL to http://local​
host:3000​/api​/auth​/callback​/github. After registering the application,
GitHub should show us the client ID and let us generate a client secret.

Adding the Client Credentials
Now copy these credentials as GITHUB_CLIENT_ID and GITHUB_CLIENT_SECRET
to the env.local file in the application’s code root folder. This file looks
like this:

MONGO_URI=mongodb://backend:27017/foodfinder
GITHUB_CLIENT_ID=ADD_YOUR_CLIENT_ID_HERE
GITHUB_CLIENT_SECRET=ADD_YOUR_CLIENT_SECRET_HERE

Fill in the placeholders with your credentials.

https://github.com
https://github.com/settings/developers
https://github.com/settings/developers

Adding OAuth 233

Installing next-auth
To add Auth.js’s OAuth SDK for next-auth to the Food Finder app and con-
figure it to connect to the provider, run the following:

$ docker exec -it foodfinder_application npm install next-auth

By default, this SDK uses encrypted JWTs to store and attach session
information to API requests. The library automatically handles the encryp-
tion and decryption as long as we provide it with a secret. To add such a
secret, open the env.local file and add the following line to the end:

NEXTAUTH_SECRET=78f6cc4bf633b1102f4ca4d72602c60f

Use any secret you’d like. The string used here was randomly generated
with OpenSSL at https://www​.usemodernfullstack​.dev​/api​/v1​/generate​-secret, and
you should use a fresh one for each application.

Creating the Authentication Callback
Now we’ll develop the api/auth route for the authorization callback URL
we supplied to GitHub when registering the OAuth application. Create
the auth folder in the pages/api directory containing the file [...​nextauth].ts.
The ... ​in the filename tells the Next.js router that this is a catch all, mean-
ing it handles all API calls to endpoints below /auth; for example, auth/
signin or auth/callback/github. Add the code from Listing 15-1 to the file.

import GithubProvider from "next-auth/providers/github";
import { NextApiRequest, NextApiResponse } from "next";
import NextAuth from "next-auth";
import { createHash } from "crypto";

const createUserId = (base: string): string => {
 return createHash("sha256").update(base).digest("hex");
};

export default async function auth(req: NextApiRequest, res: NextApiResponse) {
 return await NextAuth(req, res, {
 providers: [
 GithubProvider({
 clientId: process.env.GITHUB_CLIENT_ID || " ",
 clientSecret: process.env.GITHUB_CLIENT_SECRET || " ",
 }),

],
 callbacks: {
 async jwt({ token }) {
 if (token?.email && !token.fdlst_private_userId) {
 token.fdlst_private_userId = createUserId(token.email);
 }
 return token;
 },

https://www.usemodernfullstack.dev/api/v1/generate-secret

234 Chapter 15

 async session({ session }) {
 if (
 session?.user?.email &&
 !session?.user.fdlst_private_userId
) {
 session.user.fdlst_private_userId = createUserId(
 session?.user?.email
);
 }
 return session;
 },
 },
 });
}

Listing 15-1: The pages/api/auth/[...​nextauth].ts file

We import our dependencies, including the built-in GithubProvider and
the default crypto module. Then we create a simple createUserId function,
which takes a string as an argument and calls the crypto module’s createHash
function to return the hashed user ID from this string.

Next, we create and export the default asynchronous auth function. To
do so, we initialize the NextAuth module and add the GithubProvider to the
providers array. We configure it to use the clientId and the clientSecret we
stored in the environment variables.

Since we want to keep our application as simple as possible, we’ll keep
it stateless; hence, we use the jwt and session callbacks, which next-auth uses
every time it creates a new session or JWT internally. In the callback, we cal-
culate the hashed user ID from the user’s email with our createId function
(if it’s not already available in the current token or session object). Finally,
we store it in a private claim.

We’ve just created a new property, fdlst_private_userId, on the user object
in the next-auth session. As expected, TSC warns us that this property doesn’t
exist on the Session type. We need to augment the type’s interface by adjusting
the customs.d.ts file in our application’s root directory to match Listing 15-2.

import mongoose from "mongoose";
import { DefaultSession } from "next-auth";

declare global {
 var mongoose: mongoose;
}

declare module "next-auth" {
 interface Session {
 user: {
 fdlst_private_userId: string;
 } & DefaultSession["user"];
 }
}

Listing 15-2: The updated customs.d.ts file with the augmented Session interface

Adding OAuth 235

In the updated code, we import the next-auth package’s DefaultSession,
which defines the default session object, and then create and redeclare
the Session interface’s user object with the new fdlst_private_userId prop-
erty. Because TypeScript overwrites the existing user object, we explicitly
add it from the DefaultSession object. In other words, we add our new fdlst​
_private_userId property to the Session interface.

Sharing the Session Across Pages and Components
With the callback URL set up, we need to ensure that a user’s session is shared
among all Next.js pages and React components. We can use the useContext
hook discussed in Chapter 4, which next-auth provides for us. In the pages/_app
.tsx file, wrap the application in a SessionProvider, as shown in Listing 15-3.

import "../styles/globals.css";
import "../styles/layout.css";
import type { AppProps } from "next/app";
import Layout from "components/layout";
import { SessionProvider } from "next-auth/react";

export default function App({
 Component, pageProps: { session, ...pageProps } }: AppProps) {
 return (
 <SessionProvider session={session}>
 <Layout>
 <Component {...pageProps} />
 </Layout>
 </SessionProvider>
);
}

Listing 15-3: The modified pages/_app.tsx file

We import the SessionProvider from the next-auth package and enhance
the pageProps with the session object. We store the current session in the provid-
er’s session attribute, making it available throughout the Next.js application.

Before we can access the session in the frontend and middleware, we need
to add the auth-element with the Sign In button, which will allow users to log in.

The Generic Button Component
It’s time to implement the generic button component we mentioned earlier.
Technically, this component will be a generic div element that we’ll style to
look like a button, with a few variations. It will serve as the Sign In/Sign Out
button in the auth-element and the Add To/Remove From button in the location
detail component. Create a new folder, button, in the components folder, adding
an index.module.css file with the code in Listing 15-4, as well as an index.tsx file.

.root {
 align-items: center;
 border-radius: 5px;

236 Chapter 15

 color: #1d1f21;
 cursor: pointer;
 display: inline-flex;
 font-weight: 500;
 height: 35px;
 letter-spacing: 0;
 margin: 0;
 overflow: hidden;
 place-content: flex-start;
 position: relative;
 white-space: nowrap;
}

.root > a,

.root > span {
 padding: 0 1rem;
 white-space: nowrap;
}

.root {
 transition: border-color 0.25s ease-in, background-color 0.25s ease-in,
 color 0.25s ease-in;
 will-change: border-color, background-color, color;
}

.root.default,

.root.default:link,

.root.default:visited {
 background-color: transparent;
 border: 1px solid transparent;
 color: #1d1f21;
}

.root.default:hover,

.root.default:active {
 background-color: transparent;
 border: 1px solid #dbd8e3;
 color: #1d1f21;
}

.root.blue,

.root.blue:link,

.root.blue:visited {
 background-color: rgba(0, 118, 255, 0.9);
 border: 1px solid rgba(0, 118, 255, 0.9);
 color: #fff;
 text-decoration: none;
}

.root.blue:hover,

.root.blue:active {
 background-color: transparent;
 border: 1px solid #1d1f21;
 color: #1d1f21;

Adding OAuth 237

 text-decoration: none;
}

.root.outline,

.root.outline:link,

.root.outline:visited {
 background-color: transparent;
 border: 1px solid #dbd8e3;
 color: #1d1f21;
 text-decoration: none;
}

.root.outline:hover,

.root.outline:active {
 background-color: transparent;
 border: 1px solid rgba(0, 118, 255, 0.9);
 color: rgba(0, 118, 255, 0.9);
 text-decoration: none;
}

.root.disabled,

.root.disabled:link,

.root.disabled:visited {
 background-color: transparent;
 border: 1px solid #dbd8e3;
 color: #dbd8e3;
 text-decoration: none;
}

.root.disabled:hover,

.root.disabled:active {
 background-color: transparent;
 border: 1px solid #dbd8e3;
 color: #dbd8e3;
 text-decoration: none;
}

Listing 15-4: The components/button/index.module.css file

We add styles for each of the button variations we’d like to create. All are
35 pixels tall and have rounded corners. We define a default style, a variation
with a blue background and white color, and an outlined version whose back-
ground is white. In addition, we define styles to use for deactivated buttons.

With the styles in place, we can write code for the component. Copy the
contents of Listing 15-5 into the component’s index.tsx file.

import React from "react";
import styles from "./index.module.css";

interface PropsInterface {
 disabled?: boolean;
 children?: React.ReactNode;
 variant?: "blue" | "outline";
 clickHandler?: () => any;
}

238 Chapter 15

const Button = (props: PropsInterface): JSX.Element => {
 const { children, variant, disabled, clickHandler } = props;

 const renderContent = (children: React.ReactNode) => {
 if (disabled) {
 return (

 {children}

);
 } else {
 return (

 {children}

);
 }
 };

 return (
 <div
 className={[
 styles.root,
 disabled ? styles.disabled : " ",
 styles[variant || "default"],
].join(" ")}
 >
 {renderContent(children)}
 </div>
);
};

export default Button;

Listing 15-5: The components/button/index.tsx file

After importing the dependencies, we define the interface for the com-
ponent’s prop argument. We also define the Button component as a function
that returns a JSX element and then use object-destructuring syntax to split
the props object into constants representing the object’s key-value pairs. We
define the internal renderContent function with one argument, children, typed
as a ReactNode and rendered wrapped in a span element. Depending on the
state of the disabled property, we also add the click handler from the props
object. The component itself returns a div that we styled to look like a button.

The AuthElement Component
Although we’ve added the next-auth package to the project, created the
OAuth API route, and configured our OAuth provider, we still can’t access
session information, as there is no Sign In button. Let’s create this AuthElement
component and then add it to the header. This component uses our default

Adding OAuth 239

button component, and as soon as the user is logged in, it displays their full
name, as well as a link to their wish list.

Create the folder auth-element in the components/header directory and
then add the index.module.css file with the code in Listing 15-6.

.root {
 align-items: center;
 display: flex;
 justify-content: space-between;
 margin: 0;
 padding: 1rem 0;
 width: auto;
}

.root > * {
 margin: 0 0 0 2rem;
}

.name {
 margin: 1rem 0 0 0;
}

@media (min-width: 600px) {
 .name {
 margin: 0 0 0 1rem;
 }
}

Listing 15-6: The components/header/auth-element/index.module.css file

We define a set of basic styles for the component, using a flexbox
and margins to align them vertically, and change their layout for smaller
screens.

To write the component itself, add an index.tsx file to the auth-element
folder and enter the code from Listing 15-7 into it.

import Link from "next/link";
import { signIn, signOut, useSession } from "next-auth/react";
import Button from "components/button";
import styles from "./index.module.css";

const AuthElement = (): JSX.Element => {
 const { data: session, status } = useSession();

 return (
 <>
 { status === "authenticated" (

 Hi {session?.user?.name}

)}

240 Chapter 15

 <nav className={styles.root}>
 {status === "authenticated" && (
 <>
 <Button variant="outline">
 <Link
href={`/list/${session?.user.fdlst_private_userId}`}
 >
 Your wish list
 </Link>
 </Button>

 <Button variant="blue" clickHandler={() => signOut()}>
 Sign out
 </Button>
 </>
)}
 {status == "unauthenticated" && (
 <>
 <Button variant="blue" clickHandler={() => signIn()}>
 Sign in
 </Button>
 </>
)}
 </nav>
 </>
);
};
export default AuthElement;

Listing 15-7: The components/header/auth-element/index.tsx file

The most notable imports are the signIn and signOut functions and the
useSession hook from next-auth. The latter enables us to access session infor-
mation easily, whereas the two functions trigger the sign-in flow or termi-
nate the session.

We then define the AuthElement component and retrieve the session data
and the session status from the useSession hook. We need both of these to
construct the JSX element we return from the component. On the client
side, we can access the session information directly via the useSession hook.
On the server side, though, we’ll need to access it through the JWT, because
the session information is part of the API request’s HTTP cookies.

When the session’s status is authenticated, we render the user’s name
from the session data and add the Your Wish List and Sign Out buttons to
the navigation’s nav element. Otherwise, we add the Sign In button to start
the OAuth flow. For all of those, we use the generic button component
and the signIn and signOut functions we imported from the next-auth mod-
ule, both of which handle the OAuth flow automatically.

We use the next/link element to link to the user’s wish list. (This is
another Next.js page we’ll implement in a moment.) The wish list is avail-
able at the dynamic route /list/:userId, which uses the user ID we created by
hashing the user’s email address and storing it in fdlst_private_userId.

Adding OAuth 241

Adding the AuthElement Component to the Header
Now we have to add the new component to the header. Open the index.tsx
file in the components/header directory and adjust it so that it matches
Listing 15-8.

import styles from "./index.module.css";
import Logo from "components/header/logo";
import AuthElement from "components/header/auth-element";
const Header = (): JSX.Element => {
 return (
 <header className={styles.root}>
 <div className="layout-grid">
 <Logo />
 <AuthElement />
 </div>
 </header>
);
};

export default Header;

Listing 15-8: The modified components/header/index.tsx file

The update is simple; we import the AuthElement component and add it
next to the Logo inside the header.

Test the OAuth workflow to see our session management in practice.
When you open http://localhost:3000, the Sign In button should be in the
header, as in Figure 15-2.

Figure 15-2: The header in a logged-out state with the Sign In button

242 Chapter 15

Let’s log in using OAuth. Click the Sign In button, and next-auth should
redirect you to the login screen, where you can select to sign in with the
configured OAuth providers to use (Figure 15-3).

Figure 15-3: OAuth requires us to choose a provider.

Click the button to log in. OAuth should redirect you to the applica-
tion, where the AuthElement renders your name and new buttons based on
the session information. The screen should look similar to Figure 15-4.

Figure 15-4: The header in the logged-in state with the session information

Adding OAuth 243

The header element has changed according to the session’s state. We
display the current user’s name received from the OAuth provider, the link
to their public wish list, and the Sign Out button.

The Wish List Next.js Page
The wish list button in the header should link to a wish list page at the
dynamic URL list/:userId. This regular Next.js page should display all loca-
tions whose on_wishlist property contains the user ID specified in the
dynamic URL. It will look quite similar to the start page, and we can build
it out of existing components.

To create the page’s route, create the list folder with the [userId].tsx file
in the pages directory. Then add the code from Listing 15-9 to this .tsx file.

import type {
 GetServerSideProps,
 GetServerSidePropsContext,
 NextPage,
 PreviewData,
 InferGetServerSidePropsType,
} from "next";
import Head from "next/head";
import { ParsedUrlQuery } from "querystring";

import dbConnect from "middleware/db-connect";
import { onUserWishlist } from "mongoose/locations/services";
import { LocationType } from "mongoose/locations/schema";
import LocationsList from "components/locations-list";

import { useSession } from "next-auth/react";

const List: NextPage = (
 props: InferGetServerSidePropsType<typeof getServerSideProps>
) => {
 const locations: LocationType[] = JSON.parse(props.data?.locations);
 const userId: string | undefined = props.data?.userId;
 const { data: session } = useSession();
 let title = `The Food Finder- A personal wish list`;
 let isCurrentUsers =
 userId && session?.user.fdlst_private_userId === userId;
 return (
 <div>
 <Head>
 <title>{title}</title>
 content={`The Food Finder. A personal wish list.`}
 </Head>
 <h1>
 {isCurrentUsers ? " Your " : " A "}
 wish list!
 </h1>
 {isCurrentUsers && locations?.length === 0 && (
 <>

244 Chapter 15

 <h2>Your list is currently empty! :(</h2>
 <p>Start adding locations to your wish list!</p>
 </>
)}
 <LocationsList locations={locations} />
 </div>
);
};

export const getServerSideProps: GetServerSideProps = async (
 context: GetServerSidePropsContext<ParsedUrlQuery, PreviewData>
) => {
 let { userId } = context.query;
 let locations: LocationType[] | [] = [];
 try {
 await dbConnect();
 locations = await onUserWishlist(userId as string);
 } catch (err: any) {}
 return {
 // the props will be received by the page component
 props: {
 data: { locations: JSON.stringify(locations), userId: userId },
 },
 };
};
export default List;

Listing 15-9: The pages/list/[userId].tsx file

Although we want the wish list page to look similar to the start page, we
use SSR, with getServerSideProps, as we did for the location detail page. The
wish list page is highly dynamic; hence, we need to regenerate the HTML
on each request.

Another approach would be to use client-side rendering, then request the
user’s locations through the GraphQL API in a useEffect hook. However, this
would cause the user to see a loading screen each time they opened the wish
list page. We can avoid this inferior user experience altogether with SSR.

In the server-side part of the page’s code, we first extract the URL param-
eter, userId, from the context’s query object. We use the user’s ID and the
onUsersWishlist service to get all locations for the user’s wish list. If there is an
error, we simply continue instead of redirecting to the 404 error page, render-
ing an empty list.

We then pass the locations array and the user’s ID to the Next.js page,
where we extract the locations as usual, as well as the userId. We compare
the user ID from the URL with the user ID in the current session. If they
match, we know that the currently logged-in user has visited their own wish
list and adjust the user interface accordingly.

Adding the Button to the Location Detail Component
We can now visit the wish list page, but it will always be empty. We haven’t
yet provided users with a way to add items to it. To change this, we’ll place

Adding OAuth 245

a button in the location details component that lets users add or remove a
particular location. We’ll use the generic button component and session
information. Open the index.ts file in the components/location-details.tsx direc-
tory and modify the code to match Listing 15-10.

import { LocationType } from "mongoose/locations/schema";
import styles from "./index.module.css";

import { useSession } from "next-auth/react";
import { useEffect, useState } from "react";
import Button from "components/button";

interface PropsInterface {
 location: LocationType;
}

interface WishlistInterface {
 locationId: string;
 userId: string;
}

const LocationDetail = (props: PropsInterface): JSX.Element => {
 let location: LocationType = props.location;

 const { data: session } = useSession();
 const [onWishlist, setOnWishlist] = useState<Boolean>(false);
 const [loading, setLoading] = useState<Boolean>(false);

 useEffect(() => {
 let userId = session?.user.fdlst_private_userId;
 setOnWishlist(
 userId && location.on_wishlist.includes(userId) ? true : false
);
 }, [session]);

 const wishlistAction = (props: WishlistInterface) => {

 const { locationId, userId } = props;

 if (loading) { return false; }
 setLoading(true);

 let action = !onWishlist ? "addWishlist" : "removeWishlist";

 fetch("/api/graphql", {
 method: "POST",
 headers: {
 "Content-Type": "application/json",
 },
 body: JSON.stringify({
 query: `mutation wishlist {
 ${action}(
 location_id: "${locationId}",
 user_id: "${userId}"

246 Chapter 15

) {
 on_wishlist
 }
 }`,
 }),
 })
 .then((result) => {
 if (result.status === 200) {
 setOnWishlist(action === "addWishlist" ? true : false);
 }
 })
 .finally(() => {
 setLoading(false);
 });
 };

 return (
 <div>
 {location && (
 <ul className={styles.root}>

 Address:
 {location.address}

 Zipcode:
 {location.zipcode}

 Borough:
 {location.borough}

 Cuisine:
 {location.cuisine}

 Grade:
 {location.grade}

)}

 {session​?​.user​.fdlst​_private​_userId && (
 <Button
 variant={!onWishlist ? "outline" : "blue"}
 disabled={loading ? true : false}
 clickHandler={() =>
 wishlistAction({
 locationId: session​?​.user​.fdlst​_private​_userId,
 userId: session​?​.user​?​.userId,
 })
 }

Adding OAuth 247

 >
 {onWishlist && <>Remove from your Wishlist</>}
 {!onWishlist && <>Add to your Wishlist</>}
 </Button>
)}

 </div>
);
};
export default LocationDetail;

Listing 15-10: The modified components/location-details/index.tsx file

First we import useSession from next-auth, useEffect and useState from
React, and the generic Button component. Then we define WishlistInterface,
the interface for the wishlistAction function we’ll implement in a bit.

Inside the component, we get the session from the useSession hook, then
create the onWishlist and loading state variables with useState as Boolean val-
ues. We use the first state variable to specify whether a location is currently
on the user’s wish list, then update the user interface accordingly. We calcu-
late the initial state in the useEffect hook based on the location’s on_wishlist
property. As soon as we’ve successfully added or removed the location to or
from the wish list, we update the state variable and the button’s text.

We implement the wishlistAction function to update the on_wishlist
property. First we deconstruct the argument object and then check the
loading state to see if there is currently a running request. If so, we exit the
function. Otherwise, we set the loading state to true to block the user inter-
face, calculate the action for the GraphQL mutations, and use it to call the
wishlist mutation. After successfully modifying the document in the data-
base, we update the onWishlist state and unblock the user interface.

We check the current session to see if the user is logged in. If so, we
render the Button component and set the disabled and class name attributes
based on the loading state, as well as an on-click event. With each click of
the button, we call the wishlistAction function with the current location
ID and user ID as arguments. Finally, we set the button’s text based on
the onWishlist state, either adding the current location to the wish list or
removing it.

Try adding and removing a few locations to the wish list before moving
on. Check that the button’s text changes accordingly and that a list of loca-
tions similar to the one on the start page appears on the wish list page.

Securing the GraphQL Mutations
There is one more thing we have to do to wrap up the application: secure
the GraphQL API. While the queries should be publicly available, the muta-
tions should be accessible only to logged-in users, who should be able to
add or remove only their own user ID for the on_wishlist property.

248 Chapter 15

But if you test the API with the curl command, you’ll see that, currently,
everyone can access the API. Note that you must enter the values supplied
to the -d flag on a single line, or the server might return an error:

$ curl -v \
 -X POST \
 -H "Accept: application/json" \
 -H "Content-Type: application/json" \
 -d '{"query":"mutation wishlist {removeWishlist(location_id: \"12340\",
 user_id: \"exampleid\") {on_wishlist}}"}' \
 http://localhost:3000/api/graphql

< HTTP/1.1 200 OK
<
{"data":{"removeWishlist":{"on_wishlist":[]}}}

As a test, we send a simple mutation to remove the location with the ID
12340 from a nonexistent user’s wish list. (The mutation won’t work, which
is fine; we just want to verify whether the API is accessible to the public.)
The command receives a 200 response and the expected JSON, proving
that the mutations are public.

Let’s implement an authGuard to protect our mutations. A guard is a pat-
tern that checks a condition and then throws an error if it isn’t met, and an
auth guard protects a route or an API from unauthorized access.

We begin by creating the file auth-guards.ts in the middleware folder and
adding the code in Listing 15-11.

import { GraphQLError } from "graphql/error";
import { JWT } from "next-auth/jwt";

interface paramInterface {
 user_id: string;
 location_id: string;
}

interface contextInterface {
 token: JWT;
}

export const authGuard = (
 param: paramInterface,
 context: contextInterface
): boolean | Error => {

 1 if (!context || !context.token || !context.token.fdlst_private_userId) {
 return new GraphQLError("User is not authenticated", {
 extensions: {
 http: { status: 500 },
 code: "UNAUTHENTICATED",
 },
 });
 }

Adding OAuth 249

 2 if (context?.token?.fdlst_private_userId !== param.user_id) {
 return new GraphQLError("User is not authorized", {
 extensions: {
 http: { status: 500 },
 code: "UNAUTHORIZED",
 },
 });
 }
 return true;
};

Listing 15-11: The middleware/auth-guards.ts file

We also import JWT from next-auth and the GraphQLError constructor from
graphql. We’ll use the latter to create the error objects returned to the user
if authentication fails. Next, we define our interfaces for the authGuard func-
tion’s arguments and export the function itself.

We’ll call the auth guard from the mutation resolver with two param-
eters: an object with the user ID and the location ID, for which we defined
the paramInterface, and the context object with the token, the contextInterface.
The auth guard returns either a Boolean indicating that authentication
succeeded or an error. In the authGuard function, we verify that every access
to our mutation has a token with a private claim 1 and that the user ID in
the private claim matches the user ID we pass to the mutation 2. In other
words, we verify that a logged-in user has made the API request and that
they’re modifying their own wish list.

If the checks fail, we create an error with a message and code. In addi-
tion, we set the HTTP status code to 500. Remember that unlike REST
APIs, which rely on an extensive list of precise HTTP status codes to com-
municate with the caller, a GraphQL API usually uses either 200 or 500 as
the status code for errors. Broadly speaking, we send a 500 status code when
GraphQL can’t execute the query at all and 200 when the query can be exe-
cuted. In both cases, the GraphQL API should include precise information
about what error occurred.

Now we must pass the user’s OAuth token to the resolvers, which will then
pass it to the auth guard. To do so, we’ll use the context function we imple-
mented in the startServerAndCreateNextHandler function, found in the pages/api/
graphql.ts file. Open the file and adjust it to match the code in Listing 15-12.

import { ApolloServer, BaseContext } from "@apollo/server";
import { startServerAndCreateNextHandler } from "@as-integrations/next";

import { resolvers } from "graphql/resolvers";
import { typeDefs } from "graphql/schema";
import dbConnect from "middleware/db-connect";

import { NextApiHandler, NextApiRequest, NextApiResponse } from "next";

import { getToken } from "next-auth/jwt";

250 Chapter 15

const server = new ApolloServer<BaseContext>({
 resolvers,
 typeDefs,
});

const handler = startServerAndCreateNextHandler(server, {
 context: async (req: NextApiRequest) => {
 const token = await getToken({ req });
 return { token };
 },
});

const allowCors =
 (fn: NextApiHandler) =>
 async (req: NextApiRequest, res: NextApiResponse) => {
 res.setHeader("Allow", "POST");
 res.setHeader("Access-Control-Allow-Origin", "*");
 res.setHeader("Access-Control-Allow-Methods", "POST");
 res.setHeader("Access-Control-Allow-Headers", "*");
 res.setHeader("Access-Control-Allow-Credentials", "true");

 if (req.method === "OPTIONS") {
 res.status(200).end();
 }
 return await fn(req, res);
 };

const connectDB =
 (fn: NextApiHandler) =>
 async (req: NextApiRequest, res: NextApiResponse) => {
 await dbConnect();
 return await fn(req, res);
 };

export default connectDB(allowCors(handler));

Listing 15-12: The modified pages/api/graphql.ts file with the JWT token

Unlike on the client side, where we can access the session information
directly via the useSession hook, here we need to access it through the JWT
on the server side. This is because the session information is part of the API
request’s HTTP cookies on the server instead of the SessionProvider’s shared
session state, and we need to extract it from the request. To do so, we import
the getToken function from the next-auth jwt module. Then we pass the request
object we receive from the context function to call getToken and await the
decoded JWT. Next, we return the token from the context function so that we
can access the token in the resolver functions.

Finally, let’s use the token to add the authGuard to our resolvers to
protect them from unauthenticated and unauthorized access. Open
the graphql/locations/mutations.ts file and update it with the code from
Listing 15-13.

Adding OAuth 251

import { updateWishlist } from "mongoose/locations/services";
import { authGuard } from "middleware/auth-guard";
import { JWT } from "next-auth/jwt";

interface UpdateWishlistInterface {
 user_id: string;
 location_id: string;
}

interface contextInterface {
 token: JWT;
}

export const locationMutations = {
 removeWishlist: async (
 _: any,
 param: UpdateWishlistInterface,
 context: contextInterface
) => {

 const guard = authGuard(param, context);
 if (guard !== true) { return guard; }

 return await updateWishlist(param.location_id, param.user_id, "remove");
 },

 addWishlist: async (
 _: any,
 param: UpdateWishlistInterface,
 context: contextInterface
) => {

 const guard = authGuard(param, context);
 if (guard !== true) { return guard; }

 return await updateWishlist(param.location_id, param.user_id, "add");
 },
};

Listing 15-13: The graphql/locations/mutations.ts file with the added authGuard

We define a new interface for the context and update the context
parameter to contain the JWT. Next, we add the authGuard function to our
mutations and follow the guard pattern by returning the error immediately
instead of proceeding with the code.

To test the authGuard functionality, run curl again. The command line
output should look similar to Listing 15-14.

$ curl -v \
 -X POST \
 -H "Accept: application/json" \
 -H "Content-Type: application/json" \
 -d '{"query":"mutation wishlist {removeWishlist(location_id: \"12340\",

252 Chapter 15

 user_id: \"exampleid\") {on_wishlist}}"}' \
 http://localhost:3000/api/graphql

< HTTP/1.1 500 Internal Server Error
<
{
 "errors":[
 {
 "message":"User is not authenticated",
 "locations": [{"line":1,"column":20}],
 "path": ["removeWishlist"],
 "extensions": {"code":"UNAUTHENTICATED","data":null}
 }
]
}

Listing 15-14: The curl command to test our API

Unlike the previous curl call, the GraphQL API now responds with
HTTP/1.1 500 Internal Server Error and an extensive error message, which we
defined when we created the GraphQLError in the auth-guards.ts file.

Summary
We’ve successfully added an OAuth authentication flow to the Food Finder
application. Now the user can log in with their GitHub account. Once
logged in, they can maintain their personal public wish list. In addition,
we’ve protected the GraphQL mutations, meaning they are no longer avail-
able to anyone; instead, only logged-in users can access them. In the final
chapter, we’ll add automated tests to evaluate the application using Jest.

In this short final chapter, you’ll write a
couple of automated tests that verify the

state of the Food Finder application. Then
you’ll configure a Docker service to continuously

		 run them.
We’ll focus on evaluating the application’s header by using a snapshot

test and mocking the user session. We won’t create tests for the other com-
ponents or our middleware, services, or APIs. However, I encourage you to
build these on your own. Try using browser-based end-to-end tests, with a
specialized framework such as Cypress or Playwright, to test entire pages.
You can find installation instructions and examples for both frameworks at
https://nextjs​.org​/docs​/testing.

16
R U N N I N G A U T O M A T E D

T E S T S I N D O C K E R

https://nextjs.org/docs/testing

254 Chapter 16

Adding Jest to the Project
Install the Jest libraries with npm:

$ docker exec -it foodfinder-application npm install --save-dev jest \
jest-environment-jsdom @testing-library/react @testing-library/jest-dom

Next, configure Jest to work with our Next.js setup by creating a new
file called jest​.config​.js containing the code in Listing 16-1. Save the file in
the application’s root folder.

const nextJest = require("next/jest");

const createJestConfig = nextJest({
 dir: "./",
});

const customJestConfig = {
 moduleDirectories: ["node_modules", "<rootDir>/"],
 testEnvironment: "jest-environment-jsdom",
};

module.exports = createJestConfig(customJestConfig);

Listing 16-1: The jest​.config​.js file

We leverage the built-in Next.js Jest configuration, so we need to config-
ure the project’s base directory to load the config and .env files into the test
environment. Then we set the location of the module directories and the
global test environment. We use a global setting here because our snapshot
tests will require a DOM environment.

Now we want to be able to run the tests with npm commands. Therefore,
add the two commands in Listing 16-2 to the scripts property of the project’s
package.json file.

 "test": "jest ",
 "testWatch": "jest --watchAll"

Listing 16-2: Two commands added to the package.json file’s scripts property

The first command executes all available tests once, and the second con-
tinuously watches for file changes and then reruns the tests if it detects one.

Setting Up Docker
To run the tests using Docker, add another service to docker-compose.yml that
uses the Node.js image. On startup, this service will run npm run testWatch,
the command we just defined. In doing so, we’ll continuously run the tests
and get instant feedback about the application’s state. Modify the file to
match the code in Listing 16-3.

Running Automated Tests in Docker 255

version: "3.0"
services:

 backend:
 container_name: foodfinder-backend
 image: mongo:latest
 restart: always
 environment:
 DB_NAME: foodfinder
 MONGO_INITDB_DATABASE: foodfinder
 ports:
 - 27017:27017
 volumes:
 - "./.docker/foodfinder-backend/seed-mongodb.js:
/docker-entrypoint-initdb.d/seed-mongodb.js"
 - mongodb_data_container:/data/db

 application:
 container_name: foodfinder-application
 image: node:lts-alpine
 working_dir: /home/node/code/foodfinder-application
 ports:
 - "3000:3000"
 volumes:
 - ./code:/home/node/code
 depends_on:
 - backend
 environment:
 - HOST=0.0.0.0
 - CHOKIDAR_USEPOLLING=true
 - CHOKIDAR_INTERVAL=100
 tty: true
 command: "npm run dev"

 jest:
 container_name: foodfinder-jest
 image: node:lts-alpine
 working_dir: /home/node/code/foodfinder-application
 volumes:
 - ./code:/home/node/code
 depends_on:
 - backend
 - application
 environment:
 - NODE_ENV=test
 tty: true
 command: "npm run testWatch"

volumes:
 mongodb_data_container:

Listing 16-3: The modified docker-compose.yml file with the jest service

Our small service, named jest, uses the official Node.js Alpine image
we’ve used previously. We set the working directory and use the volumes

256 Chapter 16

property to make our code available in this container as well. Unlike our
application’s service, however, the jest service sets the Node.js environment
to test and runs the testWatch command.

Restart the Docker containers; the console should indicate that Jest is
watching our files.

Writing Snapshot Tests for the Header Element
As in Chapter 8, create the __tests__ folder to hold our test files in the appli-
cation’s root directory. Then add the header.snapshot.test.tsx file containing
the code in Listing 16-4.

import { act, render } from "@testing-library/react";
import { useSession } from "next-auth/react";
import Header from "components/header";

jest.mock("next-auth/react");
describe("The Header component", () => {
 it("renders unchanged when logged out", async () => {
 (useSession as jest.Mock).mockReturnValueOnce({
 data: { user: {} },
 status: "unauthenticated",
 });
 let container: HTMLElement | undefined = undefined;
 await act(async () => {
 container = render(<Header />).container;
 });
 expect(container).toMatchSnapshot();
 });

 it("renders unchanged when logged in", async () => {
 (useSession as jest.Mock).mockReturnValueOnce({
 data: {
 user: {
 name: "test user",
 fdlst_private_userId: "rndmusr",
 },
 },
 status: "authenticated",
 });
 let container: HTMLElement | undefined = undefined;
 await act(async () => {
 container = render(<Header />).container;
 });
 expect(container).toMatchSnapshot();
 });
});

Listing 16-4: The __tests__/header.snapshot.test.tsx file

This test should resemble those you wrote in Chapter 8. Note that we
import the useSession hook from next-auth/react and then use jest.mock to

Running Automated Tests in Docker 257

replace it in the arrange step of each test. By replacing the session with a
mocked one that returns the state, we can verify that the header component
behaves as expected for both logged-in and logged-out users. We describe the
test suite for the Header component by using the arrange, act, and assert pat-
tern and verify that the rendered component matches the stored snapshot.

The first test case uses an empty session and the unauthenticated status
to render the header in a logged-out state. The second test case uses a ses-
sion with minimal data and sets the user’s status to authenticated. This lets
us verify that an existing session shows a different user interface than an
empty session does.

If you write additional tests, make sure to add them to the __tests__
folder.

Summary
You’ve successfully added a few simple snapshot tests to verify that the Food
Finder application works as intended. Using an additional Docker service,
you can continuously verify that additional developments won’t break the
application.

Congratulations! You’ve successfully created your first full-stack applica-
tion with TypeScript, React, Next.js, Mongoose, and MongoDB. You’ve used
Docker to containerize your application and Jest to test it. With the knowl-
edge gained in the book and its exercises, you’ve laid the foundation for
your career as a full-stack developer.

Pass any of these options to the tsconfig​.json
file’s compilerOptions field to configure

TSC’s transpilation of TypeScript code to
JavaScript. For more information about this

		 process, see Chapter 3.
Here we look at the most common options. You can find more infor-

mation and the complete list in the official documentation at https://www​
.typescriptlang​.org​/tsconfig.

allowJs ​  ​A Boolean that specifies whether the project can import
JavaScript files.

baseUrl ​  ​A string that defines the root directory to use for resolving
module paths. For example, if you set it to "./", TypeScript will resolve
file imports from the root directory.

esModuleInterop ​  ​A Boolean that specifies whether TypeScript should
import CommonJS, AMD, or UMD modules seamlessly or treat them
differently from ES.Next modules. In general, this is necessary if you
use third-party libraries without ES.Next module support.

A
T Y P E S C R I P T C O M P I L E R O P T I O N S

https://www.typescriptlang.org/tsconfig
https://www.typescriptlang.org/tsconfig

260 Appendix A

forceConsistentCasingInFileNames ​  ​A Boolean that specifies whether file
imports are case sensitive. This can be important when some developers
are working on case-sensitive filesystems and others are not, to ensure
file-loading behaviors are consistent for everyone.

incremental ​  ​A string that defines whether the TypeScript compiler
should save the last compilation’s project graph, use incremental type
checks, and perform incremental updates on consecutive runs. This
can make transpiling faster.

isolatedModules ​  ​A Boolean that specifies whether TypeScript should
issue warnings for code not compatible with third-party transpilers
(such as Babel). The most common cause for those warnings is that the
code uses files that are not modules; for example, they don’t have any
import or export statements. This value doesn’t change the behavior of
the actual JavaScript; it only warns about code that can’t be correctly
transpiled.

jsx ​  ​A string that specifies how TypeScript handles JSX. It applies only
to .tsx files and how the TypeScript compiler emits them; for example,
the default value react transforms and emits the code by using React
.createElement, whereas preserver does not transform the code in your
component and emits it untouched.

lib ​  ​An array that adds missing features through polyfills. In general,
polyfills are snippets of code that add support for features and functions
the target environment does not support natively. We need to emulate
modern JavaScript features when we target less-compliant systems, such
as older browsers or node versions. The compiler adds the polyfills
defined in the lib array to the generated code.

module ​  ​A string that sets the module syntax for the transpiled code.
For example, if you set it to commonjs, TSC will transpile this project
to use the legacy CommonJS module syntax with require for import-
ing and module.exports for exporting the code, whereas with ES2015
the transpiled code will use the import and export keywords. This is
independent of the target property, which defines all available language
features except the module syntax.

moduleResolution ​  ​A string that specifies the module resolution strategy.
This strategy also defines how TSC locates definition files for modules
at compile time. Changing the approach can resolve fringe problems
with the importing and exporting of modules.

noEmit ​  ​A Boolean that defines whether TSC should produce files or
only check the types in the project. Set it to false if you want third-party
tools such as webpack, Babel.js, or Parcel to transpile the code instead
of TSC.

resolveJsonModule ​  ​A Boolean that specifies whether TypeScript imports
JSON files. It generates type definitions based on the JSON inside the
file and validates the types on import. We need to manually enable
JSON imports as TypeScript can’t import them by default.

TypeScript Compiler Options 261

skipLibCheck ​  ​A Boolean that defines whether the TypeScript compiler
performs type checks on all type declaration files. Setting it to false
decreases compilation time and is your escape hatch for working with
untyped third-party dependencies.

target ​  ​A string that specifies the language features to which the
TypeScript code should be transpiled. For example, if you set it to es6,
or the equivalent ES2015, TSC will transpile this project to ES2015-
compatible JavaScript, which, for example, uses let and const.

In version 13, Next.js introduced a new
routing paradigm that uses an app directory

instead of the pages directory. This appendix
discusses this new feature so that you can explore

		� it further on your own. As there are no plans to dep-
recate the pages directory, you can continue using
the routing approach you learned in Chapter 5. You
can even use both directories simultaneously; just be
careful not to add to both directories folders and files
that would create the same route, as this could cause
errors.

Both the app and pages directories use folders and files to create routes.
However, the app directory distinguishes between server and client com-
ponents. In the pages folder, everything is a client component, meaning that
all the code is part of the JavaScript bundle Next.js sends to the client. But

B
T H E N E X T. J S A P P D I R E C T O R Y

264 Appendix B

every file in the app directory is a server component by default, and its code is
never sent to the client.

This appendix takes a look at the basic concepts of the new approach
and then initializes a Next.js application using the new structure.

Server Components vs. Client Components
The terms client and server in this context refer to the environments in which
the Next.js runtime renders a component. The client environment is the
user’s environment (usually the browser), whereas the server refers to the
Next.js server that receives the request from the client, whether it runs on
your local host or in a remote location.

With the introduction of server components, Next.js no longer purely
uses client-side routing. In server-centric routing, the server renders com-
ponents and then sends the rendered code to the client. This means the
client doesn’t download a routing map, which reduces the initial page size.
Additionally, the user doesn’t have to wait until all resources have loaded
before the page becomes interactive. Next.js server components leverage
React’s streaming architecture to progressively render each component’s
content. With this model, the page becomes interactive before it has fin-
ished loading.

Server Components
Next.js server components build upon the React server components that
have been available since React version 18. Because the server renders these
components, they don’t add anything to the JavaScript sent to the client,
reducing the overall page size and increasing page performance scores.
Also, the JavaScript bundle is cacheable, so the client won’t redownload
it when we add new additional server components, only when we add new
client-side scripts through additional client components.

In addition, because these components are rendered completely on the
server, they can contain sensitive server information, such as access tokens
and API keys. (To add an additional layer of protection, Next.js’s render-
ing engine replaces with an empty string all environment variables that
are not explicitly prefixed with NEXT_PUBLIC.) Finally, we can use large-scale
dependencies and additional frameworks without bloating the client-side
scripts and access backend resources directly, increasing the application’s
performance.

Listing B-1 shows the basic structure of a server component.

export default async function ServerComponent(props: WeatherProps): Promise<JSX.Element> {

 return (
 <h1>The weather is {props.weather}</h1>
);
}

Listing B-1: A basic server component

The Next.js app Directory 265

In Chapter 4, you learned that a React component is a JavaScript func-
tion that returns a React element; Next.js server components follow that
same structure, except that they’re asynchronous functions, so we can use
the async/await pattern with fetch. Thus, instead of returning the React ele
ment, it returns a promise of it. The code in Listing B-1 should remind you
of the WeatherComponent created in the previous chapters, except it doesn’t
contain any client-side code.

Client Components
By contrast, a client component is a component rendered by the browser
rather than by the server. You already know how to write client compo-
nents, because all React and Next.js components were traditionally client
components.

To render these components, the client needs to receive all required
scripts and their dependencies. Each component increases the bundle size,
decreasing the application’s performance. For that reason, Next.js offers
options to optimize the application’s performance, such as server-side ren-
dering (SSR), which pre-renders the pages on the server, then lets the client
add interactive elements to the page.

All components in the app directory are server components by default.
Client components, however, can reside anywhere (for example, in the compo-
nents directory we’ve used previously). Listing B-2 shows the WeatherComponent
created in Listing 5-4 refactored into a client component that works with the
app directory.

"use client";

import React, { useState, useEffect } from "react";

export default function ClientComponent (props: WeatherProps): JSX.Element {

 const [count, setCount] = useState(0);
 useEffect(() => {setCount(1);}, []);

 return (
 <h1
 onClick={() => setCount(count + 1) } >
 The weather is {props.weather},
 and the counter shows {count}
 </h1>
);
}

Listing B-2: A basic client component that is similar to the WeatherComponent created
in Listing 5-4

We export the component as the default function with the name
ClientComponent. Because we’re using the client-side hooks useEffect and
useState as well as the onClick event handler, we need to declare the compo-
nent as a client component with the "use client" directive at the top of the
file. Otherwise, Next.js will throw an error.

266 Appendix B

Rendering Components
In Chapter 5, we performed server-side rendering with the getServerSideProps
function and used static site generation (SSG) with the getStaticProps function.
In the app directory, both functions are obsolete. If we want to optimize an
application, we can instead use Next.js’s built-in fetch API, which controls data
retrieval and rendering at the component level.

Fetching Data
The new asynchronous fetch API extends the native fetch web API and
returns a promise. Because server components are just exported functions
that return a JSX element, we can declare them as asynchronous functions
and then use fetch with the async/await pattern.

This pattern is beneficial because it allows us to fetch data for only the
segment that uses the data rather than for an entire page. This lets us lever-
age React features to automatically display loading states and gracefully
catch errors, as discussed in “Exploring the Project Structure” on page 269.
If we follow this pattern, a loading state will block the rendering of only a
particular server component and its user interface; the rest of the page will
be fully functional and interactive.

N O T E 	 Client components shouldn’t be asynchronous functions, because the way JavaScript
handles asynchronous calls can easily lead to multiple re-renders and slow down the
whole application. Next.js developers have discussed adding a generic use hook that
lets us use asynchronous functions in client components by caching the results, but
this hook is not yet finalized. If you absolutely need client-side data fetching, I recom-
mend using a specialized library such as SWR, which you can find at https://swr​
.vercel​.app.

You might worry that, when each server component loads its own data,
you’ll end up with a massive number of requests. How do these numbers
impact the overall page performance? Well, Next.js’s fetch comes with multi-
ple optimizations to speed up the application. For example, it automatically
caches the response data for GET requests sent from a server component to
the same API, reducing the number of requests.

However, POST requests aren’t usually cacheable, as the data they
contain might change, so fetch won’t automatically cache them. This is a
problem for us because GraphQL typically uses POST requests. Fortunately,
React exposes a cache function that memorizes the result of the function it
wraps. Listing B-3 shows an example of using cache with a GraphQL API.

import { cache } from 'react';

export const getUserFromGraphQL = cache(async (id:string) => {
 return await fetch("/graphql," { method: "POST", body: "query":" " });
});

Listing B-3: A simple outline of a cached POST API call

https://swr.vercel.app
https://swr.vercel.app

We wrap the API call in the cache function we imported from React and
return the API’s response object. Note that the cached arguments can use
only primitive values because the cache function doesn’t perform a deep
comparison for the arguments.

Another optimization we can implement is to leverage the asynchro-
nous nature of fetch to request data for the server component in a parallel
fashion instead of sequentially. Here, the most common pattern is to use
Promise.all to start all requests at the same time and block the rendering
until all requests have been completed. Listing B-4 shows us the relevant
code for this pattern.

const userPromiseOne = getUserFromGraphQL ("0001");
const userPromiseTwo = getUserFromGraphQL ("0002");

const [userDataOne, userDataTwo] = await Promise.all([userPromiseOne, userPromiseTwo]);

Listing B-4: Two parallel API calls with Promise.all

We set up two requests, both of which return a promise user object.
Then we await the result of both promises and call Promise.all with an array
of the previously created asynchronous API calls. The Promise.all function
resolves as soon as both promises return their data, and then the server
component’s code continues.

Static Rendering
Static rendering is the default setting for both server and client compo-
nents. It resembles static site generation, which we used with getStaticProps
in Chapter 5. This rendering option pre-renders both client and server
components in the server environment at build time. As a result, requests
will always return the same HTML, which remains static and is never
re-created.

Each component type is rendered slightly differently. For client com-
ponents, the server pre-renders the HTML and JSON data; the client then
receives the pre-rendered data, including the client-side script, to add inter-
activity to the HTML. For server components, the browser receives only the
rendered payload to hydrate the component. They neither have client-side
JavaScript nor use JavaScript for hydration; hence they do not send any
JavaScript to the client and, in turn, don’t bloat the bundled scripts.

Listing B-5 shows how to statically render the utils/fetch-names.ts file
from Listing 5-8.

export default async function ServerComponentUserList(): Promise<JSX.Element> {
 const url = "https://www.usemodernfullstack.dev/api/v1/users";
 let data: responseItemType[] | [] = [];
 let names: responseItemType[] | [];
 try {
 const response = await fetch(url, { cache: "force-cache" });
 data = (await response.json()) as responseItemType[];

The Next.js app Directory 267

268 Appendix B

 } catch (err) {
 throw new Error("Failed to fetch data");
 }
 names = data.map((item) => {
 return { id: item.id, name: item.name };
 });

 return (

 {names.map((item) => (
 <li key="{item.id}">{item.name}
))}

);
}

Listing B-5: A server component that uses static rendering

First we define a server component as an asynchronous function that
directly returns a JSX.Element wrapped in a promise.

In Chapter 5, we returned the page’s data and then used the page props
to pass it the NextPage function, where we generated the element. Here, after
setting the url, we use the asynchronous fetch function to get the data from
the remote API. Next.js will cache the results of the API call and the ren-
dered component, and the server will reuse the generated code and never
re-create it.

If you use fetch without an explicit cache setting, it will use force-cache
as the default to perform static rendering. To switch to incremental static
regeneration instead, replace the fetch call from Listing B-5 with the one in
Listing B-6.

 const response = await fetch(url, { next: { revalidate: 20 } });

Listing B-6: The modified fetch call for ISR-like rendering

We simply add the revalidate property with a value of 30. The server
will then render the component statically but invalidate the current HTML
30 seconds after the first page request and re-render it.

Dynamic Rendering
Dynamic rendering replaces Next.js’s traditional server-side rendering
(SSR), which we used by exporting the getServerSideProps function from a
page route in Chapter 5. Because Next.js uses static rendering by default,
we must actively opt in to using dynamic rendering in one of two ways: by
disabling the cache in our fetch requests or by using a dynamic function. In
Listing B-7, we disable the cache.

export default async function ServerComponentUserList(): Promise<JSX.Element> {
 const url = "https://www.usemodernfullstack.dev/api/v1/users";
 let data: responseItemType[] | [] = [];
 let names: responseItemType[] | [];

 try {
 const response = await fetch(url, { cache: "no-cache" });
 data = (await response.json()) as responseItemType[];
 } catch (err) {
 throw new Error("Failed to fetch data");
 }
 names = data.map((item) => {
 return { id: item.id, name: item.name };
 });

 return (

 {names.map((item) => (
 <li key="{item.id}">{item.name}
))}

);
}

Listing B-7: A server component that uses dynamic rendering by disabling the cache

We explicitly set the cache property to no-cache. Now the server will re-
fetch the data for the component upon each request.

Instead of disabling the cache, we could use dynamic functions, includ-
ing the header function or the cookies function in server components and the
useSearchParams hook in client components. These functions use dynamic data
such as request headers, cookies, and search parameters that are unknown
during build time and are part of the request object we pass to the func-
tion. The server needs to run these functions for each request because the
required data depends on the request.

Keep in mind that dynamic rendering affects the whole route. If one
server component in a route opts for dynamic rendering, Next.js will render
the whole route dynamically at request time.

Exploring the Project Structure
Let’s set up a new Next.js application to explore the features we’ve discussed.
First, use the npx create-next-app@latest command with the --typescript
--use-npm flags to create a sample application. When answering the setup
wizard’s questions, choose to use the app directory instead of the pages
directory.

N O T E 	 You can also use the online playground at https://codesandbox​.io​/s​/ to run the
Next.js code examples in this appendix. Search for the official Next.js (App router)
template when creating a new code sandbox there.

Now enter the npm run dev command to start the application in devel-
opment mode. You should see a Next.js welcome screen in your browser
at http://localhost:3000. Unlike the welcome screen you saw in Chapter 5,

The Next.js app Directory 269

https://codesandbox.io/s/

270 Appendix B

which encouraged us to edit the pages/index.tsx file, here the welcome screen
directs us to the app/page.tsx file.

Take a look at the files and folders the wizard created and compare
them with the ones from Chapter 5. You should see that the pages and styles
directories are not part of the new structure. Instead, the router replaces
both with the app directory. Inside it, you should see neither the _app.tsx
file nor the _document.tsx file. Instead, it uses the root layout file layout.tsx
to define the HTML wrapper for all rendered pages and the page.tsx file to
render the root segment (the home page).

The pages directory uses only one file to create the final content of the
page route. By contrast, the app directory uses multiple files to create a page
route and add additional behavior.

The page.tsx file generates the user interface and the content for the
route, and its parent folder defines the leaf segment. Without a page.tsx file,
the URL path won’t be accessible. We can then add other special files to the
page’s folder. Next.js will automatically apply them to this URL segment and
its children. The most important of these special files are layout.tsx, which
creates a general user interface; loading.tsx, which uses a React suspense
boundary to automatically create a “loading” user interface while the page
loads; and error.tsx, which uses a React error boundary to catch errors and
then show the user a custom error interface.

Figure B-1 compares the files and folders for the components/weather
page route when using the pages directory and the app directory.

Browser URL:

Files:

Root: pages directory Root: app directory

localhost:3000

Root

Segment

Leaf

Creates content

pages/

components/

weather.tsx

app/

components/

weather/

page.tsx

layout.tsx

loading.tsx

error.tsx

/ /components weather

Root Segment Leaf

Figure B-1: Comparing the page route components/weather in the pages and app
directory structures

When the app directory is the root folder, its subfolders still correspond
to URL segments, but now the folder that contains the page.tsx file defines
the URL’s final leaf segment. The optional special files next to it affect only
the contents of the components/weather page.

Let’s rebuild the components/weather page route you created in Listing 5-1
with the app directory. Create the components folder and weather subfolder
inside the app directory and then copy the custom.d.ts file from the previous
code exercises into the root folder.

Updating the CSS
Begin by opening the existing app/globals.css file and replacing its content
with the code from Listing B-8. We’ll need to make some modifications to
use special files in our component.

html,
body {
 background-color: rgb(230, 230, 230);
 font-family: -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Oxygen,
 Ubuntu, Cantarell, Fira Sans, Droid Sans, Helvetica Neue, sans-serif;
 margin: 0;
 padding: 0;
}

a {
 color: inherit;
 text-decoration: none;
}

* {
 box-sizing: border-box;
}

nav {
 align-items: center;
 background-color: #fff;
 box-shadow: 0 0 10px rgba(0, 0, 0, 0.25);
 display: flex;
 height: 3rem;
 justify-content: space-evenly;
 padding: 0 25%;
}

main {
 display: flex;
 justify-content: center;
}

main .content {
 height: 300px;
 padding-top: 1.5rem;
 width: 400px;
}

The Next.js app Directory 271

272 Appendix B

main .content li {
 height: 1.25rem;
 margin: 0.25rem;
}

main .loading {
 animation: 1s loading linear infinite;
 background: #ddd linear-gradient(110deg, #eeeeee 0%, #f5f5f5 15%, #eeeeee 30%);
 background-size: 200% 100%;
 min-height: 1.25rem;
 width: 90%;
}

@keyframes loading {
 to {
 background-position-x: -200%;
 }
}
main .error {
 background: #ff5656;
 color: #fff;
}

section {
 background: #fff;
 border: 1px dashed #888;
 box-shadow: 0 0 10px rgba(0, 0, 0, 0.25);
 margin: 2rem;
 padding: 0.5rem;
 position: relative;
}

section .flag {
 background: #888;
 box-shadow: 0 0 10px rgba(0, 0, 0, 0.25);
 color: #fff;
 font-family: monospace;
 left: 0;
 padding: 0.25rem;
 position: absolute;
 top: 0;
 white-space: nowrap;
}

Listing B-8: The app/globals.css file with basic styles for our code examples

We create one nav element for the navigation with a main content area
below it. Then we add styles for the loading and error states we’ll create
later. In addition, we use the section element to outline the boundaries of
the files and flag styles to add labels to the sections.

Defining a Layout
Layouts are server components that define the user interface for a particular
route segment. Next.js renders this layout when this segment is active. Layouts
are shared across all pages, so they can be nested into each other, and all lay-
outs for a specific route and its children will be rendered when this route seg-
ment is active. Figure B-2 shows the relationship between the URL, the files,
and the component hierarchy for the components/weather route.

Browser URL:

Files:

Root: app directory Simplified rendered structure

localhost:3000

Renders

Renders

Renders

app/

layout.tsx

components/

<Root Layout>

<Segment Layout>

<Leaf Layout>

<Page Content />layout.tsx

weather/

page.tsx

layout.tsx

</Leaf Layout>

</Segment Layout>

</Root Layout>

/ /components weather

Root Segment Leaf

Figure B-2: The simplified layout component hierarchy

In this example, each folder contains a layout.tsx file. Next.js will render
these in a nested fashion and make the page’s content the final rendered
component.

Although we can fetch data in a layout, we can’t share data between
a parent layout and its children. Instead, we can leverage the fetch API’s
automatic deduplication to reuse data in each child segment or component.
When we navigate from one page to another, only the layouts that change
are re-rendered. Shared layouts won’t be re-rendered when their child seg-
ments change.

The root layout, which returns the skeleton structure with the html and
body elements for the page, is required, while all other layouts we create are
optional. Let’s create a root layout. First, add a new interface to the end of
the custom.d.ts file, which we copied from the previous exercise. We’ll use
the LayoutProps interface to type the layout’s properties object:

interface LayoutProps {
 children: React.ReactNode;
}

The Next.js app Directory 273

274 Appendix B

Now open the app/layout.tsx file and replace its content with the code
from Listing B-9.

import "./globals.css";

export const metadata = {
 title: "Appendix C",
 description: "The Example Code",
};

export default function RootLayout(props: LayoutProps): JSX.Element {
 return (
 <html lang="en">
 <body>
 <section>
 app/layout(.tsx)
 {props.children}
 </section>
 </body>
 </html>
);
}

Listing B-9: The file app/layout.tsx defines the root layout.

We import the global.css file that we created earlier and then define the
default SEO metadata, the page title, and the page description through the
metadata object. This replaces the next/head component we used in the pages
directory for all pages in the app directory.

Then we define the RootLayout component, which accepts an object of
the LayoutProps type and returns a JSX.Element. We also create the JSX.Element,
explicitly adding the html and body elements, then use the section and a span
with the CSS class flag to outline the page structure. We add the children
property from the LayoutProps object to wrap them with our root HTML
structure.

Now let’s add optional layouts to the app/components and app/components/
weather folders. Create a layout.tsx file in each and then place the code from
Listing B-10 to the app/components/layout.tsx file.

export default function ComponentsLayout(props: LayoutProps): JSX.Element {
 return (
 <section>
 app/components/layout(.tsx)
 <nav>Navigation Placeholder</nav>
 <main>{props.children}</main>
 </section>
);
}

Listing B-10: The file app/components/layout.tsx defines the segment layout.

This segment layout file follows the same basic structure as the root
layout. We define a layout component that receives the LayoutProps object
with the children property and returns a JSX.Element. Unlike in the root
layout, we set only the inner structure, the nav element with the navigation
placeholder, and the main content area where we render the child elements
from the LayoutProps object, representing this segment’s child content
(the leaf).

Lastly, create the leaf’s layout by adding the code from Listing B-11 to
the app/components/weather/layout.tsx file.

export default function WeatherLayout(props: LayoutProps): JSX.Element {
 return (
 <section>
 app/components/weather/layout(.tsx)
 {props.children}
 </section>
);
}

Listing B-11: The file app/components/weather/layout.tsx defines the leaf layout.

The leaf’s layout resembles the segment layout from Listing B-10, but it
returns a more straightforward HTML structure, as the children property
does not contain another layout; instead, it contains the page’s content (in
page.tsx), and the suspense boundary and error boundary from loading.tsx
and error.tsx.

Adding the Content and Route
To expose the page route, we need to create the page.tsx file; otherwise, if
we tried to visit the components/weather page route at http://localhost:3000​/
components​/weather, we’d see Next.js’s default 404 error page. To re-create
the page content from Listing 5-1, we’ll create two files. One is component
.tsx, which contains the WeatherComponent, and the other is page.tsx, which
resembles the NextPage wrapper we used in Listing 5-1. Of course, pages
could contain additional components located in other folders.

Let’s start by creating the component.tsx file inside the apps/components/
weather folder and adding the code from Listing B-12 into it.

"use client";

import { useState, useEffect } from "react";

export default function WeatherComponent(props: WeatherProps): JSX.Element {

 const [count, setCount] = useState(0);

 useEffect(() => {
 setCount(1);
 }, []);

The Next.js app Directory 275

276 Appendix B

 return (
 <h1 onClick={() => { setCount(count + 1) }} >
 The weather is {props.weather}, and the counter shows {count}
 </h1>
);
}

Listing B-12: The file app/components/weather/component.tsx defines the
WeatherComponent.

This code is similar to the code in Listing 5-1 for the WeatherComponent
constant, except we add the "use client" statement to explicitly set it as a
client component and export it as the default function instead of storing it
in a constant. The component itself has the same functionality as before:
we create a headline that shows the weather string and a counter we can
increase by clicking the headline.

Now we add the page.tsx file and the code from Listing B-13 to create
the page route and expose the route to the user.

import WeatherComponent from "./component";

export const metadata = {
 title: "Appendix C - The Weather Component (Weather & Count)",
 description: "The Example Code For The Weather Component (Weather & Count)",
};

export default async function WeatherPage() {
 return (
 <section className="content">
 app/components/weather/page(.tsx)
 <WeatherComponent weather="sunny" />
 </section>
);
}

Listing B-13: The file app/components/weather/page.tsx defines the page route.

We import the WeatherComponent we just created and then set the SEO
metadata on the page level. Then we export the page route as the default
async function. When we compare it to Listing 5-1, which contains a simi-
lar page, we see that we no longer need to export a NextPage; instead, we
use a basic function. The app directory simplifies the structure of the code.

Now visit our components/weather page route at http://localhost:3000​/
components​/weather in the browser. You should see a page that looks similar
to Figure B-3.

Notice two things here. First, you should recognize the component
from Chapter 5, whose counter increases when we click the headline. In
addition, the combination of the styles and the span elements we added
to each .tsx file visualizes the relations between the files. We see that the
nested layout files resemble the simplified component hierarchy from
Figure B-3.

Figure B-3: The components/weather page showing the nested components

Catching Errors
As soon as we add an error.tsx file to the folder, Next.js wraps our page’s con-
tent with a React error boundary. Figure B-4 shows the simplified compo-
nent hierarchy of the components/weather route with an added error.tsx file.

Browser URL:

Files:

Root: app directory Simplified rendered structure

localhost:3000

Renders

app/

layout.tsx

components/

<Root Layout>

<Segment Layout>

<Leaf Layout>

<Error Boundary>layout.tsx

weather/

page.tsx

layout.tsx </Leaf Layout>

</Segment Layout>

</Root Layout>

error.tsx

<Page Content />

</Error Boundary>

/ /components weather

Root Segment Leaf

Figure B-4: The simplified layout component hierarchy includes the error boundary.

The Next.js app Directory 277

278 Appendix B

We see that the error.tsx file automatically creates an error boundary
around the page’s content. By doing so, Next.js enables us to catch errors
on a page level and gracefully handle those instead of freezing the whole
user interface or redirecting the user to a generic error page. Think about
it as a try...catch block on a component level. We can now show a tai-
lored error message and display a button that lets the user re-render the
page content in a previously working state without reloading the whole
application.

The error.tsx file exports a client component that the error boundary
uses as the fallback interface. In other words, this component replaces the
content when the code throws an error and activates the error boundary. As
soon as it is active, it contains the error, ensuring that the layouts above the
boundary remain active and maintain their internal state. The error com-
ponent receives the error object and the reset function as parameters.

Let’s add an error boundary to the components/weather route. Start by
adding a new ErrorProps interface to type the component’s properties into
the customs.d.ts file:

interface ErrorProps {
 error: Error;
 reset: () => void;
}

Next, create the error.tsx file next to page.tsx in the app/components/
weather directory and add the code from Listing B-14.

"use client";

export default function WeatherError(props: ErrorProps): JSX.Element {
 return (
 <section className="content error">
 app/components/weather/error(.tsx)
 <h2>Something went wrong!</h2>
 <blockquote>{props.error?.toString()}</blockquote>
 <button onClick={() => props.reset()}>Try again (re-render)</button>
 </section>
);
}

Listing B-14: The file app/components/weather/error.tsx adds the error boundary and the fallback UI.

Because we know that the error component needs to be a client compo-
nent, we add the "use client" directive to the top of the file and then define
and export the component. We use the ErrorProps interface we just created
to type the component’s properties. We then convert the error property to
a string and display it to inform the user of the type of error that occurred.
Finally, we render a button that calls the reset function that the component
received through the properties object. The user can re-render the compo-
nent into a previous working state by clicking the button.

Now, with the error boundary in place, we’ll modify component.tsx to
throw an error if the counter hits 4 or more. Open the file and add the
code from Listing B-15 below the first useEffect hook.

 useEffect(() => {
 if (count && count >= 4) {
 throw new Error("Count >= 4! ");
 }
 }, [count]);

Listing B-15: The additional useEffect hook for app/components/weather/component.tsx

The additional useEffect hook we add to the component is straightfor-
ward; as soon as the count variable changes, we verify the error condition,
and as soon as the variable’s value is 4 or more, we throw an error with
the message Count >= 4!, which the error boundary catches and gracefully
handles by showing the fallback user interface that the error.tsx file exports.

To test this feature, open http://localhost:3000​/components​/weather in the
browser and click the headline until you trigger the error. You should see
the error component instead of the weather component, as in Figure B-5.

Figure B-5: The components/weather page in the error state

The layout markers show us that error.tsx has replaced page.tsx. We also
see the string Error: Count >=4!, which we passed to the error constructor. As
soon as we click the re-render button, page.tsx should replace error.tsx, and
the screen will look like Figure B-4 previously.

Showing an Optional Loading Interface
Now we’ll create the loading.tsx file. With this feature in place, Next.js auto-
matically wraps the page content with a React suspense component, creat-
ing a component hierarchy that looks similar to Figure B-6.

The Next.js app Directory 279

280 Appendix B

Browser URL:

Files:

Root: app directory Simplified rendered structure

localhost:3000

Renders

app/

layout.tsx

components/

<Root Layout>

<Segment Layout>

<Leaf Layout>

<Error Boundary>layout.tsx

weather.tsx

page.tsx

layout.tsx

</Leaf Layout>

</Segment Layout>

</Root Layout>

error.tsx

<Page Content />

</Error Boundary>

loading.tsx

<Suspense Boundary>

</Suspense Boundary>

/ /components weather

Root Segment Leaf

Figure B-6: The simplified layout component hierarchy with the loading interface

The loading.tsx file is a basic server component that returns the
pre-rendered loading user interface. When we load a page or navigate
between pages, Next.js will instantly display this component while load-
ing the new segment’s content. Once rendering is complete, the runtime
will swap the loading state with the new content. In this way, we can
easily display meaningful loading states, such as skeletons or custom
animations.

Let’s add a basic loading user interface to the weather component route
by adding the code from Listing B-16 to the loading.tsx file.

export default function WeatherLoading(): JSX.Element {
 return (
 <section className="content">
 app/components/weather/loading(.tsx)
 <h1 className="loading"></h1>
 </section>
);
}

Listing B-16: The file app/components/weather/loading.tsx adds a suspense boundary
with the loading user interface.

We define and export the WeatherLoading component, which returns a
JSX.Element. In the HTML, we add a headline element similar to the one in
page.tsx, except this one adds the loading class we created in the global.css
file to the headline and shows an animated placeholder.

When we open http://localhost:3000​/components​/weather in the browser, we
should see a loading interface similar to Figure B-7.

Figure B-7: The components/weather page while loading the page’s content

If you don’t see the animated placeholder, this means Next.js has already
cached your segment’s content.

Adding a Server Component That Fetches Remote Data
Now that you understand the folders and files in the app directory, let’s add
a server component that uses the fetch API to receive the list of users from
the remote API https://www​.usemodernfullstack​.dev​/api​/v1​/users and renders it
to the browser. We wrote a version of this code in Chapter 5.

Create the folder app/components/server-component and add the special
files component.tsx, loading.tsx, error.tsx, layout.tsx, and page.tsx to it. Then set
up the component’s functionality by adding the code from Listing B-17 to
the component.tsx file.

export default async function ServerComponentUserList(): Promise<JSX.Element|Error> {
 const url = "https://www.usemodernfullstack.dev/api/v1/users";
 let data: responseItemType[] | [] = [];
 let names: responseItemType[] | [];
 try {
 const response = await fetch(url, { cache: "force-cache" });
 data = (await response.json()) as responseItemType[];

The Next.js app Directory 281

https://www.usemodernfullstack.dev/api/v1/users

282 Appendix B

 } catch (err) {
 throw new Error("Failed to fetch data");
 }
 names = data.map((item) => {
 return { id: item.id, name: item.name };
 });

 return (

 {names.map((item) => (
 <li id="{item.id}" key="{item.id}">
 {item.name}

))}

);
}

Listing B-17: The app/components/server-component/component.tsx file

Here we create a default server component that uses the fetch API to
await the API response. To be able to do so, we define it as an asynchronous
function that returns a promise of a JSX.Element or an Error. Then we store the
API endpoint in a constant and define the variables we’ll need later on. We
wrap the API call in a try...catch statement to activate the Error Boundary if
the API request fails. We then transform the data in a manner similarly to the
way we did in Chapter 5 and return a JSX.Element that displays a list of users.

Now we add the loading user interface that Next.js automatically dis-
plays while we await the API’s response and the component’s JSX response.
Place the code from Listing B-18 into the loading.tsx file.

export default function ServerComponentLoading(): JSX.Element {
 return (
 <section className="content">

 app/components/server-component/loading(.tsx)

 <ul id="load">
 {[...new Array(10)].map((item, i) => (
 <li className="loading">
))}

 </section>
);
}

Listing B-18: The app/components/server-component/loading.tsx file

As before, the loading component is a server component that returns a
JSX.Element. This time, the loading skeleton is a list with 10 items resembling
the component’s rendered HTML structure. You’ll see that this gives the

user a good impression of the expected content and should improve the
user’s experience.

Next, we create the error boundary by adding the code from
Listing B-19 to the error.tsx file.

"use client"; // Error components must be Client components

export default function ServerComponentError(props: ErrorProps): JSX.Element {
 return (
 <section className="content">
 app/components/server-component/error(.tsx)
 <h2>Something went wrong!</h2>
 <code>{props.error?.toString()}</code>
 <button onClick={() => props.reset()}>Try again (re-render)</button>
 </section>
);
}

Listing B-19: The app/components/server-component/error.tsx file

Except for the flag outlining the file structure, the error boundary is
similar to the one we used in the weather component.

Then we add the code from Listing B-20 to the layout.tsx file.

export default function ServerComponentLayout(props: LayoutProps): JSX.Element {
 return (
 <section>
 app/components/server-component/layout(.tsx)
 {props.children}
 </section>
);
}

Listing B-20: The app/components/server-component/layout.tsx file

Again, the code is similar to the code we used for the weather compo-
nent. We adjust only the flag outlining the component hierarchy.

Finally, with all the parts in place, we add the code from Listing B-21 to
the page.tsx file to expose the page route.

import ServerComponentUserList from "./component";

export const metadata = {
 title: "Appendix C - Server Side Component (User API)",
 description: "The Example Code For A Server Side Component (User API)",
};

export default async function ServerComponentUserListPage(): JSX.Element {
 return (
 <section className="content">
 app/components/server-component/page(.tsx)
 {/* @ts-expect-error Async Server Component */}

The Next.js app Directory 283

284 Appendix B

 <ServerComponentUserList />
 </section>
);
}

Listing B-21: The app/components/server-component/page.tsx file

Completing the Application with the Navigation
With two pages in the application, we can now use the next/link component
to replace the navigation placeholder in the nav element. This should create
a fully functional application prototype that lets us navigate between the
pages. Open the app/components/layout.tsx file and replace the code in the
file with the code from Listing B-22.

import Link from "next/link";

export default function ComponentsLayout(props: LayoutProps): JSX.Element {
 return (
 <section>
 app/components/layout(.tsx)
 <nav>
 <Link href="/components/server-component">
 User API

 (Server Component)
 </Link>{" "}
 |
 <Link href="/components/weather">
 Weather Component

 (Client Component)
 </Link>
 </nav>
 <main>{props.children}</main>
 </section>
);
}

Listing B-22: The updated app/components/layout.tsx file

We import the next/link component and then add two links to our navi-
gation, one pointing to the user list server component we just created and
the other pointing to the weather client component.

Let’s visit the application’s weather component page at http://localhost:
3000​/components​/weather. You should see an application that looks similar to
the screenshot in Figure B-8.

As soon as you navigate between the pages, you should see the loading
user interface. With the outlines we’ve added to all the files, we easily keep
track of which files Next.js uses to render the current page.

Figure B-8: The components/weather page with the functional navigation

Replacing API Routes with Route Handlers
If you look at the folder structure Next.js created for you, you should see
that the app directory contains an api subfolder. You probably already
guessed that we use this folder to define APIs. But unlike the API routes
discussed in Chapter 5, which were regular functions, the app directory
uses route handlers, which are functions that require a particular naming
convention.

These route handlers belong in special files named route.ts that usually
reside in a subfolder of the app/api folder. They are asynchronous functions
that receive a Request object and an optional context object as parameters.
We name each function after the HTTP method it should react to. For
example, the code in Listing B-23 shows how to define route handlers that
handle GET and POST requests for the same API.

import { NextRequest, NextResponse } from 'next/server';
export async function GET(request: NextRequest): Promise<NextResponse> {
 return NextResponse.json({});
}

export async function POST(request: NextRequest): Promise<NextResponse {
 return NextResponse.json({});
}

Listing B-23: A skeleton structure of a route.ts file defining route handlers

To create the route handlers, we import the NextRequest and NextResponse
objects from Next.js’s server package. Next.js adds additional convenience

The Next.js app Directory 285

286 Appendix B

methods for cookie handling, redirects, and rewrites. You can read more
about them in the official documentation at https://nextjs​.org.

We then define two asynchronous functions, both of which receive a
NextRequest and return a promise of a NextResponse. The function names
correspond to the HTTP method they should respond to. Next.js supports
using the GET, POST, PUT, PATCH, DELETE, HEAD, and OPTIONS
methods as function names.

When defining page routes and route handlers, remember that these
files take over all requests for a given segment. This means that a route.ts file
cannot be in the same folder as a page.tsx file. Also, route handlers are the
only way to define APIs if you use the app directory: you can’t have an api
folder in both the pages directory and app directory.

Next.js has statically and dynamically evaluated route handlers.
Statically evaluated route handlers will be cached and reused for every
request, whereas dynamically evaluated route handlers must request the
data upon each request. By default, the runtime statically evaluates all GET
route handlers that don’t use a dynamic function or the Response object. As
soon as we use a different HTTP method, the dynamic cookies or headers
function, or the Response object, the route handler becomes dynamically
evaluated. The same applies to APIs with dynamic segments, which receive
the dynamic parameters through the context object.

Let’s re-create the API route api/v1/weather/[zipcode].ts from Listing 5-1
as a route handler that we can use in the app directory. Add the code from
Listing B-24 to a route.ts file in the folder structure app/api/v1/weather/
[zipcode].

import { NextResponse, NextRequest } from "next/server";

interface ReqContext {
 params: {
 zipcode: number;
 }
}

export async function GET(req: NextRequest, context: ReqContext): Promise<NextResponse> {
 return NextResponse.json(
 {
 zipcode: context.params.zipcode,
 weather: "sunny",
 temp: 35,
 },
 { status: 200 }
);
}

Listing B-24: The route handler in app/api/v1/weather/[zipcode]/route.ts

Notice that we’ve used the square brackets pattern on the folder
structure to access the dynamic segment through the function’s second
parameter context object.

https://nextjs.org

Within the file, we import the Next.js Response and NextRequest objects
from the server package and then define the interfaces for the route han-
dler. On the RequestContext interface, we add the zipcode property to params,
representing the API’s dynamic segment. Finally, we export the asynchro-
nous GET function, the API route handler that reacts to all GET requests
for this API endpoint. It receives the request object and the request con-
text as parameters and uses the NextResponse’s json function to return the
response data. We access the URL parameter zipcode through the context
object’s params object and then add it to the response data. We set additional
response options through the json function’s second parameter, explicitly
setting the HTTP status code to 200.

Now try querying the API with curl:

$ curl -i \
 -X GET \
 -H "Accept: application/json" \
 http://localhost:3000/api/v1/weather/12345

You should receive this JSON response:

HTTP/1.1 200 OK
content-type: application/json
--snip--
{"zipcode":"12345","weather":"sunny","temp":35}

This is the same response received in Chapter 5, where we accessed the
API through the browser.

The Next.js app Directory 287

In Jest, matchers let us check a specific con-
dition, such as whether two values are equal

or whether an HTML element exists in the
current DOM. Jest comes with a set of built-in

		 matchers. In addition, the JEST-DOM package from
		 the testing library provides DOM-specific matchers.

Built-in Matchers
This section covers the most common built-in Jest matchers. You can find a
complete list in the official JEST documentation at https://jestjs​.io​/docs​/expect.

toBe ​  ​This matcher is the simplest and by far the most common. It’s a
simple equality check to determine whether two values are identical.
It behaves similarly to the strict equality (===) operator, as it considers
type differences. Unlike the strict equality operator, however, it consid-
ers +0 and -0 to be different.

C
C O M M O N M A T C H E R S

https://jestjs.io/docs/expect

290 Appendix C

test('toBe', () => {
 expect(1 + 1).toBe(2);
})

toEqual ​  ​We use toEqual to perform a deep-equality check between
objects and arrays, comparing all of their properties or items. This
matcher ignores undefined values and items. Furthermore, it does
not check the object’s types (for example, whether they are instances
or children of the same class or parent object). If you require such a
check, consider using the toStrictEqual matcher instead.

test('toEqual', () => {
 expect([undefined, 1]).toEqual([1]);
})

toStrictEqual ​  ​The toStrictEqual matcher performs a structure and
type comparison for objects and arrays; passing this test requires that
the objects are of the same type. In addition, the matcher considers
undefined values and undefined array items.

test('toStrictEqual', () => {
 expect([undefined, 1]).toStrictEqual([undefined, 1]);
})

toBeCloseTo ​  ​For floating-point numbers, we use toBeCloseTo instead of
toBe. This is because JavaScript’s internal calculations of floating-point
numbers are flawed, and this matcher considers those rounding errors.

test('toBeCloseTo', () => {
 expect(0.1 + 0.2).toBeCloseTo(0.3);
})

toBeGreaterThan/toBeGreaterThanOrEqual ​  ​For numeric values, we use these
matchers to verify that the result is greater than or equal to a value,
similar to the > and >= operators.

test('toBeGreaterThan', () => {
 expect(1 + 1).toBeGreaterThan(1);
})

toBeLessThan/toBeLessThanOrEqual ​  ​These are the opposite of the
GreaterThan... matchers for numeric values, similar to the < and <=
operators.

Common Matchers 291

test('toBeLessThan', () => {
 expect(1 + 1).toBeLessThan(3);
})

toBeTruthy/toBeFalsy ​  ​These matchers check if a value exists, regardless
of its value. They consider the six JavaScript values 0, ' ', null, undefined,
NaN, and false to be falsy and everything else to be truthy.

test('toBeTruthy', () => {
 expect(1 + 1).toBeTruthy();
})

toMatch ​  ​This matcher accepts a string or a regular expression, then
checks if a value contains the given string or if the regular expression
returns the given result.

test('toMatch, () => {
 expect('apples and oranges').toMatch('apples');
})

toContain ​  ​The toContain matcher is similar to toMatch, but it accepts
either an array or a string and checks these for a given string value.
When used on an array, the matcher verifies that the array contains the
given string.

test('toMatch, () => {
 expect(['apples', 'oranges']).toContain('apples');
})

toThrow ​  ​This matcher verifies that a function throws an error. The
function being checked requires a wrapping function or the assertion
will fail. We can pass it a string or a regular expression, similar to the
toMatch function.

function functionThatThrows() {
 throw new Error();
}

test('toThrow', () => {
 expect(() => functionThatThrows()).toThrow();
})

292 Appendix C

The JEST-DOM Matchers
The JEST-DOM package provides matchers to work directly with the DOM,
allowing us to easily write tests that run assertions on the DOM, such
as checking for an element’s presence, HTML contents, CSS classes, or
attributes.

Say we want to check that our logo element has the class name center.
Instead of manually checking for the presence of an element and then
checking its class name attribute with toMatch, we can use the toHaveClass
matcher, as shown in Listing C-1.

test('toHaveClass', () => {
 const element = getByTestId('image');
 expect(element).toHaveClass('center');
})

Listing C-1: The basic syntax for testing with the DOM

First we add the data attribute testid to our image element. Then, in
the test, we get the element using this ID and store the reference in a con-
stant. Finally, we use the toHaveClass matcher on the element’s reference to
see if the element’s class names contain the class center.

Let’s take a look at the most common DOM-related matchers.

getByTestId ​  ​This matcher lets us directly access a DOM element and
store a reference to it, which we then use with custom matchers to
assert things about this element.

test('toHaveClass', () => {
 const element = getByTestId('image');
--snip--
})

toBeInTheDocument ​  ​This matcher verifies that an element was added to
the document tree. This matcher works only on elements that are cur-
rently part of the DOM and ignores detached elements.

test('toHaveClass', () => {
 const element = getByTestId('image');
 expect(element).toBeInTheDocument();
})

Common Matchers 293

toContainElement ​  ​This matcher tests our assumptions about the element’s
child elements, letting us verify, for example, whether an element is a
descendant of the first.

<div data-testid="parent">

</div>

test('toHaveClass', () => {
 const parent = getByTestId('parent');
 const element = getByTestId('image');
 expect(parent).toContainElement(element);
})

toHaveAttribute ​  ​This matcher lets us run assertions on the element’s
attributes, such as an image’s alt attribute and the checked, disabled, or
error state of form elements.

test('toHaveClass', () => {
 const element = getByTestId('image');
 expect(element).toHaveAttribute('alt', 'The Logo');
})

toHaveClass ​  ​The toHaveClass matcher is a specific variant of the toHave
Attribute matcher. It lets us explicitly assert that an element has a partic
ular class name, allowing us to write clean tests.

test('toHaveClass', () => {
 const element = getByTestId('image');
 expect(element).toHaveClass('center');
})

I N D E X

SYMBOLS
` (backtick), 23
$ (dollar sign), 23
=> (fat arrow), 21
! (exclamation mark), 102
. (period), 176
+ (plus operator), 34, 142
? (question mark), 45
... (spread operator), 27–28, 78
[] (square brackets), 77, 102
_ (underscore), 105

NUMBERS
200 status code, 107, 248–249
404 status code, 227
405 status code, 111
500 status code, 77, 101, 249

A
absolute imports, 196
abstract syntax tree (AST), 103–104
access token, 159

using authorization grant to
get, 171

using to get protected resource, 172
act, test cases, 133
allowJs option, 259
AMD format, 16
anonymous functions, 16–17
any type, 43
APIs (application programming

interfaces), 57
containers communicating

through, 174
contracts, 34, 38, 94
GraphQL APIs, 101–113
microservices communicating

through, 178
REST APIs, 93–101

routes
creating, 90
for GraphQL API, 110–111
overview, 75–77
replacing with route handlers,

285–287
Apollo sandbox, 111–113
Apollo server, 108
app directory, 72, 263–287

exploring project structure, 269–287
adding content and route,

275–277
adding server component

that fetches remote data,
281–284

catching errors, 277–279
completing application with

navigation, 284–285
defining layout, 273–275
replacing API routes with

route handlers, 285–287
showing optional loading

interface, 279–281
updating CSS, 271–272

rendering components
dynamic rendering, 268–269
fetching data, 266–267
static rendering, 267–268

server components vs. client
components

client components, 265
server components, 264–265

App function, 56
application glue, 120
application programming interfaces.

See APIs
apps

serving from Docker container, 177
using databases and object-relational

mappers, 116

296 Index

arranging test cases, 132–133
array.map function, 27
arrays

dispersing, 27–28
identifying object types as, 102
looping through, 27

array type, 41–42
arrow functions, 20–22

exploring practical use cases, 22
lexical scope, 21–22
writing, 21

assertion, test cases, 133–134
AST (abstract syntax tree), 103–104
asynchronous scripts

avoiding traditional callbacks,
24–25

simplifying, 26–27
using promises, 25–26
writing ES.Next module with, 29–30

async keyword, 26–27
audience claim, 164
auditing package.json file, 10
AuthElement component

adding to header, 241–243
overview, 238–240

authentication
authorization vs., 158–159
REST APIs, 97–98

authentication callback, 233–236
auth guard, 248–249
authorization, 157–172

accessing protected resource,
168–172

logging in to receive
authorization grant,
170–171

setting up client, 168–170
using access token to get

protected resource, 172
using authorization grant to

get access token, 171
authentication vs., 158–159
bearer tokens, 160–161
code flow, 160–163
creating JWT tokens, 163–168

header, 163
payload, 163–166
signature, 166–168

grant types, 159–160
role of OAuth, 159

authorization code flow, 160–163
authorization grant

logging in to receive, 170–171
using to get access token, 171

authorization server, 159
automated tests, 253–257

adding Jest to project, 254
setting up, 254–256
writing snapshot tests for header

element, 256–257
await keyword, 26–27

B
Babel.js, 15
backend container

creating backend service, 187–189
seeding the database, 186–187

backtick ()̀, 23
baseUrl option, 259
bearer tokens, 160–161
beforeAll hook, 132
beforeEach hook, 132
black-box test, 144
blocking time, 86
block scope, 17
Booleans, 40
Boolean scalar type, 102
built-in components

next/head, 80–81
next/image, 82–83
next/link, 81–82

built-in hooks
handling side effects with

useEffect, 62–63
managing internal state with

useState, 62
sharing global data with

useContext and context
providers, 63–64

built-in matchers, 289–291
built-in types

any, 43
array, 41–42
object, 42
primitive types, 40–41
tuple, 42–43

Index 297

union, 41
void, 43–44

built-in validators, 118
button, generic, 235–238, 244–247

C
@cacheControl directive, 103
cacheControl.setCacheHint resolver

function, 103
cached connection, 198
callback hell, 25
callbacks

array function running, 138
array.map function, 27
arrow functions simplifying, 22
avoiding traditional, 24–25

callback URL, 162
cases, test, 130
catch all API route, 78
catch method, 25–26
claims, 163–166

private, 166
public, 165
registered, 164–165

class components, 59–60
client components, 265
client credentials, 232

flow, 160
client ID, 159
clients, 159
client secret, 159
client-side rendering, 88–89
cloning arrays and objects, 28
code coverage, 130, 138–139
code generator, 55
collections, 117
collisions, 161
compilerOptions field, 37
compilers, 36
components, 57–61

Next.js built-in components, 80–83
next/head, 80–81
next/image, 82–83
next/link, 81–82

providing reusable behavior with
hooks, 61

styles for, 79–80
writing class components, 59–60

concise body function, 21
constant-like data, 20
const keyword, 20
constructor function, 59
container class, 80
containerization, 173–182. See also

Docker
context providers, 63–64
COPY keyword, 176
create-next-app command, 70
create-react-app command, 55
Cross-Origin Resource Sharing

(CORS), 75–76
CRUD operations, 121–123, 199
CSS styles, 78–80

adding to list item, 216–217
component styles, 79–80
global styles, 79
updating, 271–272

cumulative layout shifts, 82
curl command, 248, 251–252
cURL tool, 99
custom types, 44–45, 208
Cypress, 253

D
daemon service, 175
database-connection middleware,

120–121
data mapping, 77
data types, 20
declarative programming, 54
declaring variables, 17–20

constant-like data, 20
hoisted variables, 18–19
scope-abiding variables, 19

default exports, 16–17
default keyword, 16
DefinitelyTyped repository, 46
DELETE method, 98
deleteOne function, 123
deleting document, 123
dependencies

installing, 8–9
overview, 6
removing, 11
replacing, 139–143

creating doubles folder, 141

298 Index

dependencies (continued)
replacing (continued)

creating module with
dependencies, 140–141

using fakes, 142
using mocks, 143
using stubs, 142

useEffect hook managing, 63
details component, 227–228
development dependencies

installing, 9–10
overview, 6

development scripts, Next.js, 72
directives, 208
dispersing arrays and objects, 27–28
Docker, 173–182, 185–193

building local environment with
backend container, 186–189
frontend container, 189–192

containerization architecture, 174
containers, 174–178

building Docker image, 176
interacting with, 178
locating exposed Docker port,

177–178
serving application from, 177
writing Dockerfile, 175–176

Docker Compose, 178–182
interacting with, 182
rerunning tests, 181–182
running containers, 180–181
writing docker-compose.yml file,

179–180
Food Finder application, 186
installing, 174
running automated tests in,

253–257
adding Jest to project, 254
setting up, 254–256
writing snapshot tests for

header element, 256–257
docker-compose.yml file, 179–180
document databases, 117
document object model (DOM), 54, 57
documents, 117
dollar sign ($), 23
domain-specific language (DSL), 24
doubles folder, 141

dynamically typed languages, 34
dynamic feedback, 38
dynamic rendering, 268–269
dynamic URLs, 77–78

E
element constant, 57
elements, 56
encrypted tokens, 161
endpoint, 95
end-to-end query, 123–125
end-to-end tests, 145, 151–153
environment problems, 144
errors, 133

catching, 277–279
with const keyword, 20
Internal Server Error, 77
non-hoisted variables, 19
promises and, 25–26
TypeScript, 36
using variables before declaring, 18

escape character, 99
esModuleInterop option, 259
ES.Next modules, 15–17

importing modules, 17
using named and default exports,

16–17
writing with asynchronous code,

29–30
exclamation mark (!), 102
exclude option, 37
executing script, using npx, 12
expect function, 133–134
expiration claim, 164
export statement, 16
exposed Docker port, 177–178
ExpressJS Fundamentals course, 14
Express.js server

building “Hello World,” 13–14
creating reactive user interface for,

64–67
extending with modern JavaScript,

29–31
extending with TypeScript, 46–51

adding type annotations to
index.ts file, 49–50

adding type annotations to
routes.ts file, 48–49

Index 299

creating tsconfig.json file, 47
defining custom types, 47–48
setting up, 46–47
transpiling and running code,

50–51
refactoring, 89–91

extends option, 37
external APIs, 93–94

F
fakes, 142
fat arrow (=>), 21
fetch API, 26–27, 266–267, 281–284
Fibonacci sequence, 140–143
fields, 117
filter method, 22
finally method, 25–26
findOne function, 122
Float scalar type, 102
Food Finder application, 186
forceConsistentCasingInFileNames

option, 260
--force flag, 10
FROM keyword, 175
frontend container

application service
adjusting for restarts,

191–192
creating, 189–190

global layout components, 222–226
header, 223–224
layout, 224–226
logo, 222–223

installing Next.js, 190–191
location details page, 227–230
start page, 216–222

list item component, 216–218
location list component,

218–219
user interface, 215–216

fs module, 24–25
functional tests, 144
function components, 59
functions

arrow, 20–22
exploring practical use cases, 22
lexical scope, 21–22
writing, 21

avoiding traditional callbacks,
24–25

type annotations declaring
parameters of, 39–40

function scope, 17–18

G
gateway communications, 144–145
generic button component, 235–238,

244–247
getByTestId matcher, 292
GET method, 98–100
getServerSideProps function, 84–85
getToken function, 250
GitHub OAuth app, 232
global data, sharing with useContext

hook, 63–64
global layout components, 222–226

header, 223–224
layout, 224–226
logo, 222–223

global scope, 18, 44
global styles, 79, 219–220
Google Authenticator, 158
Google scoring algorithm, 86
gql tag, 210
grant types, 159–160
graph databases, 117
GraphQL APIs, 75, 101–113, 207–214

adding API endpoint to Next.js,
212–214

adding to Next.js
adding data, 109
creating API route, 110–111
creating schema, 108–109
implementing resolvers,

109–110
using Apollo sandbox, 111–113

comparing REST to
over-fetching, 106–107
under-fetching, 107–108

connecting MongoDB to
adding services to GraphQL

resolvers, 126–127
connecting to database,

125–126
merging typedefs into final

schema, 209–210

300 Index

GraphQL APIs (continued)
resolvers, 103–106, 210–212
schemas, 101–103

custom types and directives,
208

mutation schema, 209
query schema, 209

securing mutations, 247–252
setting up, 208

GraphQL queries, 209
GraphQL schema, 24
guards, 248

H
hash-based message authentication

code (HMAC), 161
Head elements, 80–81
header

adding AuthElement component to,
241–243

global layout components,
223–224

JWT tokens, 163
writing snapshot tests for,

256–257
hoisted variables, 18–19
hooks, 62–64

handling side effects with
useEffect, 62–63

managing internal state with
useState, 62

providing reusable behavior
with, 61

sharing global data with
useContext and context
providers, 63–64

host system, 174–175
hot-code reloading, 72
HTML, 24

incremental static regeneration, 87
JSX elements and, 57
reactive user interface and, 54
static HTML exporting, 89

HTTP methods, 98–99

I
id helper program, 192
ID scalar type, 102

Image component, 82–83
images, Docker, 176
 element, 82
immutable data types, 20
immutable elements, 57
implicit flow, 160
importing modules, 17
import statement, 16–17
include option, 37
incremental option, 260
incremental static regeneration

(ISR), 87
integration tests, 144–145
interaction-based tests, 132
interface keyword, 45
interfaces

defining, 45
Mongoose model, 118
storing, 90

inter-module communication, 144
internal APIs, 93
Internal Server Error, 77, 101
internal state, managing with useState

hook, 62
Int scalar type, 102
I/O operations, 24–25
isolatedModules option, 260
ISR (incremental static regeneration), 87
issued at claim, 165
issuer claim, 164

J
JavaScript

arrow functions, 20–22
exploring practical use

cases, 22
lexical scope, 21–22
writing, 21

asynchronous scripts
avoiding traditional callbacks,

24–25
simplifying, 26–27
using promises, 25–26

creating strings, 22–24
declaring variables, 17–20
dispersing arrays and objects,

27–28
ES.Next modules, 15–17, 29–30

Index 301

Express.js server
building “Hello World,” 13–14
extending, 29–31

looping through arrays, 27
Node.js, 3–14

creating projects, 8–12
installing, 4
package.json file, 4–6
package-lock.json file, 6–7
working with npm, 4

TypeScript, 33–51
benefits of, 34–36
built-in types, 40–44
custom types and interfaces,

44–46
extending Express.js server

with, 46–51
setting up, 36–38
type annotations, 38–40

JavaScript Syntax Extension (JSX)
example expression, 56–57
ReactDOM package, 57

JEST-DOM matchers, 292–293
Jest framework, 129–156

adding test cases to weather app
creating mocks to test

services, 148–151
evaluating user interface with

snapshot test, 153–156
performing end-to-end test of

REST API, 151–153
testing middleware with spies,

146–148
adding to project, 254
anatomy of test case

act, 133
arrange, 132–133
assertion, 133–134

creating example module to test,
131–132

matchers
built-in, 289–291
JEST-DOM, 292–293

replacing dependencies, 139–143
creating doubles folder, 141
creating module with

dependencies, 140–141
using fakes, 142

using mocks, 143
using stubs, 142

setting up, 130–131
test-driven development,

135–139
evaluating test coverage,

138–139
overview, 130
refactoring code, 136–138

types of tests
end-to-end tests, 145
functional tests, 144
integration tests, 144–145
snapshot tests, 145

unit testing, 130
jsonlint package, 12
JSX. See JavaScript Syntax Extension
jsx option, 260
JWT (JSON Web Token)

defined, 160–161
header, 163
payload, 163–166

private claims, 166
public claims, 165
registered claims, 164–165

signature, 166–168
JWT claim, 165

K
key-value storage, 117
kill command, 178

L
layout

app directory, 273–275
global layout components, 224–226

let keyword, 19
lexical scope, 21–22
lib option, 260
lifecycle methods, 59
Link component, 81–82
list item component, 216–218
loading user interface, 279–281
local environment

backend container, 186–189
creating backend service,

187–189
seeding the database, 186–187

302 Index

local environment (continued)
frontend container, 189–192

adjusting application service
for restarts, 191–192

creating application service,
189–190

installing Next.js, 190–191
location details page, 215

adding button to, 244–247
overview, 227–230

location ID, 215
location list component, 218–219
location services

creating, 203–205
custom types for, 203

logo, 222–223
long-term support (LTS) version, 4
looping through arrays, 27

M
MAC (message authentication

code), 161
major version changes, 5
matcher function, 134
matchers

built-in, 289–291
JEST-DOM, 292–293

Memcached, 117
message authentication code (MAC), 161
microservices, 178–182

interacting with Docker Compose,
182

rerunning tests, 181–182
running containers, 180–181
writing docker-compose.yml file,

179–180
middleware, 120–121, 195–206

configuring Next.js to use absolute
imports, 196

connecting Mongoose, 196–199
fixing TypeScript warning,

198–199
writing database connection,

197–198
creating Mongoose model

creating location model,
201–202

creating schema, 199–200

model services, 202–206
creating location services,

203–205
testing, 206

testing with spies, 146–148
minor version changes, 5
mobile-first design pattern, 222
mocks, 143, 148–151
module option, 260
moduleResolution option, 260
module scope, 18, 44
MongoDB, 101, 115–128

connecting GraphQL API to
database, 125–126

adding services to GraphQL
resolvers, 126–127

creating end-to-end query, 123–125
defining Mongoose model

database-connection
middleware, 120–121

interfaces, 118
model, 119–120
schema, 118–119

how apps use databases and object-
relational mappers, 116

querying database
creating document, 121–122
deleting document, 123
reading document, 122
updating document, 122–123

relational and non-relational
databases, 116–117

setting up Mongoose and, 117
MongoDB Query Language (MQL), 117
Mongoose

connecting middleware, 196–199
fixing the TypeScript warning,

198–199
writing database connection,

197–198
creating model

creating location model,
201–202

creating schema, 199–200
defining model

database-connection
middleware, 120–121

interfaces, 118

Index 303

model, 119–120
schema, 118–119

setting up, 117
MQL (MongoDB Query Language), 117
multifactor authentication, 158
mutations, 101, 211–212

defining schema, 209
input type object for, 102–103
securing GraphQL, 247–252

MySQL, 101

N
named exports, 16–17
name field, 5
--name flag, 177
navigation, 284–285
Neo4j, 117
nested page routes, 73–75
networking protocols, 8
next-auth, 231–235

adding client credentials, 232
creating authentication callback,

233–236
creating GitHub OAuth app, 232
installing, 233
sharing session across pages and

components, 235
next export command, 89
next/head component, 80–81
next/image component, 82–83
Next.js, 13, 69–91

adding API endpoint to, 212–214
adding GraphQL API to, 108–113

adding data, 109
creating API route, 110–111
creating schema, 108–109
implementing resolvers,

109–110
using Apollo sandbox, 111–113

app directory, 263–287
exploring project structure,

269–287
rendering components,

266–269
server components vs. client

components, 264–265
built-in components

next/head, 80–81

next/image, 82–83
next/link, 81–82

configuring to use absolute
imports, 196

installing in container, 190–191
pre-rendering and publishing,

83–89
client-side rendering, 88–89
incremental static

regeneration, 87
server-side rendering, 84–85
static HTML exporting, 89
static site generation, 86–87

refactoring React and Express.js
applications, 89–91

routing applications, 72–78
API routes, 75–77
dynamic URLs, 77–78
nested page routes, 73–75
simple page routes, 73

setting up, 70–72
development scripts, 72
project structure, 71–72

styling applications, 78–80
component styles, 79–80
global styles, 79

wish list page, 243–244
next/link component, 81–82
Node.js, 3–14

creating projects, 8–12
auditing package.json file, 10
cleaning up node_modules

folder, 11
executing script only once

using npx, 12
initializing new module or

project, 8
installing dependencies, 8–9,

11–12
installing development

dependencies, 9–10
removing dependencies, 11
updating all packages, 11

Express.js-based Node.js server,
13–14

installing, 4
package.json file, 4–6

dependencies, 6

304 Index

Node.js (continued)
package.json file (continued)

development dependencies, 6
required fields, 5

package-lock.json file, 6–7
TypeScript installation in, 36–37
working with npm, 4

node_modules folder
cleaning up, 11
package.json file vs., 4–5

node package execute (npx) tool, 12
noEmit option, 260
non-hoisted variables, 19–20
non-nullable fields, 102
non-primitive data types, 20
non-relational databases, 116–117
NoSQL databases, 117
not before claim, 165
npm, 4
npm audit command, 10
npm init command, 8
npm install command, 7, 11–12
npm prune command, 11
npm run build command, 72
npm test command, 131
npm uninstall command, 11
npm update command, 11
npx command, 70
npx next build command, 72
npx tool, 12
null types, 40–41
numbers, as primitive types, 40

O
OAuth, 157–172

accessing protected resource
logging in to receive

authorization grant,
170–171

setting up client, 168–170
using access token to get

protected resource, 172
using authorization grant to

get access token, 171
adding button to location detail

component, 244–247
adding with next-auth, 231–235

adding client credentials, 232

creating authentication
callback, 233–236

creating GitHub OAuth
app, 232

installing next-auth, 233
sharing session across

pages and components,
235

AuthElement component
adding to header, 241–243
overview, 238–240

authentication vs., 158–159
authorization code flow,

161–163
bearer tokens, 160–161
creating JWT tokens

header, 163
payload, 163–166
signature, 166–168

generic button component,
235–238

grant types, 159–160
role of OAuth, 159
securing GraphQL mutations,

247–252
wish list Next.js page, 243–244

object data modeling, 116
object-relational mappers, 116
objects, 27–28
object type, 42
one-time password (OTP), 158
online playground, 37, 55
online registry, npm, 4
OpenAPI format, 95
over-fetching, 106–107
over-typing, 38–39

P
package.json file, 4–6

auditing, 10
dependencies, 6
development dependencies, 6
editing, 29
required fields, 5

package-lock.json file, 6–7
packages

npm online registry, 4
updating, 11

Index 305

page routes
adding, 275–277
creating, 90–91
nested, 73–75
simple, 73

pages folder, 71–72
parameters of functions, 39–40
PATCH method, 98
patch version changes, 5
$PATH environment variable, 12
payload, JWT tokens, 163–166

private claims, 166
public claims, 165
registered claims, 164–165

period (.), 176
persisting the data, 116
Playwright, 253
plus operator (+), 34, 142
POST method, 98
prefixes, 79–80
pre-rendering, 83–89

client-side rendering, 88–89
incremental static regeneration, 87
server-side rendering, 84–85
static HTML exporting, 89
static site generation, 86–87

primitive types, 20, 40–41
private APIs, 93
private claims, 166
profile pages, 77
promise chain, 26
Promise object, 25
props argument, 57–58, 84, 86
protected resource

logging in to receive authorization
grant, 170–171

setting up client, 168–170
using access token to get protected

resource, 172
using authorization grant to get

access token, 171
providers, 231
public claims, 165
public folder, 71
--publish-all flag, 177
push method, 20
PUT method, 98

Q
queries, 101
querying database, 121–123
query schema, 209
question mark (?), 45

R
ReactDOM package, 57
reactive user interface, 54
React, 53–67

creating reactive user interface for
Express.js server, 64–67

JavaScript Syntax Extension,
56–57

organizing code into components,
57–61

providing reusable behavior
with hooks, 61

writing class components,
59–60

refactoring, 89–91
role of, 53–55
setting up, 55–56
working with built-in hooks

handling side effects with
useEffect, 62–63

managing internal state with
useState, 62

sharing global data with
useContext and context
providers, 63–64

reading
data, 99–100
document, 122
files, 25

Redis, 117
refactoring code, 136–138
refresh token, 160
registered claims, 164–165
relational databases, 116–117
remote data, fetching, 281–284
rendering components

dynamic rendering, 268–269
fetching data, 266–267
static rendering, 267–268

replacing dependencies, 139–143
creating doubles folder, 141

306 Index

replacing dependencies (continued)
creating module with

dependencies, 140–141
using fakes, 142
using mocks, 143
using stubs, 142

replay attack, 165
report, test-coverage, 138–139
require statement, 16
resolveJsonModule option, 260
resolvers, 210–212

implementing, 109–110
overview, 103–106

resource owner, 159–160
resource providers, 159
REST APIs, 75, 93–101, 212

comparing GraphQL to
over-fetching, 106–107
under-fetching, 107–108

creating end-to-end query, 123–125
HTTP methods, 98–99
overview, 94–95
performing end-to-end test of,

151–153
specification, 95–97
state and authentication, 97–98
URLs, 95
working with

reading data, 99–100
updating data, 100–101

restarts, 191–192
RESTful APIs, 159
return value, type annotations

declaring, 39
reusable behavior, 61
root entry point, 95
root privileges, 192
route handlers, 285–287
routing applications, 72–78

API routes, 75–77
dynamic URLs, 77–78
nested page routes, 73–75
simple page routes, 73

S
--save-dev flag, 36–37, 46
scaffolding process, 55
scalar types, 102

Schema Definition Language (SDL), 101
schemas

GraphQL APIs, 101–103, 108–109
custom types and directives,

208
merging typedefs into final

schema, 209–210
mutation schema, 209
query schema, 209

Mongoose, 118–119, 199–200
scope, variable, 17
scope-abiding variables, 19
scope property, 22
screenshots, 145
script, executing once using npx, 12
SDL (Schema Definition Language), 101
secrets, 233
securing GraphQL mutations, 247–252
seeding the database, 124, 186–187
semantic versioning, 5–6
SEO metadata, 80, 86
server components, 264–265
server-side rendering (SSR), 84–85
services, 121
session information, 97–98
sessions, sharing across pages and

components, 235
SHA-256 hash algorithm, 161
side effects, 62–63
SIGKILL command, 182
signature, JWT tokens, 166–168
signed tokens, 161
SIGTERM command, 182
single-factor authentication, 158
skipLibCheck option, 260
snapshot tests, 145

evaluating user interface with,
153–156

writing for header, 256–257
specification, 95–97
spies, 146–148
spread operator (...), 27–28, 78
SQL (Structured Query Language),

116–117
square brackets ([]), 77, 102
SSG (static site generation), 86–87, 215
SSR (server-side rendering), 84–85
SSR (static site rendering), 216, 244

Index 307

start page, 216–222
list item component, 216–218
location list component, 218–219

state-based tests, 132
stateless, REST APIs, 97–98
statically typed languages, 36
static exports

API routes and, 76
HTML, 89

static HTML file, 66
static rendering, 267–268
static site generation (SSG), 86–87, 215
static site rendering (SSR), 216, 244
steps, test, 130
sticky header, 222–223
strings

benefits of TypeScript, 34
creating, 22–24
as primitive types, 40
template literals for, 22–24

String scalar type, 102
Structured Query Language (SQL),

116–117
stubs, 142
styles folder, 71–72
styles object, 80
styling applications, 78–80

component styles, 79–80
global styles, 79

subject claim, 164
suites, test, 130
sum function, 131–132, 135
super function, 59–60
Swagger, 95–97

T
--tag flag, 176
tagged template literal, 22–24
target option, 260
template literals, 22–24
test-coverage report, 138–139
test doubles, 139
test-driven development (TDD),

135–139
evaluating test coverage,

138–139
overview, 130
refactoring code, 136–138

testing, 129–156
adding test cases to weather app

creating mocks to test the
services, 148–151

evaluating user interface with
snapshot test, 153–156

performing end-to-end test of
REST API, 151–153

testing middleware with spies,
146–148

anatomy of test case
act, 133
arrange, 132–133
assertion, 133–134

creating example module to test,
131–132

model services, 206
replacing dependencies, 139–143

creating doubles folder, 141
creating module with

dependencies, 140–141
using fakes, 142
using mocks, 143
using stubs, 142

rerunning, 181–182
running automated tests in

Docker, 253–257
adding Jest to project, 254
setting up, 254–256
writing snapshot tests for

header element, 256–257
setting up, 130–131
test-driven development, 135–139

evaluating test coverage,
138–139

overview, 130
refactoring code, 136–138

types of
end-to-end tests, 145
functional tests, 144
integration tests, 144–145
snapshot tests, 145

unit testing, 130
testing-library/dom assert package, 134
testing-library/react assert package, 134
test runner, 130
testWatch command, 254–256
then method, 25–26

308 Index

third-party APIs, 93–94
this keyword, 21–22, 59
time to first paint, 86
toBeCloseTo matcher, 290
toBeGreaterThan/toBeGreater

ThanOrEqual matcher, 290
toBeInTheDocument matcher, 292
toBeLessThan/toBeLessThanOrEqual

matcher, 290–291
toBe matcher, 289–290
toBeTruthy/toBeFalsy matcher, 291
toContainElement matcher, 293
toContain matcher, 291
toEqual matcher, 290
toHaveAttribute matcher, 293
toHaveClass matcher, 293
toMatch matcher, 291
toStrictEqual matcher, 290
toThrow matcher, 291
transpilers, 36
TSC. See TypeScript Compiler
tsconfig.json file, 37–38
tuple type, 42–43
type annotations, 38–40

declaring parameters of functions,
39–40

declaring return value, 39
declaring variables, 39

type declaration files, 45–46
typedefs, 101, 209–210
type keyword, 44–45
TypeScript, 16, 33–51

benefits of, 34–36
built-in types

any, 43
array, 41–42
object, 42
primitive types, 40–41
tuple, 42–43
union, 41
void, 43–44

custom types and interfaces
defining custom types, 44–45
defining interfaces, 45
using type declaration files,

45–46
extending Express.js server with,

46–51

setting up
dynamic feedback, 38
installation in Node.js, 36–37
tsconfig.json file, 37–38

type annotations, 38–40
declaring parameters of

functions, 39–40
declaring return value, 39
declaring variables, 39

using JSX with, 57
TypeScript Compiler (TSC), 36

fixing warning, 198–199
options, 259–261

@types scope, 46

U
UMD format, 16
undefined type, 40–41
under-fetching, 107–108
underscore (_), 105
union type, 41
unit testing, 130
untagged template literal, 22–23
updateOne function, 122–123
useContext hook, 63–64
useEffect hook, 61–63, 89, 244
user ID, 215, 244
user interfaces

evaluating with snapshot tests,
153–156

frontend container, 215–216
showing optional loading user

interface, 279–281
user property, 192
useSession hook, 240
useState hook, 61–62, 89

V
-v (version) flag, 4
variables, 17–20

constant-like data, 20
hoisted variables, 18–19
scope-abiding variables, 19
type annotations declaring, 39

var keyword, 18–19
version field, 5
versioning APIs, 95
viewport, 81

Index 309

virtual DOM, 54
Visual Studio Code, 38
void type, 43–44
--volume flag, 177
volumes, 177
vulnerabilities, 10

W
W3Schools tutorials, 14, 67
weather app

creating mocks to test the services,
148–151

evaluating user interface with
snapshot test, 153–156

performing end-to-end test
of REST API,
151–153

testing middleware with spies,
146–148

wish list Next.js page, 243–244
WORKDIR keyword, 175

Y
YAML, 188
yarn, 4

The Complete Developer is set in New Baskerville, Futura, Dogma, and
TheSansMono Condensed.

NO STARCH PRESS

PHONE:
800.420.7240 or
415.863.9900

EMAIL:
sales@nostarch.com

WEB:
www.nostarch.com

WEB SECURITY FOR DEVELOPERS
Real Threats, Practical Defense
BY malcolm mcdonald
216 pp., $29.95
isbn 978-1-59327-994-3

THE BOOK OF CSS3,
2ND EDITION
A Developer’s Guide to the
Future of Web Design
BY peter gasston
304 pp., $34.95
isbn 978-1-59327-580-8

DEVOPS FOR THE DESPERATE
A Hands-On Survival Guide
BY bradley smith
176 pp., $29.99
isbn 978-1-7185-0248-2

HACKING APIS
Breaking Web Application
Programming Interfaces
BY corey j. Ball
368 pp., $59.99
isbn 978-1-7185-0244-4

THE BOOK OF KUBERNETES
A Complete Guide to Container
Orchestration
BY alan hohn
384 pp., $59.99
isbn 978-1-7185-0264-2

ELOQUENT JAVASCRIPT,
3RD EDITION
A Modern Introduction to Programming
BY marijn haverbeke
472 pp., $39.99
isbn 978-1-59327-950-9

More no-nonsense books from

RESOURCES
Visit https://nostarch.com/complete-developer for errata and more information.

®

http://www.nostarch.com
https://nostarch.com/modern-full-stack

Never before has the world relied so heavily on the Internet

to stay connected and informed. That makes the Electronic

Frontier Foundation’s mission—to ensure that technology

supports freedom, justice, and innovation for all people—

more urgent than ever.

For over 30 years, EFF has fought for tech users through

activism, in the courts, and by developing software to overcome

obstacles to your privacy, security, and free expression. This

dedication empowers all of us through darkness. With your help

we can navigate toward a brighter digital future.

LEARN MORE AND JOIN EFF AT EFF.ORG/NO-STARCH-PRESS

	Cover
	Praise for The Complete Developer
	Title Page
	Copyright
	Dedication
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	Who Should Read This Book?
	What’s in This Book?
	The Parts of a Full-Stack Application��
	The Frontend�������������������
	The Middleware���������������������
	The Backend

	A Brief History of JavaScript and Full-Stack Development���
	Setting Up�����������������

	Part I: The Technology Stack
	Chapter 1: Node.js
	Installing Node.js�������������������������
	Working with npm�����������������������
	The package.json File����������������������������
	Required Fields����������������������
	Dependencies�������������������
	Development Dependencies�������������������������������

	The package-lock.json File���������������������������������
	Creating a Project�������������������������
	Initializing a New Module or Project���
	Installing the Dependencies����������������������������������
	Installing the Development Dependencies��
	Auditing the package.json File�������������������������������������
	Cleaning Up the node_modules Folder��
	Updating All Packages����������������������������
	Removing a Dependency����������������������������
	Installing a Dependency������������������������������
	Using npx to Execute a Script Only Once��

	Exercise 1: Build a “Hello World” Express.js Server��
	Setting Up�����������������
	Writing the Server Code������������������������������

	Summary��������������

	Chapter 2: Modern Javascript
	ES.Next Modules����������������������
	Using Named and Default Exports��������������������������������������
	Importing Modules������������������������

	Declaring Variables��������������������������
	Hoisted Variables������������������������
	Scope-Abiding Variables
	Constant-Like Data

	Arrow Functions����������������������
	Writing Arrow Functions������������������������������
	Understanding Lexical Scope����������������������������������
	Exploring Practical Use Cases������������������������������������

	Creating Strings�����������������������
	Asynchronous Scripts���������������������������
	Avoiding Traditional Callbacks�������������������������������������
	Using Promises���������������������
	Simplifying Asynchronous Scripts���������������������������������������

	Looping Through an Array�������������������������������
	Dispersing Arrays and Objects������������������������������������
	Exercise 2: Extend Express.js with Modern JavaScript���
	Editing the package.json File������������������������������������
	Writing an ES.Next Module with Asynchronous Code���
	Adding the Modules to the Server���������������������������������������

	Summary��������������

	Chapter 3: Typescript
	Benefits of TypeScript�����������������������������
	Setting Up TypeScript����������������������������
	Installation in Node.js������������������������������
	The tsconfig.json File�����������������������������
	Dynamic Feedback with TypeScript���������������������������������������

	Type Annotations�����������������������
	Declaring a Variable���������������������������
	Declaring a Return Value�������������������������������
	Declaring a Function’s Parameters

	Built-in Types
	Primitive JavaScript Types���������������������������������
	The union Type���������������������
	The array Type���������������������
	The object Type����������������������
	The tuple Type���������������������
	The any Type�������������������
	The void Type��������������������

	Custom Types and Interfaces����������������������������������
	Defining Custom Types����������������������������
	Defining Interfaces��������������������������
	Using Type Declaration Files�����������������������������������

	Exercise 3: Extend Express.js with TypeScript��
	Setting Up�����������������
	Creating the tsconfig.json File��������������������������������������
	Defining Custom Types����������������������������
	Adding Type Annotations to the routes.ts File��
	Adding Type Annotations to the index.ts File���
	Transpiling and Running
 the Code��

	Summary��������������

	Chapter 4: React
	The Role of React������������������������
	Setting Up React�����������������������
	The JavaScript Syntax Extension��������������������������������������
	An Example JSX Expression��������������������������������
	The ReactDOM Package���������������������������

	Organizing Code into Components
	Writing Class Components�������������������������������
	Providing Reusable Behavior with Hooks���

	Working with Built-in Hooks����������������������������������
	Managing the Internal State with useState��
	Handling Side Effects with useEffect
	Sharing Global Data with useContext and Context Providers��

	Exercise 4: Create a Reactive User Interface for the Express.js Server���
	Adding React to the Server���������������������������������
	Creating the Endpoint for the Static HTML File���
	Running
 the Server��������������������������

	Summary��������������

	Chapter 5: Next.js
	Setting Up Next.js�������������������������
	Project Structure
	Development Scripts��������������������������

	Routing the Application������������������������������
	Simple Page Routes
	Nested Page Routes�������������������������
	API Routes�����������������
	Dynamic URLs�������������������

	Styling the Application������������������������������
	Global Styles��������������������
	Component Styles�����������������������

	Built-in Next.js Components����������������������������������
	The next/head Component������������������������������
	The next/link Component������������������������������
	The next/image Component�������������������������������

	Pre-rendering and Publishing
	Server-Side
 Rendering�����������������������������
	Static Site Generation�����������������������������
	Incremental Static Regeneration��������������������������������������
	Client-Side Rendering����������������������������
	Static HTML Exporting����������������������������

	Exercise 5: Refactor Express.js and React to Next.js���
	Storing Custom Interfaces and Types��
	Creating the API Routes������������������������������
	Creating the Page Routes�������������������������������
	Running
 the Application�������������������������������

	Summary��������������

	Chapter 6: Rest and GraphQL APIs
	Rest APIs
	The URL��������������
	The Specification������������������������
	State and Authentication�������������������������������
	HTTP Methods�������������������

	Working with REST������������������������
	Reading Data�������������������
	Updating Data��������������������

	GraphQL APIs�������������������
	The Schema�����������������
	The Resolvers��������������������

	Comparing GraphQL to REST��������������������������������
	Over-Fetching
	Under-Fetching

	Exercise 6: Add a GraphQL API to Next.js���
	Creating the Schema��������������������������
	Adding Data������������������
	Implementing Resolvers�����������������������������
	Creating the API Route�����������������������������
	Using the Apollo Sandbox�������������������������������

	Summary��������������

	Chapter 7: MongoDB and Mongoose
	How Apps Use Databases and Object-Relational Mappers���
	Relational and Non-Relational Databases��
	Setting Up MongoDB and Mongoose��������������������������������������
	Defining a Mongoose Model��������������������������������
	The Interface��������������������
	The Schema�����������������
	The Model����������������
	The Database-Connection Middleware

	Querying the Database����������������������������
	Creating a Document��������������������������
	Reading a Document�������������������������
	Updating a Document��������������������������
	Deleting a Document��������������������������

	Creating an End-to-End Query
	Exercise 7: Connect the GraphQL API to the Database��
	Connecting to the Database���������������������������������
	Adding Services to GraphQL Resolvers

	Summary��������������

	Chapter 8: Testing with the Jest Framework
	Test-Driven Development and Unit Testing
	Using Jest�����������������
	Creating an Example Module to Test���
	Anatomy of a Test Case�����������������������������
	Arrange��������������
	Act����������
	Assert�������������

	Using TDD����������������
	Refactoring Code�����������������������
	Evaluating Test Coverage�������������������������������

	Replacing Dependencies with Fakes, Stubs, and Mocks��
	Creating a Module with Dependencies��
	Creating a Doubles Folder��������������������������������
	Using a Stub�������������������
	Using a Fake�������������������
	Using a Mock�������������������

	Additional Types of Tests��������������������������������
	Functional Tests�����������������������
	Integration Tests������������������������
	End-to-End Tests
	Snapshot Tests���������������������

	Exercise 8: Add Test Cases to the Weather App��
	Testing the Middleware with Spies��
	Creating Mocks to Test the Services
	Performing an End-to-End Test of the REST API
	Evaluating the User Interface with a Snapshot Test���

	Summary��������������

	Chapter 9: Authorization with OAuth
	How OAuth Works����������������������
	Authentication vs. Authorization���������������������������������������
	The Role of OAuth������������������������
	Grant Types������������������
	Bearer Tokens

	The Authorization Code Flow����������������������������������
	Creating a JWT Token���������������������������
	The Header�����������������
	The Payload������������������
	The Signature��������������������

	Exercise 9: Access a Protected Resource��
	Setting Up the Client����������������������������
	Logging In to Receive the Authorization Grant��
	Using the Authorization Grant to Get the Access Token��
	Using the Access Token to Get the Protected Resource���

	Summary��������������

	Chapter 10: Containerization with Docker
	The Containerization Architecture��
	Installing Docker������������������������
	Creating a Docker Container����������������������������������
	Writing the Dockerfile�����������������������������
	Building the Docker Image��������������������������������
	Serving the Application from the Docker Container��
	Locating the Exposed Docker Port���������������������������������������
	Interacting with the Container�������������������������������������

	Creating Microservices with Docker Compose
	Writing the docker-compose. yml File
	Running the Containers
	Rerunning the Tests��������������������������
	Interacting with Docker Compose��������������������������������������

	Summary��������������

	Part II: The Full-Stack Application
	Chapter 11: Setting Up the Docker Environment
	The Food Finder Application����������������������������������
	Building the Local Environment with Docker���
	The Backend Container����������������������������
	The Frontend Container�����������������������������

	Summary��������������

	Chapter 12: Building the Middleware
	Configuring Next.js to Use Absolute Imports��
	Connecting Mongoose��������������������������
	Writing the Database Connection��������������������������������������
	Fixing the TypeScript Warning������������������������������������

	The Mongoose Model�������������������������
	Creating the Schema��������������������������
	Creating the Location Model����������������������������������

	The Model’s Services
 �����������������������������
	Creating the Location Service’s Custom Types
	Creating the Location Services
 ���������������������������������������
	Testing the Services

	Summary

	Chapter 13: Building the GraphQL API
	Setting Up�����������������
	The Schemas������������������
	The Custom Types and Directives��������������������������������������
	The Query Schema�����������������������
	The Mutation Schema��������������������������

	Merging the Typedefs into the Final Schema���
	The GraphQL Resolvers����������������������������
	Adding the API Endpoint to Next.js���
	Summary��������������

	Chapter 14: Building the Frontend
	Overview of the User Interface�������������������������������������
	The Start Page���������������������
	The List Item��������������������
	The Locations List�������������������������
	The Page���������������

	The Global Layout Components�����������������������������������
	The Logo���������������
	The Header�����������������
	The Layout�����������������

	The Location Details Page��������������������������������
	The Component��������������������
	The Page���������������

	Summary��������������

	Chapter 15: Adding OAuth
	Adding OAuth with next-auth
	Creating a GitHub OAuth App
	Adding the Client Credentials������������������������������������
	Installing next-auth
	Creating the Authentication Callback
	Sharing the Session Across Pages and Components��

	The Generic Button Component�����������������������������������
	The AuthElement Component��������������������������������
	Adding the AuthElement Component to the Header���
	The Wish List Next.js Page���������������������������������
	Adding the Button to the Location Detail Component���
	Securing the GraphQL Mutations�������������������������������������
	Summary��������������

	Chapter 16: Running Automated Tests in Docker
	Adding Jest to the Project
 �����������������������������������
	Setting Up Docker������������������������
	Writing Snapshot Tests for the Header Element
 ��
	Summary��������������

	Appendix A: Typescript Compiler Options
	Appendix B: The Next.js App Directory
	Server Components vs. Client Components��
	Server Components������������������������
	Client Components������������������������

	Rendering Components���������������������������
	Fetching Data��������������������
	Static Rendering�����������������������
	Dynamic Rendering������������������������

	Exploring the Project Structure
	Updating the CSS�����������������������
	Defining a Layout������������������������
	Adding the Content and Route�����������������������������������
	Catching Errors����������������������
	Showing an Optional Loading Interface��
	Adding a Server Component That Fetches Remote Data���
	Completing the Application with the Navigation���
	Replacing API Routes with Route Handlers���

	Appendix C: Common Matchers
	Built-in Matchers������������������������
	The JEST-DOM Matchers

	Index
	Back Cover

