Distributed Systems: Introduction cossos

Dr Tony Nicol Bsc (hons), MSc, PhD, MIET, CEng, FHEA, FBCS, CITP

DWP: Head of Engineering

UCLAN: Senior Lecturer in Computer Science



} My backgrouna \

C0O3404

Bob
e +~O=w
e Alice! —~ Encrypt
Alice's
public key
Alice
Hello
Az Alice's

private key




} The value of this module

Enable development of current industry best practice skills and knowledge
Full blown distributed systems are mainly used in large enterprises — i.e. big and complex
Large organisations (enterprise) include Gov departments, large retailers such as Amazon, Asda, Banks

Most large organisations are going through a technology and data transformation — you need to be part
of that, and this module will ensure you are, as that's where the well-paid jobs are

This module aims to give you a taste of the real world of IT so you stand out at interview and can be part
of the next generation to develop enterprise systems with new technological approaches

Distributed systems is a huge topic, so I'll concentrate on the current & future and not dwell on the past

y.



4

JOb prospects

Insights About

1 to 25 of 755 Microservices Jobs in England

Java Software Engineer
England, United Kingdom
VASS UK

a team. Excellent communication and collaboration skills. Preferred Qualifications:
Experience with cloud platforms (e.g., AWNS, Azure) and containerization {e.g., Docker,

Kubernetes). Knowledge of microservices architecture and RESTful APl development.

Familiarity with CI/CD pipelines and DevQOps practices. Experience with test-driven
development (TDD) and automated testing frameworks. VASS more =

Posted: 4 days ago

Senior Software Development Engineer
Greater London, England, United Kingdom
PCCW GLOBAL Limited

object-oriented design, SOLID principles, distributed system design and software
design patterns Experience in developing a multi-tier architecture system Previous
exposure in SOA, Microservices or using APl Management tools is an advantage
Experience in using container technolagies {e.q. Kubernetes, Docker, etc) is an
advantage Experience in using Cloud platform more =

Posted: Yesterday

Salary Guide

Microservices
England

10th Percentile
£43 750

25th Percentile
£52 500

Median
£65,000

75th Percentile
£87.500

S90th Percentile
£1170,000

More Microservices
insights =

Related

RESTful 314
Spring Boot 127
Modejs 388
MoSOL 231
Java 1,069
React 899

REST 335
Spring 140
OAuth 92

AWS 2159
JavaScript 1,397
Angular)5 528
PostgreSQL 445
Serverless 394

Kafka 269




Relevant snippets

Primary languages among microservices developers > What approaches do you use in your system design?

I 41%  Java
S 37 JavaScript I 53% Microservices
S 25% Python I 55%: Service-Oriented Architecture
N 22%  SOL I 5% Moenolith with web frontend
I 20% PHP 1% Reactive streams
I 9% TypeScript | EERAEY CQRS
6% HTML/CSS
— o Co mm 5% Actorsystems
-_— i C 1 1%  Other
0% Kotlin B 2% None
HE 9% Shell scripting languages
. 6% Ce+
B 2% C
I 4% Other
How do the distributed parts of your application
communicate? How do you declare and document your APIs?

83% REST 64% Open AP
Message Queue T
Wikl system
25% WebSocket
14% | don't document APls

[~}
(=}
22

Cross-platform RPC

RPC over HTTP % GraphQL

o
8

4% GraphQL 4%  WSDL

10%  SOAP 2% RAML

9%  Stream Processing

I-IIII‘
=]
e
2

7% Other
9%  Custom TCP/UDP communication

2%  Remoting

1% Other

.
=~
&2

2%  MNone




} Module aims summary

1. Create a distributed system application
Week by week I'll help you build on previous weeks leading to two assignments to create a distributed system

This will be built up practically with practical exercises were each week builds on the previous
2. Key design concepts such as scalability, security, heterogeneity, concurrency and containerisation.
3. Analyse technologies and patterns
4. How modern distributed systems support business
5. The need to deliver business value rather than technical perfection

These 5 areas are a rough outline and don’t carry equal weight. We will spend a lot more time on the
technology, but you do need to understand how it relates to business needs and constraints

Assessment is in the form of a major assignment and an exam weighted at 50% and 50%

My approach is: lecture 1h, demo/tutorial/Q&A 1h (2h alternate weeks) - drop-in labs

May be lecture and demos in both depending on the relevance and timing




t s essential to practice

The Learning Pyramid

90%
TEACHING OTHERS

1
1
1
LECTURE 1
1
10% :
READING  Passive
I Learning
: Methods
1
1
1
1
30% 1
DEMONSTRATION 1
________ 4
-------- A Y
50% :
GROUP DISCUSSION |
l -
1 Active
75% I Learning
PRACTICED BY DOING ' Methods
1
1
1
1
]

.




} —eedback from last year before we get started

Positives
Some students did extremely well with grades in the 80s and two at 100% for coursework
"l got a job at the BBC directly because of this module"
"l didn't like the look of this module but now understand its importance in industry. It's now my favorite module"
"After discussing my microservices assignment | was offered a job at first interview"
"Having demos to work with to get an understanding of key concepts helped enormously with my assignment"
"This module directly helped me with my project. | changed the architecture to microservices"

You get the idea ...

The knowledge | gained from you during the Distributed Systems module was absolutely invaluable for my work in
this team. My understanding of APIs, how they work, and how they run in the cloud was extremely helpful and it
meant that | was able to start working on tickets and pushing code changes to production in my first week. Thank you
again for making your module so insightful, engaging, and up to date with the industry.



Challenges

A substantial number of students failed. My observations and feedback from students:
Missing classes. Attendance is monitored. If you get behind, tell me and we can work out how to catch-up
Underestimated the module. "l thought it was web development so expected to breeze through. That was a big mistake"

Poor planning. Spent too much time on other modules or project - need to distribute time effectively

> Achievement coaches are available to talk to if you are struggling with planning, motivation, confidence building etc. ecanuti2@uclan.ac.uk

Listening but not hearing. "I'll watch the videos when | need to": procrastination is a very flawed strategy

> Note the learning pyramid - you need continuous learning and practice to consolidate - binge learning doesn't work on challenging technical courses
Missing demos - these build the framework for the assignments. | build up week by week, you must practice then consolidate over the whole year
Not undertaking personal study - this is essential each week if you are to do well in the assignments - 152 hours is minimum

Not submitting assignment - yes - it's true. Several didn't. If you are struggling, you must ask me for help - don't be an ostrich

> Student mentoring. Go to a session to discuss with student mentors. It looks good on your cv if you become a student mentor
Late submission. MCs are there to help but they can put you on the back foot so use sparingly
| don't need to know this stuff - I'm a C++ desktop developer. Good luck with that then. A degree won't get you a job - it may get you an interview
Recent feedback
Don't focus on the web development and front-end JavaScript as core as it creates a false simplified impression of the module
Show an assignment up-front to make it clear how the different topics build up to it
Got too far behind for various reasons and didn't speak up to ask for help soon enough. (I will help if asked)

As lectures and demos recorded, | convinced myself I'd watch them when needed so focused on modules with less resources. That was a mistake




} Assumptions

You understand basic networking from Y1

You understand basic database concepts such as normalisation, relationships - from Y1
You can program - from Y1 and Y2

You understand how to test code - from Y1 and Y2

If this is not the case, e.g. you haven't studied the standard course from Y1 or have completely forgotten
this stuff, then you need to tell me, and I'll cover in the tutorial or individually if necessary

The HTLM and CSS we do is very basic so you should be able to pick it up in your own time - but I'm
happy to go through these things and any other topic in the tutorial or drop-in labs

You must tell me if you need help before it's too late. I' more than happy to help you get over mental
blocks or clarify any of the concepts, but you must ask as | won't know

I'll provide the lectures and tutorials / demos / Q&A online but this is only so you can join in the class to
better see the code. If you have a valid reason not to be physically in the class, | need to be told ahead
of time and | may allow you access from outside the class for exceptional circumstances

y.



Responsibilities: Students

Timeliness
Arrive in time to be prepared for the lecture/workshop
Manage your time for study effectively
Communication
Talk to us for support, to raise issues and to seek advice/guidance
To monitor and use university communication mechanisms
Participation
Attend all scheduled sessions and activities
To display professional conduct at all times
Contribute to group discussions and activities
Personal study
Personal investigation of concepts and ideas
Prepare for assessments and exams
152 hours minimum outside the module
Behaviour
To treat all with respect: treat others as you would expect to be treated
To recognise and address/report all inappropriate behaviours and
attitudes



Responsibilities: Ours

Timeliness
Arrive in time to be prepared for delivery before the start of the lecture/workshop
To ensure all scheduled sessions and activities run effectively and as planned
Communication
To provide clear communication of any changes to scheduled events and
activities
To clearly communicate issues and adjustments that may affect study and
assessment
To respond, in a timely manner, to issues raised
Participation
To support and challenge learning and the development of understanding
To model and display professional conduct at all times
To always challenge inappropriate professional behaviours and attitudes
whenever they occur
Study
To professionally prepare and deliver high quality teaching and assessment
To fairly assess and report individual application of knowledge, skills and
understanding
Behaviour
To treat all with respect: treat others as you would expect to be treated
To recognise and address/report all inappropriate behaviours and attitudes



Rasic 3-tler
Cllent Server Arcnitecture
NMonolthic



} 3-tler architecture

Client

Front-end

Internet

Azure, AWS, Google, Oracle Cloud Services

IP Address
20.68.198.159

Application Database

Back-end




3-tler Arcnitecture Demo

Domain Name System

About  Store

joke 20186222 21/joes Jstw

Google Search I'm Feeling Lucky

.jokeHeading {
color: Hw
}

.ddJokeT
Azure, A okeType {
margin-top: 3@px;

|P Address ) margin-bottom: 30@px;
20.26.222.217

.numJokes - {
margin-bottom: 30px;

}

body {

Run apps &

App Server return results

DB Server

Store and

Physi cal or retrieve data

Virtual Machine

Demo joke site in debugger




} Monolithic architecture

Many if not most organisations implement a monolithic architecture which is basically one big program

The application, even if it's designed to be modular, can still end up being effectively a single program
with hundreds of thousands or millions of lines of code

The application typically uses a single database which does make data management simpler, data
consistency and performance is good

The application may run on a cluster of servers for resilience, but as the cluster or server is increased to
get more performance, the whole application needs to be replicated and scaled yet it may only be a
small area of the application needing a performance improvement

Code changes and testing can be extremely long winded and complicated because the applications are
so large, complex, and business processes are tightly coupled - changing one area could create
unintended side effects in another area so the whole application must be retested functionally and for
performance. This is referred to as Regression Testing

This level of testing can take months so organisations tend to save up problems and improvements
leaving users to find work arounds until the next release - which could be months or years

However, the monolith can be very performant through in-process function execution

y.



In many situations, a monolith probably the most suitable solution

If the application is not particularly complex or large, e.g., a basic website for a small business, the
monolithic approach like the one just shown, is perfectly reasonable

The application is small enough for a person to understand and test so code changes won't take months

However, large organisations such as Tesco, Amazon shopping, Netflix, Government departments etc.,
need to be able to adapt quickly to changes in business need or changes in government policy and they
have huge user numbers of complex business processes

Taking six months or more to make modifications to a business platform is no longer acceptable; a new
architectural approach is needed




} Distriouted Systems



A distributed system appears to be a single system but made up of multiple smaller systems

When the smaller and simpler systems are used in combination, they appear to be a single complex
system, but the underlying sub-systems are quicker to create and easier to maintain and test

There are various architectural patterns such a service-oriented architecture (SOA), Event Driven
Architecture, Microservice Architecture and others

Currently the most popular approach today for distributed systems is a combination of event driven
architecture and microservices to create an event-driven microservice architecture

This is not a solution to all problems; each problem needs to consider the best architectural pattern
which may well be a monolith or some other approach. This is something for solution and enterprise
architects to ponder - engineers will design and implement the operational solution based on the
architecture designed by the architects




} NMIcroservices

Hype Cycle for APls, 2023
FHIR APIs
Financial APls ARKCentric - lEvent Driven Architecture
Event-Driven APls Saas

CSP Open APls

) |AP| Security Testing
Open APls m Insurance
API Menitering

AP| Observability

GraphQL APls l_ AP|Management PaaS

“  —
"—{{_ Full Life Cycle

AP Managemeant

AP| Industry Standards

Business Ecosystern Modeling( )

EXPECTATIONS

Federated AP Gateways Open Banki
pen Banking

~

/_,API Developer Portals in Banking
&P

API Threat Pratection
APHased Digtal Commerc

AP Marketplaces
in Supply Chain Planning

. ) AP Testing Services O/ Access Contral
M Microsenices
~ APl Marketplaces

_ As of July 2023
Innovation Peak of Inflated Trough of Slope of Plateau of
Trigger Expectations Disillusionment Enlightenment Productivity
TIME

Plateau will be reached: O <2yrs. O 2-5yrs. @ 5-10yrs. A »10yrs. & Obsolete before plateau

Gartner




} NMICcroservices

A microservice architecture aims to provide an agile response to continuous business change

Rather than attempt to create one big application to solve a business problem, the problem is broken
into business domain problems, potentially using domain driven design (DDD). i.e., individual areas of
the business that can be implemented independently are identified

This is similar to general software decomposition where functions or classes are identified, developed
and tested in isolation then integrated into the final application. But, in a microservice architecture, the
granularity of decomposition is far coarser, each component is a business service and is implemented
as a complete application

Common examples include:
Identity - login, registration etc
User profile - manage user details such as name, email, preferences etc
Order - manage order creation, status updates and history
Inventory - tracks stock levels, reservations and availability

Payment, notification, shipping and many more




4

A microservice:

is an independent application running on its own hardware with its own database if it needs one - databases aren't shared
which prevents changes to data models from impacting other services

is loosely coupled to other microservices and a web front-end with well-defined and documented APIs

is typically developed, tested, deployed and maintained by a single multi-disciplinary team of 5-9 people including a product
owner ( "two pizza team")

is large enough to provide a business process, but small enough to enable daily or even hourly application updates

is agile in that the product pipeline generally used is fully automated CI/CD. e.g. at DWP, developers use DDD for the
architecture and test-driven development (TDD) for the code. A lot of effort goes into the tests such that any code changes can
be tested automatically and if successful, the code is deployed automatically to the target system

can be scaled independently. If one area of the business requires a performance improvement, that microservice can be
scaled independently of the others so is more cost effective than the whole application scaling of a monolith

is resilient. If one microservice fails, that part of the business is unavailable, but the rest of the business can carry on

is a component of a heterogeneous architecture - as it is independent, the programming language, operating system, database
technology, hardware etc can be whatever is the most appropriate for that business process

y.



4

Consider Amazon shopping. This is a large complex business - too large and complex for a monolith

Independent business areas are identified and microservices implemented. At a high level, let's split that into six
services:

Order history
Reviews

Product information
Recommendations
Inventory

Shipping

etc

These six (there will be more than this) can be developed in isolation but once deployed, are available as a
component making up the whole business service that is Amazon shopping

To the user, it looks like one business as the front-end requests resources from various microservices to populate the
web page

y.



} —xample shopping site

rd "x_l e ™, Il,a-' ™,
e oy | |y | |y
P Frequently bought together Srdy 3 el in sk finore on
vy T e zmr==m=-==@ | 1, ORDER HISTORY
il e Bl OEmsisus | 2 REVIEWS
——— e 3, BASIC PRODUCT INFO
— @ || B | 4, RECOMMENDATION
— —emmss > | 5.INVENTORY
S i T s 6. SHIPPING
o . e Frequently bought togethe:




API| Gateway

Orders App

Reviews

Recommend

Inventory
App

Shipping
App




4

Like all good ideas, there are challenges that need to be considered:
As components of the service interact across a network, latency is introduced - unlike the monolith

Data consistency is a challenge when data comes from various databases as opposed to one. e.g. for speed,
you may want a local copy of some data, so managing consistency with the master can be a challenge

Fault finding can be more difficult as each team focusses on one area it can be difficult to track the problem
through the whole system

Communication between microservices can become complex
It is a myth that microservices promote reusability or they are cheaper to build and operate

If your service does not require frequent or at least regular business change, then microservices are probably
not appropriate as the key benefit is agility to business change

So microservices are not a silver bullet that will kill the monolith, each have their advantages and

disadvantages. So, like all design challenges, a decision as to which approach to use is based on the
current and anticipated future business needs

y.



A Gartner definition of a microservice:

Microservices are application components that are tightly scoped, highly cohesive,
strongly encapsulated, loosely coupled, independently deployable and independently
scalable. They are deployed as services behind open, standard network-accessible

interfaces with well-defined API contracts. These components own the data they present,
and only present data that they own

[Gartner, Inc. | GO0745207, page 33]

A microservice architecture is an application architecture deployed as a distributed system




} SBUSINESS Needs

A system is there to satisfy a need which is typically a business need. i.e. we don’t build a solution then ask what can
we use it for, we take a business need and create a solution to satisfy that need

The business need may be a new business line or an improvement of current business lines to respond more
quickly to changing customer needs and market trends

The business needs will be gathered by a business analyst and maybe a product owner, then passed to an architect.
The architects (solution, network, data, application, enterprise etc) will provide the blueprint for the solution which is
then implemented by software engineers, network engineers, security engineers, cloud engineers etc. None of these
people do everything but need an awareness of it all

The key point is that the business drives the IT not the other way round and it is a team task and not that of an
individual so being able to work well in a multidisciplinary team is important as is having a working knowledge of what
the other team members are specialists in; this module attempts to give you that

There needs to be a business case for funding, technical options are presented and considered against costs and
benefits. Considerations such as data protection, system resilience, performance, security, accessibility, operational
cost, software licenses, maintenance, telemetry, operating model are all business considerations for any system so
requirements tend to fall into two areas: functional and non-functional

Functional requirement: what a system must do e.g. "When | press the green button, the red light should light"

Non-functional requirement: how well it does it. e.g., "When the green button is pressed, the red light should light within 0.5s

y.

Both will be provided and assessed in the assignments



== Puyblic internet

= Azure private network

== Docker private network

D Virtual machine

. Application container

. Rabbitmq combined container

/categories
/question/:category

;moderate
categories
LN g

\V/le]g[ee]B]=]

-

mongo
vol

t
|
|

/categories
/submit
/docs

/categories

mysq|

mode

moderate

submitted quest
<

/categq@ries

categories

rated questions

public IP:
private IP:

MODERATED_QUESTIONS

public IP:
private IP:

rmg-admin

public IP:
private IP:

SUBMITTED_QUESTIONS

=
-—

categories

rmg-admin

Container port number

Application port number




} Development Approach

I'll build up the knowledge of the components in the architecture week-by-week
This does mean that successive weeks build on previous weeks, so missing classes is not advisable
I'll discuss and provide demo code for most of the components

You need to work through them to familiarise yourself with the operation

You need to do the lab exercises to practice

If you don't, your assignments will be very difficult to get working




	Slide 1: Dr Tony Nicol BSc (hons), MSc, PhD, MIET, CEng, FHEA, FBCS, CITP
	Slide 2: My background
	Slide 3: The value of this module
	Slide 4: Job prospects
	Slide 5: Relevant snippets
	Slide 6: Module aims summary
	Slide 7: It is essential to practice!
	Slide 8: Feedback from last year before we get started
	Slide 9: Challenges
	Slide 10: Assumptions
	Slide 11: Responsibilities: Students
	Slide 12: Responsibilities: Ours
	Slide 13: Basic 3-tier  Client Server Architecture Monolithic
	Slide 14: 3-tier architecture
	Slide 15: 3-tier Architecture Demo
	Slide 16: Monolithic architecture
	Slide 17
	Slide 18: Distributed Systems
	Slide 19
	Slide 20: Microservices
	Slide 21: Microservices
	Slide 22
	Slide 23
	Slide 24: Example shopping site
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Business needs
	Slide 29: 2024/25 Assignment
	Slide 30: Development Approach

